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Particles and Symmetries

Elementary particles:

Emergent particles:

Symmetry quantum numbers:

Boson

photon

magnon

charge 0
spin1

Fermion

electron

Landau quasi-particle

charge e
spin 1/2



Majorana Fermion

Dirac equation: (279, —m)y =0

Dirac:  is complex quantum field Majorana (1937): let Y be real

(z) = ¢ (x)
\/ E>0 solution: electron \‘/
/\ E<O solution: positron (hole) '/'\‘

Majorana fermion is a neutral fermionic particle that is its own anti-particle.

Whether Majorana fermion exists as elementary particle is currently unknown.



Majorana Mode in Solid State

An emergent zero-energy degree of freedom that is localized in space:

T

* mathematically described by a real operator 7Y =— 7Y

* does not possess any distinctive symmetry quantum number

(analogous to Majorana fermion)

Majorana modes exist in certain topological phases of matter and exhibit
universal properties that reflect topological order of the parent phase.



Non-Abelian Statistics of Majorana Mode

AL+ T'
Ih o

Exchanging Majorana modes leads to a change of ground state in a
way that depends (only) on the order of exchange operations.

Topology matters



Descent of Majorana



Rise of Topology

Descent of Majorana



Outline

Lecture 1: Physics of Majorana mode in superconductors
Lecture 2: Realizations in spin-orbit-coupled systems (Alicea)
Lecture 3: Striking measurable properties of Majorana mode

Lecture 4: Towards finding Majorana and future directions (Alicea)



Majorana Mode in Superconductor

1D single-band, spinless, p-wave BCS superconductor (Kitaev 00)

* Majorana mode is localized at the end of “Kitaev wire”

* |ts existence is dictated by topological property of bulk
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Majorana Mode in Superconductor

1D single-band, spinless, p-wave BCS superconductor

Hamiltonian for infinite wire:

H= Z (B — p)ew + A(E)(chel | + c_per)

kinetic energy pairing

* Fermi-Dirac statistics dictates p-wave pairing: A(—k) = —A(k)
* Nodeatbandedge: A(k=0)=0



1D Spinless Superconductor

Hamiltonian for infinite wire:

H = Z (Er — p)cg + A(k)(chT .+ C_kck)

‘Z"k’c‘ (B ) ()

—k
\

'
BAG Hamiltonian H (k) in Nambu space

For single-band spinless SC:

H(k) = e(k) [n2(k)ox +n.(k)oz]  e(k) = v/ (Bx — p) + A%(k)

* (n,n,)is aunitvector if g(k) #0, i.e,. there is a gap



1D Spinless Superconductor

Hamiltonian for infinite wire:
H = Z (B — p)ex + A(R)(chel |, + c_per)

Energy spectrum:

u>0 =0 u<0
A(kF)\ - / \/ M

fully gapped gapless at k=0 fully gapped
weak pairing BCS A(k) < k strong pairing BEC

* two gapped phases, separated by a gap-closing transition
c.f. Read & Green, 00



Topology of 1D Superconductor

H(k) = e(k) [ne(k)or +n.(k)o.]

e winding number of (n,,n,) as a function of k in 1D Brillouin zone
defines a topological invariant N for gapped 1D superconductor

Weak pairing BCS Strong pairing BEC
\ u>0 / u<0
N

N=1: T/_>‘l'<_\T N=0: T/‘T\T

 two phases are topologically distinct: weak pairing is nontrivial
* generalization to multi-band: Z, topological invariant (N mod 2)
(Kitaev 00)



Majorana Mode

Semi-infinite wire: o I NN

end of wire = domain wall between weak and strong pairing (vacuum) phase
change of topology across the domain leads to a zero-energy localized mode

BdG equation = 1D Dirac equation with a mass twist

0o ( EAk(Z)M uA—(@k ) - ( Zﬁéf) _uzég ) for small

zero-mode corresponds to a real, local operator
v = /da:' w(z)e' (z) + v(x)e(x) where u(x) = v*(x) = e Ho/Y
Y= WT : Majorana zero mode

in contrast, €>0 solutions correspond to ordinary fermions (quasi-particles).



