
What Have We Learned So Far?

Superconductors Without Any Symmetry (Besides 
Particle-Hole “Redundancy” Which Squares to 1 - the 

Usual Case) Have Z2 Classification in 1-d and 2-d  

Edge States - Mirror of Topologically Nontrivial Bulk

Topological Indices Can (and should) Be Understood 
Through Both Bulk Topology and Edge Stability 

Arguments

Majorana Zero Modes Can Appear as Edge Modes in a 
Topologically Nontrivial Phase of the Kitaev P-Wave 

Wire and Can Form Non-Local Hilbert Spaces



Last Thing About 1-d (ideas will help later)
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Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N) U(2n)/U(n) ×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 1 U(N +M)/U(N) ×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 1. Listed are the ten generic symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.
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TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -
CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 - - Z

TABLE I: Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-reversal
symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.

Why is there no C (BdG) 
class in d=1?

(hint: because C^2=-1, we 
need two flavors at least. 

The symmetry cannot keep 
the two flavor Majorana 

edge modes from gapping - 
just like C^2=1 cant either, 
but with C^2=1 we do not 

need two flavors) 

Work it out 
during break.



Two Dimensions: First the Easy Classes
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H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.
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degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.

Lets analyze first the classes with no chiral symmetry S

Look at class D in 2d. We can understand the 
classification by thinking what protected edge 

states could we have if we cut the system.

k

If noninteracting, the k=0, Pi (along the edge) 
Hamiltonians are charge conjugation invariant 1-d 

Hamiltonians themselves.

Therefore I could have a nontrivial 1-d class at 
k=0 and a trivial class at k =Pi 

(nontrivial at both k=0,Pi is a weak topological 
superconductor, just decoupled layers of 1-d)

We can then clearly have a Chiral edge state - 
Chiral Majorana mode on one edge (say right) of 

the cut superconductor.

Can we have counter-propagating modes on one 
edge? NOT in D class. There would be nothing to 

protect the gap at edge from opening. 

However, we can have as many Chiral modes as we 
want. Cannot open a gap (chiral) 



General Theory for the D and C classes in 2 Dimensions

These are classes with Chiral Majorana edge modes.

They have a Z classification, which is the number of chiral edges.

They are described by a projector (spectral) Chern number, identical to the case of the Chern 
insulator of IQH or TKNN formula. 

The only difference is that unlike in the insulator, the Chern number is not related to the Hall 
conductance. 

 PG is the spectral projector onto the lower Bogoliubov bands 

We are interested only in the antisymmetric part of the conductivity (the

Hall conductivity), and hence neglect any symmetric combination in indices

i, j to obtain:

Qij(iνm) =
1

V

�

k

(�G − �E)
2Tr

�
(∂iPG)(∂jPE)PE

2iνm

(iνm)2 + (�G − �E)2

�

(105)

Analytic continuation in order to obtain the time-ordered correlator from the

temperature-ordered one: iνm → ω + iδ gives, in the DC limit ω → 0:

Qij(ω → 0) = lim ω → 0
1
V

�
k(�G − �E)

2Tr
�
(∂iPG)(∂jPE)PE

2ω
(ω+iδ)2+(�G−�E)2

�
=

=
2ω
Ω

�
k Tr[(∂iPG)(∂jPE)PE] (106)

Lets massage the trace:

Tr[(∂iPG)(∂jPE)PE] = Tr[(∂iPG)(∂jPG)PG]− Tr[(∂iPG)(∂jPG)] (107)

The last term is again symmetric in i, j so we neglect it. We have now

obtained the correlation function purely in terms of projection operators

into the ground-state manifold of occupied bands PG(k) . Numerically, this

is the way one computes the Hall conductance, as projectors are manifestly
gauge invariant, thereby bypassing the need for the gauge smoothing that

we referred to in our Berry phase section. By using the explicit expression

of the projectors in terms of Bloch states and after tedious algebra, we find:

Tr[(∂iPG)(∂jPG)PG] =

m�

α=1

�∂i(α, k)|∂j|α, k�+

m�

α,β=1

�α, k|∂i|β, k��β, k|∂j|α, k�

(108)

The second term is symmetric in i, j:

m�

α,β=1

�α, k|∂i|β, k��β, k|∂j|α, k� =

m�

α,β=1

�β, k|∂i|α, k��α, k|∂j|β, k� (109)

and we hence neglect it, leading to the antisymmetric part of the �∂i(α, k)|∂j|α, k�:

�ijTr[(∂iPG)(∂jPG)PG] =

m�

α=1

[�∂i(α, k)|∂j|α, k� − �∂j(α, k)|∂i|α, k�] (110)
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FIG. 1: Fermi Surface for generic, non-circular Dirac Hamiltonian

We also know the integral

� 2π

0
dφ

1

a cos(φ)2 + b sin(φ)2 + c cos(φ) sin(φ)
=

4π√
4ab− c2

(22)

valid as long as c2 < 4ab, which is the condition of not having nodal lines. Identifying a, b, c we have that:

4(A2
11 + A2

21)(A
2
12 + A2

22)− 4(A11A12 + A21A22)
2

= 4(A2
11A

2
22 + A2

21A
2
12 − 2A11A12A21A22) = 4(DetA)

2
(23)

Which brings us to a neat expression for the Berry phase

�

Fermi Surface
d�k · �A = π · sign(DetA) (24)

Hall Conductivity of a Dirac Fermion in the Continuum

We have showed before that the Berry curvature, necessary for the Chern number, vanished on a lattice if you have

time-reversal. The Dirac fermion in the continuum doesnt have a lattice by definition, but the same theorem applies.

This can be clearly seen from the form of the Berry curvature which needs all 3 Pauli matrices to enter. For the

continuum Dirac Hamiltonian we have:

Fxy =
1

2(m2 + k2)3/2
m (25)

Put the chemical potential in the Gap and integrate this over the occupied states (it actually already implies an

integral over occupied states, since it was computed from the lower band eigenstate):

σxy =
1
2π

�
d2kFxy =

1
2π

� �
kdkdθ m

2(m2+k2)3/2 =
�
0∞ kdkk m

2(m2+k2)3/2 =
m
4

�∞
0 dx 1

(m2+x)3/2 =

=
m
4

�∞
m2 dy 1

y3/2 = −m
2

1√
y |∞m2 =

sgn(m)
2 (26)

We have arrived to the remarkable result that massive 2D Dirac fermions have a Hall conductance equal to one-half

times the sign of their mass. This statement is puzzling because we have said that a non-interacting system has to

have an integer Hall conductance. This is true, but only if the problem is on a lattice – in this case, the reason why
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We can alternatively define the Berry potential and curvature of the Bogoliubov occupied bands and 
express the Chern number just as TKNN did
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P+iP Superconductor

Simplest example of a chiral superconductor is the p+ip in 2d

There is even a candidate material SrRu - see Prof Raghu’s talk right after this one. 

px+i py needed. Only px would be gapless in 2 dimensions. 
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superconductor. We begin with the lattice Hamiltonian

H =
∑

m,n

{
−t
(
c†m+1,ncm,n + h.c.

)
− t
(
c†m,n+1cm,n + h.c.

)
− (l − 4t)c†m,ncm,n

+
(
Dc†m+1,nc

†
m,n + D∗cm,ncm+1,n

)
+
(
iDc†m,n+1c

†
m,n − iD∗cm,ncm,n+1

)}
. (16.34)

The fermionoperators cm,n annihilate fermions on the lattice site (m, n), andwe are considering
spinless (or, equivalently, spin-polarized) fermions. We set the lattice constant a = 1 for
simplicity. The pairing amplitude is anisotropic and has an additional phase of i in the
y-direction compared to the pairing in the x-direction. Because the pairing is not on site, just as
in the lattice version of the p-wave wire, the pairing terms will have momentum dependence.
We can write this Hamiltonian in the BdG form and, assuming that D is translationally
invariant, can Fourier-transform the lattice model to get

HBdG = 1
2

∑

p

W†p

(
ε(p) 2iD(sin px + i sin py)

−2iD∗(sin px − i sin py) −ε(p)

)

Wp, (16.35)

where ε(p) = −2t(cos px + cos py) − (l − 4t) and Wp = (cp c†−p)T . For convenience we have
shifted the chemical potential by the constant 4t. As a quick aside, we note that the model
takes a simple familiar form in the continuum limit (p → 0):

H (cont)
BdG = 1

2

∑

p

W†p





p2

2m
− l 2iD(px + ipy)

−2iD∗(px − ipy) − p2

2m
+ l



 Wp, (16.36)

where m ≡ 1
2t and p2 = p2x + p2y . We see that the continuum limit has the characteristic

px + ipy chiral form for the pairing potential. The quasi-particle spectrum of H (cont)
BdG is E± =

±
√

( p2
2m−l

)2 + 4|D|2 p2, which, with a finite pairing amplitude, is gapped across the entire BZ as
long as l %= 0. This is unlike some other types of p-wave pairing terms (e.g., D(p) = Dpx) which
can have gapless nodal points or lines in the BZ. In fact, nodal superconductors, having gapless
quasi-particle spectra, are not topological superconductors simply by definition (i.e., a bulk
excitation gap does not exist).