General Properties of Majorana Modes

e zero-energy, real solution to BdG equation: protected by symmetry of BdG

* |ocalized at boundary between two topologically distinct SCs



General Properties of Majorana Modes

e zero-energy, real solution to BdG equation: protected by symmetry of BdG

* |ocalized at boundary between two topologically distinct SCs

Y1 V2

* thereis always an even number of Majorana modes in a closed system

* splitting of zero modes decays exponentially as their separation



Majorana Qubits

Presence of Majorana modes leads to degenerate superconducting
ground states.

e ground state of superconductor is a non-Slater state & corresponds to
quasi-particle vacuum |G) = |0); ® |0)s...

* two Majorana modes make up Fock space of a single fermion degree
of freedom

[T =y +ive, T =71 — iy
(I, 1’} =1
Lf1)pr =0, T[0)ar = 0

|0>and | 1> form a Majorana qubit



Majorana Qubits

Presence of Majorana modes leads to degenerate superconducting
ground states.

ground state of superconductor is a non-Slater state & corresponds to
quasi-particle vacuum |G) = |0); ® |0)a...

two Majorana modes make up Fock space of a single fermion degree
of freedom

|G) =10)1 ®|0)2... ®[0) pr

G') = |(|)>1 ®10)2.-. & 1)
v

finite-energy quasi-particles

:[—» Majorana qubit

2M Majorana modes => M Majorana qubits => 2M-fold degeneracy



Topological Degeneracy

Majorana as a bookkeeper:

* Hilbert space of Majorana modes is isomorphic to Hilbert space of
degenerate many-body ground states.
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Topological Degeneracy

Majorana as a bookkeeper:

* Hilbert space of Majorana modes is isomorphic to Hilbert space of
degenerate many-body ground states.

* Different ground states cannot be distinguished by local observables*,
because low-energy operators involve product of different Majorana
operators and hence are nonlocal.

* Ground state degeneracy is robust against local perturbations™:
topological protection.

Majorana qubit can be used as ideal quantum memory: basis for
topological quantum computing



1D spinless superconductor

/

Topology of BAG Hamiltonian

Majorana boundary mode

Majorana qubit = Ground state degeneracy




1D spinless superconductor

~

Topology of BAG Hamiltonian

What's really
Majorana qubit?

Majorana boundary mode

\ 4

Majorana qubit = Ground state degeneracy




Origin of Ground State Degeneracy

Topology change
}( — ey

1. periodic bc: « quantized momenta k=2mn/L
* an unpaired electron at k=0
=> BCS ground state has odd # of electrons
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1. periodic bc: « quantized momenta k=2mn/L
e anunpaired electron at k=0

=> BCS ground state has odd # of electrons

2. anti-periodic bc:

* equivalent to threading a h/(2e) flux
* shifted momenta k=2m(n+1/2)/L
=> BCS ground state has even # of electrons



Origin of Ground State Degeneracy

}( O Topologychange
—

1. periodic bc: « quantized momenta k=2mn/L
e anunpaired electron at k=0

=> BCS ground state has odd # of electrons

2. anti-periodic bc:

* equivalent to threading a h/(2e) flux
* shifted momenta k=2m(n+1/2)/L
=> BCS ground state has even # of electrons

3. open bc with two ends: on equal terms with 1 & 2 => even/odd degeneracy



Even-Odd Degeneracy

For M=1: the Majorana qubit states |0>,, and |1>,, correspond to the
superconductor ground state with an even and odd number of electrons.

Majorana qubit = electron number parity

The even-parity and odd-parity ground states are locally indistinguishable.

Even-odd degeneracy occurs in BCS phase if there is an odd number of bands
(including spin) at Fermi energy



Even-Odd Degeneracy

The remarkable fact that in the presence Majorana modes, a
topological superconductor can accommodate either an even or odd

number of electrons on equal ground is key to understanding exotic
properties of Majorana modes.