We immediately recognize the form of H (cont)
BdG as a massive 2-D Dirac Hamiltonian, and

indeed equation (16.34) is just a lattice Dirac Hamiltonian, which is what we will consider
first. We can use our intuition from topological insulators—in, for example, chapter 8—to
understand the different phases of this Hamiltonian. We expect that HBdG will exhibit several
phases as a function of D and l for a fixed t > 0. For simplicity let us set t = 1

2 andmake a gauge
transformation cp → eih/2cp, c†p → e−ih/2c†p, where D = |D|eih. The Bloch Hamiltonian for the
lattice superconductor is then

HBdG(p) =
(
2 − l − cos px − cos py

)
sz − 2|D| sin pxsy − 2|D| sin pys

x, (16.37)

where the sa are the Pauli matrices in the particle or hole basis. This has the same matrix
structure as a lattice Dirac model with a speed of light v = 2|D| and a Wilson mass term
M(p) = 2 − l − cos px − cos py . Assuming |D| %= 0, this Hamiltonian has several fully gapped
superconducting phases separated by gapless critical points. The quasi-particle spectrum for
the lattice model is E±(p) = ±

√
M(p)2 + 4|D|2 p2 and is gapped (under the assumption that
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Phases of the P+iP Superconductor

Trivial (strong pairing Fermi 
level below band)

µ<0 µ>0

Non-trivial 
(weak pairing Fermi level in band)
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Thus,

H (QH)
edge � !�

2

∑

p≥0

p
(
c1� −pc1� p � c2� −pc2� p

)
(16.44)

up to a constant shift of the energy. This Hamiltonian is exactly two copies of a chiral-
Majorana Hamiltonian. The edge/domain-wall fermion Hamiltonian of the chiral p-wave
superconductor will be

H (p-wave)
edge � !�

2

∑

p≥0

pc−pcp � (16.45)

Finding gapless states on a domain wall of l is an indicator that the phases with l � 0 and
l � 0 are distinct. If they were the same phase of matter, we should be able to adiabatically
connect these states continuously. However, we have shown a specific case of themore general
result that any interface between a region with l � 0 and a region with l � 0 will have
gapless states that generate a discontinuity in the interpolation between the two regions. This
question remains: is l � 0 or l � 0 nontrivial? The answer, as we will show now, is that we
have a trivial superconductor for l � 0 and a topological superconductor for l � 0� Remember
that for now we are considering l only in the neighborhood of 0 and using the continuum
model expanded around (px � py) � (0� 0)� We will now define a bulk topological invariant
for 2-D superconductors that can distinguish the trivial superconductor state from the chiral
topological superconductor state. For the spinless BdGHamiltonian, which is of the form

HBdG � 1
2

∑

p

W†pda(p� l)saWp � (16.46)

da(p� l) �
(
−2� D� py � −2� D� px � p2 � 2m− l

)
� (16.47)

the topological invariant is the spectral Chern number [76], which simplifies, for this
Hamiltonian, to the winding number

N� � 1
8p

∫
d2 p εi j �d �

(
∂pi

�d × ∂p j
�d
)

� 1
8p

∫
d2 p

εi j

� d� 3
d �
(
∂pid × ∂p jd

)
� (16.48)

The unit vector �da � da � � d� � This integral has a special form and is equal to the degree of the
mapping from momentum space onto the 2-sphere given by �d2

1 � �d2
2 � �d2

3 � 1� As it stands,
the degree of the mapping S : (px � py) → ( �d1 � �d2 � �d3) is not well defined because the domain
is not compact, i.e., (px � py) is restricted to lie only in the Euclidean plane (R2). However, for
our choice of the map S, we can define the winding number by choosing an equivalent, but
compact, domain. To understand the necessary choice of domain, we can simply look at the
explicit form of �d :

�d �
(
−2� D� py � −2� D� px � p2 � 2m− l

)