Number and Phase

o E 2n-1 2n+1
Spin-singlet SC T_,N

—_— -]

2Nn-2 2N 2n+2

Ground state manifold parameterized by either Cooper pair number n,
or superconductor phase 0 (2r-periodic)

Number-phase relation:

6) =3 e n) n,0] = i

n



Number, Phase and Majorana Qubit

LF, PRL 104, 056402 (2010)
Topological SC

ton

2n-2 2n-1 2n 2n+l1 2n+2

Ground state manifold can be parameterized in two ways:
1. Superconductor phase 6 (2rt-periodic) AND Majorana qubit (|0>,, or | 1>,)

2. Electron number N (integer)

0 .
Generalized number-phase relation: [N, 5] =1
Even-parity state:  |0) @ |0)y, = Z e~ ON/2| ) invariant under
N=2n 0=>0+2n
Odd-parity state: |0) ® [1)y; = Z e~ ON/2| N changes sign

N—=2n-+1 under 6 =>0 + 2m



Two natural
basis states
for even N;:

Generic state:

D=>0+2m
>

Phase Doubling from 2mt to 4n

8%

8%

0) ®

0) ®

00) + B

00) — §

V3
Two crossed wires forming a Josephson junction: M=2
* Josephson coupling due to Cooper pair tunneling Y1 Y,
fixes the relative superconductor phase 6=06,-6,
* For a fixed total number of electrons N,, there is a
two-fold degeneracy Vs

012,034) 01 = Z €i9NA/2\Nt> ® |N¢ — Na),

Na=2n

L1, 134) M = Z e'’N4/2N) @ [Ny — Na),

Np=2n+1

11> corresponds to superposition of even and odd

11)

sectors in different parts of the superconductor

non-Abelian Berry phase



Braiding and Non-Abelian Statistics in 2D

* Majorana mode exists in vortex core of spinless p+ip superconductor

* movingy,aroundy, (=braiding twice) advances the superconductor
phase in the enclosed region by 2n => change the ground state

Basis for topological quantum computation



Majorana Mode in Solid State

Lecture 1: Physics of Majorana mode in superconductors
Lecture 2: Realizations in spin-orbit-coupled systems (Alicea)
Lecture 3: Striking measurable properties of Majorana mode

Lecture 4: Towards finding Majorana and future directions (Alicea)



Exotic Properties of Majorana Modes

* Particle = Anti-particle: pair annihilation and production

* Non-locality: two spatially separated Majorana modes form one qubit

* Non-Abelian statistics: braiding changes Majorana qubit



Exotic Properties of Majorana Modes

* Particle = Anti-particle: pair annihilation and production



Conventional Josephson Effect: 2rt Periodic

Spin-singlet SC:
2e

-

* single-electron tunneling is suppressed by pairing gap
* Cooper-pair tunneling leads to Josephson effect

E=—FEjcos(f), 0 =0, —0-

_OE

I'="%g

— EJ Slﬂ(@)

* Current-phase relation is 2rt periodic: manifestation of
qguantized charge 2e of the Cooper pair



41t Josephson Effect via Majorana

Yakovenko et al 04
e

-

Topological SC: I (e —
Yi V>

* Majorana mode enables electron to enter/exit without energy cost
=> Josephson effect via single-electron tunneling



41t Josephson Effect via Majorana

Yakovenko et al 04
e

Topological SC: o &

L "OoNNe~ @000 ]
Yi V>

Majorana mode enables electron to enter/exit without energy cost
=> Josephson effect via single-electron tunneling

tunneling Hamiltonian: Hr = tCTL(O)CR(O) + h.c.
mode expansion: ¢} (0) = ui (011?22 4. (0) = ui(0)ye 0 .

projecting Hy to low-energy:  Hp = iAy1y2c08(0/2), X = Iml[tus (0)us(0)]