(
4� D� p2 � (p2 � 2m− l)2

)1� 2 � (16.49)

We see that lim� p � →∞ �d � (0� 0� 1), and it does not depend on the direction in which we
take the limit in the 2-D plane. Because of the uniqueness of this limit, we are free to perform
the one-point compactification of R2, which amounts to including the point at infinity in our
domain. The topology of R2 ∪ � ∞� is the same as S2, and so we can consider the degree of our

A simple way of seeing that this Hamiltonian has nontrivial edges for                   is to linearize it 
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� D� !� 0) unless M(p)� sin px � and sin py simultaneously vanish. As a function of (px � py � l), we
find three critical points. The first critical point occurs at (px � py � l) � (0� 0� 0)� The second
critical point has two gap closings in the BZ for the same value of l: (p� 0� 2) and (0� p� 2)� The
final critical point, is again, a singly degenerate point at (p� p� 4)� Wewill show that the phases
for l � 0 and l � 4 are trivial superconductor phases, whereas the phases 0 � l � 2 and
2 � l � 4 are topological superconductor phases with opposite chirality. In principle we can
define a Chern number topological invariant constructed from the projection operator onto
the lower quasiparticle band to characterize the phases. However, because electric charge is not
conserved, there is no connection between this quantity and theHall conductance, unlike the
case for Chern insulators in chapter 3. We will show this calculation shortly, but first wemake
some physical arguments about the nature of the phases.

We will first consider the phase transition at l � 0� The arguments will closely mirror those
discussed in chapter 8. The low-energy physics for this transition occurs around (px � py) �
(0� 0), and so we can expand the lattice Hamiltonian around this point; this is nothing but
equation (16.36). One way to test the character of the l � 0 and l � 0 phases is to make an
interface between them. If we can find a continuous interpolation between these two regimes
that is always gapped, then they are topologically equivalent phases of matter. If we cannot
find such a continuously gapped interpolation, then they are topologically distinct. A simple
geometry to study is a domain wall where l � l(x) such that l(x) � −l0 for x � 0 and l(x) �
� l0 for x � 0 for a positive constant l0 � This is an interface that is translationally invariant
along the y-direction, so we can consider the momentum py as a good quantum number
to simplify the calculation. What we will now show is that there exist gapless, propagating
fermions bound to the interface that prevent us from continuously connecting the l � 0
phase to the l � 0 phase. This is one indication that the two phases represent topologically
distinct classes.

The quasi-1-D, single-particle Hamiltonian in this geometry is

HBdG � 1
2





−l(x) 2i � D�
(

−i
d
dx

� ipy

)

−2i � D�
(

−i
d
dx

− ipy

)
l(x)




� (16.38)

where we have ignored the quadratic terms in p � and py is a constant parameter, not an opera-
tor. This is a quasi-1-D Hamiltonian that can be solved for each value of py independently. We
propose an ansatz for the gapless interface states:

� wpy (x � y)〉 � eipy y exp
(

− 1
2� D�

∫ x

0
l(x′)dx′

)
� φ0〉 (16.39)

for a constant, normalized spinor � φ0〉� For py � 0, this Hamiltonian is nearly identical to the
one we solved in one dimension for the bound state of the p-wave wire. The secular equation
for a zero-energymode at py � 0 is

HBdG � w0(x � y)〉 � 0

� ⇒
(

−l(x) l(x)
−l(x) l(x)

)

� φ0〉 � 0� (16.40)

The constant spinor that is a solution of this equation is � φ0〉 � 1�
√
2 (1 1)T � This form of

the constant spinor immediately simplifies the solution of the problem at finite py � We see

This now looks like a Dirac Hamiltonian. 
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l � 0 are distinct. If they were the same phase of matter, we should be able to adiabatically
connect these states continuously. However, we have shown a specific case of themore general
result that any interface between a region with l � 0 and a region with l � 0 will have
gapless states that generate a discontinuity in the interpolation between the two regions. This
question remains: is l � 0 or l � 0 nontrivial? The answer, as we will show now, is that we
have a trivial superconductor for l � 0 and a topological superconductor for l � 0� Remember
that for now we are considering l only in the neighborhood of 0 and using the continuum
model expanded around (px � py) � (0� 0)� We will now define a bulk topological invariant
for 2-D superconductors that can distinguish the trivial superconductor state from the chiral
topological superconductor state. For the spinless BdGHamiltonian, which is of the form