41t Josephson Effect via Majorana

Yakovenko et al 04
e

-

Topological SC: I (e —
Yi V>

* Majorana mode enables electron to enter/exit without energy cost
=> Josephson effect via single-electron tunneling

low-energy Hamiltonian:

: +1 for |0>,
Hp = iAy17y2 cos(0/2), iv1ye =2ny — 1 = _I:
-1for [1>,,
energy spectrum:
& * coupling of two Majoranas leads to level splitting of |

0>,, and |1>,,: pair annihilation
* energy splitting depends on B with 4mt periodicity
-t * |evel crossing is protected by local parity conservation
in a gapped superconductor




41t Josephson Effect in a Ring

B®&®

® = (8/2m)(h/2e)



41t Josephson Effect in a Ring

* energy of even- and odd-parity states flips

 for aclosed and gapped system, parity conservation
forbids switching “branches”:

“A => 4n-periodic Josephson effect

® = (6/2m)(h/2e)

ground state is odd-parity ground state is even-parity



How to Measure 4mt Josephson Effect?

Current-phase relation:

2¢ OF 0 |
I:—ea—O(:l:Sin—

h 00 2

Measure current-phase relation in RF SQUID LF & Kane, PRB 08

%B@

@ = (8/2mn)(h/2e)



How to Measure 4mt Josephson Effect?

Measure current-phase relation in RF SQUID: LF & Kane, PRB 08

e promising realization in quantum spin Hall system HgTe or InAs/GaSb
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QSHI




How to Measure 4mt Josephson Effect?

Measure current-phase relation in RF SQUID: LF & Kane, PRB 08

e promising realization in quantum spin Hall system HgTe or InAs/GaSb

Harmful effect of quasi-particle poisoning: changes Majorana qubit and
thus switches branch without violating parity conservation

Measurement time scale vs. Majorana qubit lifetime

* fast measurement: 4n-periodic Josephson effect

* slow measurement: monitor noise in supercurrent to

QSHI
of extract the lifetime and its temperature dependence

1 e~ 2o/T quasiparticles,
T e~ (To/T)'/? hopping.



Induced Superconductivity in the Quantum Spin Hall Edge

Sean Hart™, Hechen Ren', Timo Wagner!, Philipp Leubner?, Mathias Miihlbauer?,

Christoph Briine?, Hartmut Buhmann?, Laurens W. Molenkamp?, Amir Yacoby! (arXiv 13)

Critical Current (Normalized)

Magnetic Field (mT)

-1 -08 -06 -04 -0.2 (o]
Topgate Voltage (V)

magnetic interference pattern reveals supercurrent flowing at HgTe edge

* towards current-phase measurement



Majorana Pair Creation & Annihilation

LF & Potter, PRB 13

B
B® )
S y
sC o — = /'
Ti thin film T

Consider 1 flux quanta in SC-TI-SC junction:
creates 1 Jonsephson vortex that traps 1 Majorana on top and bottom surface

position of Majorana (y) is proportional to flux through SC loop O:
advance O by 2it transports Majorana from one edge to the other



Majorana Pair Creation & Annihilation

LF & Potter, PRB 13

B® 40
s y
—. L)

Tl thin film TI

m
-




Majorana Pair Creation & Annihilation

LF & Potter, PRB 13

B
B® )
— LR
o /
Tl thin film -

m
o]



Majorana Pair Creation & Annihilation

LF & Potter, PRB 13

B®

SC 0

Tl thin film

Tl thin film




Majorana Pair Creation & Annihilation

LF & Potter, PRB 13

B® )

SC 0

Tl thin film T

Pair Annihilation

Tl thin film o I &

point of no return




Majorana Pair Creation & Annihilation

LF & Potter, PRB 13

B®

SC 0

—_—

Tl thin film

Pair Creation

(9'e |
Tl thin film

place of rebirth




Signal of Pair Creation & Annihilation

. g , ~]nm
Tl thin film: D>3nm I BixSe; g~ tens of nm
Energy splitting of Majorana SML 11>y,
gubit depends on position y J
and thus flux ©: ' —y \ 10>
M
: . : oF
Supercurrent spikes with peak-dip structure: I = 7%
I A
<
S
>
> TI




Magnitude of Majorana-derived Supercurrent

e short junction L <&: Josephson current is dominated by subgap Andreev states
e many Andreev states coexist with Majorana in a Josephson vortex

® =h/2e Ow=m-5
S S
TI
b) Oo=n+35

Maximum supercurrent is close to eA/h.

I (nA)

e this result is largely independent of details

e the maximum amount of Josephson current
carried by a single mode.

oo



Sweet Spot: One Flux Quanta in Junction

Supercurrent from metallic states in junction is greatly suppressed,
and completely vanishes if junction is homogeneous (as seen from
zero in Fraunhofer pattern)

1.2

0.8 /\
[

0.4 ,
|

a1

Sweet spot for isolating Majorana-derived supercurrent in Tl JJ.



Current-Phase Relation

x 10°
5 0 0 4
4 }
0.5 3
3  §
2
21 075
22 i 1
l P
S0 B
— _l f— -l
2
2
3
-4 -3
_5 L
0 0.5
a) 0/2%

x 10°

1 - ; ?
0 0.5 l
b) 0/2n

vr = 4.2 x 10°m/s, pu = 10meV

A

= 151peV. W = 2um

Majorana-derived supercurrent: 30nA



Experiment
Williams et al, PRL 12

©
~¢- Extracted |(B)

-0)

— Fraunhofer pattern
10}  fordevice area ol

I/le (B

I/l (B

* lifted zeros in Fraunhofer pattern.
* residual supercurrent is too large to come from Majorana, consistent
with current from side surface in thick Tl film Moore, 12



Experiment

Williams et al, PRL 12

®
~¢- Extracted |(B)

-0)

1]
=

o
<
=©

— Fraunhofer pattern
_. 10}  fordevice area .
2 /0,
o
2
05}
to detect pair creation/annihilation of Majorana requires: "

1. low temperature, resolve small supercurrent
2. suppress metallic modes

3. thinTIfilm

4. current-phase meaurement

In

A 4




Exotic Properties of Majorana Modes

* Particle = Anti-particle: pair annihilation and production

* Non-locality: two spatially separated Majorana modes form one qubit



How to Detect the Non-Local Majorana Qubit?

Perhaps this? N-S-N junction

N1 d S (I, N2
I

D

l4 —_ I

under conditions: 1. superconductor is grounded.
2. two Majorana modes have vanishing wavefunction overlap.

results from BTK theory:
* Andreev reflections at N1-S and N2-S are independent
e [1(V41) and I2(V2) are uncorrelated: e.g. 12=0 if V2=0 irrespective of V1

reason: N-S conductance is determined by local Andreev reflection at the interface.

Ahkmerov, Nilsson, Beenakker, 09; Bolech & Demler 07



How to Detect the Non-Local Majorana Qubit!

Perhaps this? N-S-N junction
= o
N+ (/ X (/ N2
I - < |
|: @ —_ = |2

under conditions: 1. superconductor is grounded.
2. two Majorana modes have vanishing wavefunction overlap.

N - grounded S - N junction = two N-S junctions in parallel:
does not detect the Majorana qubit

Mission Impossible?



week ending

PRL 104, 056402 (2010) PHYSICAL REVIEW LETTERS 5 FEBRUARY 2010

Electron Teleportation via Majorana Bound States in a Mesoscopic Superconductor

Liang Fu
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 October 2009; published 2 February 2010)

work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and
out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic
superconductor because of an all-important but previously overlooked charging energy. We propose an
experimental setup to detect this phenomenon in a superconductor—quﬁum—spE—Hall—insulator——

new ingredient:
charging energy due to long-range Coulomb interaction

direct consequences of nonlocal nature of Majorana state




Charging Energy in Superconductor with Majoranas

Energy spectrum of topological superconductor with two Majorana modes present:

| | E
C S C N U=0
| | L) ON-1 ON+1
E ON-2 ON ON+2
- U#0

G hans1 = 1001 @ [0} ® [1) a1 R

e U=0: ground states with Majorana qubit |0>m and |1>m are degenerate and
have different electron number parity: even-odd degeneracy

e U#0: E(N) = U(N-No)? for both even and odd N



Nonlocal Transport via Majorana Qubit

I I
N7RQC S OI™N

Working conditions:
small bias below charging energy,
low temperature below tunneling strength