HBdG � 1
2

∑

p

W†pda(p� l)saWp � (16.46)

da(p� l) �
(
−2� D� py � −2� D� px � p2 � 2m− l

)
� (16.47)

the topological invariant is the spectral Chern number [76], which simplifies, for this
Hamiltonian, to the winding number

N� � 1
8p

∫
d2 p εi j �d �

(
∂pi

�d × ∂p j
�d
)

� 1
8p

∫
d2 p

εi j

� d� 3
d �
(
∂pid × ∂p jd

)
� (16.48)

The unit vector �da � da � � d� � This integral has a special form and is equal to the degree of the
mapping from momentum space onto the 2-sphere given by �d2

1 � �d2
2 � �d2

3 � 1� As it stands,
the degree of the mapping S : (px � py) → ( �d1 � �d2 � �d3) is not well defined because the domain
is not compact, i.e., (px � py) is restricted to lie only in the Euclidean plane (R2). However, for
our choice of the map S, we can define the winding number by choosing an equivalent, but
compact, domain. To understand the necessary choice of domain, we can simply look at the
explicit form of �d :

�d �
(
−2� D� py � −2� D� px � p2 � 2m− l

)

(
4� D� p2 � (p2 � 2m− l)2

)1� 2 � (16.49)

We see that lim� p � →∞ �d � (0� 0� 1), and it does not depend on the direction in which we
take the limit in the 2-D plane. Because of the uniqueness of this limit, we are free to perform
the one-point compactification of R2, which amounts to including the point at infinity in our
domain. The topology of R2 ∪ � ∞� is the same as S2, and so we can consider the degree of our
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Figure 16.5. The winding number for the
continuum chiral p-wave superconductor.
The winding index is plotted as a function of
the parameter l, which is tuned through a
quantum phase transition at l � 0�
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map from the compactified momentum space (S2) to the unit d-vector space (S2). Using the
explicit form of the d-vector for this model, we find

N� � 1
8p

∫
d2 p

(
p2
2m∗ � l

)

(
p2 � 1

4� D� 2

(
p2
2m − l

)2)3� 2 � (16.50)

The evaluation of this integral can easily be carried out numerically and the result, as a
function of l, is shown in figure 16.5. This figure clearly shows two different phases separated
by a quantum critical point at l � 0� One is topologically nontrivial (l � 0), and the other is
trivial (l � 0). Thus, we have identified the phase that is in the chiral superconductor state.

16.3.1 Bound States on Vortices in 2-D Chiral p-wave Superconductors
We have seen that on domains between regions of chiral superconductors with l � 0 and
l � 0, there exist chiralMajorana states propagating on the interfaces. For the linear interface,
we found an exact zero-mode solution, accompanied by a set of propagating modes. The
propagatingmodes will be separated by an energy gap if there is finite-size quantization due to
a finite interface length. For a closed systemwith periodic boundary conditions, there have to
exist an even number of linear domain walls and, thus, an even number of isolated Majorana
zero modes. This is important because we are formulating this problem in terms of the BdG
Hamiltonian, which strictly enforces a Hilbert space structure with an even dimension. That
is, there is an even number of fermionic modes. For every state at E � 0, there is a partner
state at −E related by the particle-hole symmetry, so there must be an even number of states
at E � 0� If only one (Majorana)mode were present at E � 0, there would be an inconsistency.

Now let us imagine a different geometry: consider a disk of radius R, which has l � 0
surrounded by a region with l � 0 for r � R � We know from our previous discussion that
there will be a single branch of chiral Majorana states localized near r � R � At first glance,
the disk geometry seems to pose a problem because there is no issue with global boundary
conditions if we have only one radial interface, and thus we can seemingly get an odd number
of Majorana zero modes. However, on any interface in the 2-D plane (R2), which is a closed
curve, there will be no Majorana zero mode and, thus, no inconsistency. This is due to a
Berry-phase contribution to the boundary conditions along the closed curve [70]. We can see
this from the transformation properties of the quasi-particle operator for the spinless chiral
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Figure 16.6. Energy spectra for the chiral p-wave lattice model on a cylindrical geometry
with one conserved momentum k and one open boundary direction. We plot only the
independent energy states, i.e., only the E ≥ 0 spectrum for the different phases. The
states crossing the energy gap (solid and dotted lines) are the edge states where each
line style represents a different edge. We show the spectra for |D| = 0.5 and different
values of l: (a) l = −1.0, (b) l = 1.0, (c) l = 3.0, and (d) l = 5.0.

superconductor:

c†p = eih/2u(p)c†p + e−ih/2v(p)cp, (16.51)

where h is the phase of of the order parameter and

u(p) = ε(p) +
√

4|D|2 p2 + ε2(p)
(ε(p) +

√
4|D|2 p2 + ε2(p))2 + 4|D|2 p2

,

v(p) = −2i|D|(px − ipy)
(ε(p) +

√
4|D|2 p2 + ε2(p))2 + 4|D|2 p2

.