Weak tunneling and small bias limit (universal regime):

analyze the slow tunneling process in steps, work with low-energy states only,
and calculate transmission amplitude of incident electron.



Tunneling Process

Weak tunneling and small bias limit (universal regime):

U=0

e | | c2|Gani1 ~ usye 1) ar = iub|0) pr = 1ud|G)on
2NQ [Gan = 10)ar € . .

L|/ Gan = 0 (|/ CE‘G/>2N+1 ~ U2’Y2’1>M = _W2’0>M = —ZU2‘G>2N+2

L

e

C Gany1 = 1) C |Gan =|0)ps © current +l

| | | |
OR

,| 1 © ,| 1

Ol ans1 = 1) CEN C|G)anie = |0)2& current -l

Total current is zero because (i) Majorana mode is equal superposition of electron
and hole (ii) condensate reservoir absorbs Cooper pairs at zero energy cost.



Tunneling Process

Weak tunneling and small bias limit (universal regime):

Charging energy U#0 En+2
S | o Ene
/.“% |G)an = [0) m LI En
| | © | |
ClG ) oni1 = 1)u A C |G)an = |0)ar © current +l
|

OR

| |
L‘G 2N—|—1 (/z.\>< 2N—|—2 = ’0>]\/£|,

Charging energy removes degeneracy between different charge states in S,
suppresses Andreev reflection and thus results in a nonzero conductance.




Tunneling Process

Weak tunneling and small bias limit (universal regime):

Charging energy U#0 Enso
e ! o Enet
/.“(l, Ghan = |0)m (f Ex
| ) © | |
QG )oni1 = |1>M(,/N C |Gan =10)s © current +|

After completing a charge transfer via Majorana modes, the
superconductor restores to the same ground state, because
two Majorana modes “share” one quantum state.

This nonlocality enables electron to be added and subsequently removed from
two ends of superconductor without leaving trace behind => elastic process



Tunneling at Off-Resonance

Weak tunneling and small bias limit (universal regime):

Charging energy U#0 I\
S | o Ensq
/\‘% |G)on = [0)m LI _____________ EN |
,I 1 © [ ]
OIC a1 = 1)y Q™ O |G)an = [0)ar © current +
|

for bias smaller than detuning, eV<En+1-En
from second-order perturbation theory:
transmission amplitude = £iA1 Aa(u5us)

Note the sign depends on Majorana qubit (here coincides with electron number parity)



Tunneling at Off-Resonance

Weak tunneling and small bias limit (universal regime):

Charging energy U#0 En+o
e | - E N+1
/‘ﬂ% L Ey
| | © | |
QG )ong1 = ‘1>M(//N C |Ghan =|0)asr © current +

The problem of tunneling through two Majorana modes is
mapped to tunneling through a single energy level.

because the two many-body ground states involved differ by
charge one and opposite fermion parity



Quantum Teleportation via Majorana Modes

I

L — V.
| | -

N/“(&L S O ™N ) :

B

.||-@—| |—|
[
HE-

e two-terminal transport is phase-coherent
» conductance reaches e?/h for symmetric resonant tunneling

e conductance and transmission phase shift is independent of what'’s inside S,
such as distance between Majorana modes, fermion bath...

e phase shift (measured by interference) changes by T when Majorana qubit flips:
measures fusion outcome of two Majorana modes without moving them.

direct consequences of nonlocal nature of Majorana state

feasible in quantum spin Hall state and nanowire.