A localized quasi-particle operator can be written by Fourier-transforming

c†(x) =
∫

d2 p
(2p)2

eip·xc†p. (16.52)

From equation (16.51) we see that if the superconducting order parameter winds by 2p, then
c†p → −c†p and, thus, c†(x) → −c†(x). This is important because for the chiral superconductor,
we have D(p) = |D|eiheiφp̂ p, where p = p(cos φ, sin φ). From a semiclassical perspective, we
see that if we take a quasi-particle around a closed loop, then the phase of D(p), effectively
winds by 2p because the direction of the momentum of the quasi-particle is changing by 2p.

Left Edge

Left EdgeRight Edge

Right Edge
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Thus,

H (QH)
edge = !v

2

∑

p≥0

p
(
c1,−pc1,p + c2,−pc2,p

)
(16.44)

up to a constant shift of the energy. This Hamiltonian is exactly two copies of a chiral-
Majorana Hamiltonian. The edge/domain-wall fermion Hamiltonian of the chiral p-wave
superconductor will be

H (p-wave)
edge = !v

2

∑

p≥0

pc−pcp. (16.45)

Finding gapless states on a domain wall of l is an indicator that the phases with l > 0 and
l < 0 are distinct. If they were the same phase of matter, we should be able to adiabatically
connect these states continuously. However, we have shown a specific case of themore general
result that any interface between a region with l > 0 and a region with l < 0 will have
gapless states that generate a discontinuity in the interpolation between the two regions. This
question remains: is l > 0 or l < 0 nontrivial? The answer, as we will show now, is that we
have a trivial superconductor for l < 0 and a topological superconductor for l > 0. Remember
that for now we are considering l only in the neighborhood of 0 and using the continuum
model expanded around (px, py) = (0, 0). We will now define a bulk topological invariant
for 2-D superconductors that can distinguish the trivial superconductor state from the chiral
topological superconductor state. For the spinless BdGHamiltonian, which is of the form

HBdG = 1
2

∑

p

W†pda(p, l)saWp, (16.46)

da(p, l) =
(
−2|D|py, −2|D|px, p2/2m− l

)
, (16.47)

the topological invariant is the spectral Chern number [76], which simplifies, for this
Hamiltonian, to the winding number

Nw = 1
8p

∫
d2 p εi j d̂ ·

(
∂pi d̂ × ∂p j d̂

)
= 1

8p

∫
d2 p

εi j

|d|3
d ·
(
∂pid × ∂p jd

)
. (16.48)

The unit vector d̂a = da/|d|. This integral has a special form and is equal to the degree of the
mapping from momentum space onto the 2-sphere given by d̂2

1 + d̂2
2 + d̂2

3 = 1. As it stands,
the degree of the mapping S : (px, py) → (d̂1, d̂2, d̂3) is not well defined because the domain
is not compact, i.e., (px, py) is restricted to lie only in the Euclidean plane (R2). However, for
our choice of the map S, we can define the winding number by choosing an equivalent, but
compact, domain. To understand the necessary choice of domain, we can simply look at the
explicit form of d̂ :

d̂ =
(
−2|D|py, −2|D|px, p2/2m− l

)

(
4|D|p2 + (p2/2m− l)2

)1/2 . (16.49)

We see that lim|p|→∞ d̂ = (0, 0, 1), and it does not depend on the direction in which we
take the limit in the 2-D plane. Because of the uniqueness of this limit, we are free to perform
the one-point compactification of R2, which amounts to including the point at infinity in our
domain. The topology of R2 ∪ {∞} is the same as S2, and so we can consider the degree of our
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Majorana Modes on Vortices of Chiral Superconductors

One can do a proper theory of defects in topological phases and the existence/stability of modes 
on defects.

Defects can have a different than their host medium because they have different dimensionality 

Vortices in 2D Chiral Superconductors have a Z2 classification, even though the chiral 
superconductor has a Z classification.

On general grounds we expect a zero mode stuck on the vortex in a p+ip superconductor. This is 
because in a disk geometry, the boundary conditions on the gapless edge are antiperiodic (the only 
way to be because otherwise PH symm would require 2 modes, with only 1 edge)
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Thus, taking any quasi-particle around a closed loop in R2 sends c†(x), to −c†(x), indicating
antiperiodic boundary conditions on the quasi-particle wavefunctions, i.e., c†(r, h + 2p) =
−c†(r, h).This also holds for anyquasi-particle states bound to the domainwall of l; thus, states
on the circular interface obey antiperiodic boundary conditions. Hence, there is no exact zero
mode for the interface states because the lowest-allowed (angular) momentum state is shifted
from 0 to 1

2 . This is not true if the interface is a circular boundary of a cylinder because there,
φp does not wind by 2p. Thus, solving the chiral superconductor Hamiltonian in a cylindrical
geometry can yield exact zero modes, but, of course, there are two zero modes because the
cylinder has two boundaries.

We can now ask this simple question: is there a way to get a Majorana zero mode on the
boundary of the disk? The answer is yes, and it just requires that we shift the boundary condi-
tions for the states on the disk boundary from antiperiodic to periodic. This is accomplished
by inserting magnetic flux into the bulk of the disk so that the fermionic boundary states
pick up an Aharonov-Bohm phase of p [70]. So, we can simply insert p-flux into the disk and
expect to see a boundary zero mode. This is inconsistent if there is only one Majorana mode,
which indicates that there will be a separate Majorana zero mode somewhere else, namely,
bound to the p-flux insertion. In a superconductor, a p-flux (i.e., flux h

2e ) causes the U (1)
phase of the order parameter to wind by 2p and creates a vortex. Thus, we intuitively expect
Majorana bound states trapped on vortices in the spinless chiral superconductor. If we insert
two vortices, assuming they are well separated, the boundary conditions for the edge change
back to antiperiodic. Thus, there will not be an edge zero mode; however, there will now be
two Majorana zero modes, one bound to each vortex. The degeneracy can be lifted, however,
if the vortices are brought too close together, where the zero modes can hybridize.

Let us explicitly show that a vortex in a chiral superconductor will contain a zero mode
[39, 60, 75]. This calculation is a variant of our calculation for the existence of a Majorana
mode at the interface between topological and trivial superconductors. For this construction,
we begin by modeling a vortex as a region of superconductor with l < 0 for r < R and
l > 0 for r > R [60]. This is the inverse of the geometry we just discussed, i.e., it is a region
of trivial superconductor inside a region of topological superconductor. On the interface at
r = R, there will be a branch of chiral-Majorana modes but with no exact zero mode. If we
take the limit R → 0, this represents a vortex, and all the low-energy modes on the interface
will be pushed to higher energies. If we put a p-flux inside the trivial region, it will change
the boundary conditions such that even in the R → 0 limit there will be a zero mode in the
spectrum localized on the vortex.

Now let us take the BdG Hamiltonian in the Dirac limit (m → ∞) and solve the BdG
equations in the presence of a vortex located at r = 0 in the disk geometry in polar coordinates.
Let D(r, h) = |D(r )|eia(r ). The profile |D(r )| for a vortex will depend on the details of the model
but must vanish inside the vortex core region, e.g., for an infinitely thin core, we just need
|D(0)| = 0. We take the phase a(r) to be equal to the polar angle at r. This is a completely
different way to model the vortex than in the previous paragraph; in fact, this is the more
physical, but more complicated, construction. The previous model of a “vortex" is merely
suggestive and indicates what we might hope to find on a physical vortex that has a normal
metal core, as opposed to a gapped trivial superconductor core. In a real vortex, the core will
be a normal metal—but a normal metal with discrete quantized energy levels due to the small
core size. Thus, the normal region of a real vortex is gapped for energies much lower than the
superconducting gap and is a trivial insulator, which can be adiabatically connected to the
l < 0 superconducting phase, thus justifying the topological equivalence between the two
vortex constructions.

The first step in the solution of the bound state for themore-realistic vortex profile is to take
is to gauge-transform the phase of D(r, h) into the fermion operators via W(r ) → eia(r)/2W(r ).
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geometry can yield exact zero modes, but, of course, there are two zero modes because the
cylinder has two boundaries.
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pick up an Aharonov-Bohm phase of p [70]. So, we can simply insert p-flux into the disk and
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2e ) causes the U (1)
phase of the order parameter to wind by 2p and creates a vortex. Thus, we intuitively expect
Majorana bound states trapped on vortices in the spinless chiral superconductor. If we insert
two vortices, assuming they are well separated, the boundary conditions for the edge change
back to antiperiodic. Thus, there will not be an edge zero mode; however, there will now be
two Majorana zero modes, one bound to each vortex. The degeneracy can be lifted, however,
if the vortices are brought too close together, where the zero modes can hybridize.

Let us explicitly show that a vortex in a chiral superconductor will contain a zero mode
[39, 60, 75]. This calculation is a variant of our calculation for the existence of a Majorana
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r = R, there will be a branch of chiral-Majorana modes but with no exact zero mode. If we
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suggestive and indicates what we might hope to find on a physical vortex that has a normal
metal core, as opposed to a gapped trivial superconductor core. In a real vortex, the core will
be a normal metal—but a normal metal with discrete quantized energy levels due to the small
core size. Thus, the normal region of a real vortex is gapped for energies much lower than the
superconducting gap and is a trivial insulator, which can be adiabatically connected to the
l < 0 superconducting phase, thus justifying the topological equivalence between the two
vortex constructions.

The first step in the solution of the bound state for themore-realistic vortex profile is to take
is to gauge-transform the phase of D(r, h) into the fermion operators via W(r ) → eia(r)/2W(r ).
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This has two effects: (1) it simplifies the solution of the BdG differential equations and
(2) converts the boundary conditions ofW(r ) from periodic to antiperiodic around the vortex
position r = 0. In polar coordinates, the remaining single-particle BdGHamiltonian is simply

HBdG = 1
2
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(

∂

∂r
+ i

r
∂

∂h

)

−2|D(r )|e−ih
(

∂

∂r
− i

r
∂

∂h

)
l




(16.53)

We want to solve HW = EW = 0, which we can do with the ansatz

W0(r, h) = i√
rN

exp
[
−1
2

∫ r

0

l(r ′)
|D(r ′)|

dr ′
] (

−eih/2

e−ih/2

)

≡ ig(r )

(
−eih/2

e−ih/2

)

, (16.54)

where N is a normalization constant. The function g(r ) is localized at the location of the
vortex. We see that W0(r, h + 2p) = −W0(r, h), as required. From an explicit check, we can see
that HBdGW0(r, h) = 0. The field operator that annihilates fermion quanta in this localized
state is

c =
∫

r dr dh ig(r )
(
−eih/2c(r, h) + e−ih/2c†(r, h)

)
, (16.55)

fromwhichwe can immediately see that c = c†.Thus, the vortex traps a singleMajorana bound
state at zeroenergy.

16.3.1.1 Non-Abelian Statistics of Vortices in Chiral p-Wave Superconductors
We showed in the last section that on each vortex in a spinless chiral superconductor, there
exists a single Majorana bound state. If we have a collection of 2N vortices that are well
separated from each other, a low-energy subspace is generated, which in the thermodynamic
limit leads to a ground-state degeneracy of 2N [45, 49]. For example, two vortices give a
degeneracy of 2, which can be understood by combining the two localized Majorana bound
states into a single complex fermion state, which can be occupied or unoccupied. From 2N
vortices, we can form N complex fermion states, giving a degeneracy of 2N, which can be
broken up into the subspace of 2N−1 states with even fermion parity and 2N−1 states with odd
fermion parity. As an aside, because we have operators thatmutually anticommute and square
to +1, we can define a Clifford-algebra structure using the set of 2N ci .

To illustrate the statistical properties of the vortices under exchanges, we closely follow the
work of Ivanov [28]. Let us begin with a single pair of vortices that have localized Majorana
operators c1, c2, respectively, and are assumed to be well separated. We imagine that we
adiabatically move the vortices in order to change the two Majorana fermions. If we move
them slowly enough, then the only outcome of exchanging the vortices is a unitary operator
acting on the two degenerate states that make up the ground-state subspace. If we exchange
the two vortices, then we have c1 → c2 and c2 → c1. However, if we look at figure 16.7
we immediately see there is a complication. In this figure we have illustrated the exchange
of two vortices, and the dotted lines represent branch cuts, across which the phase of the
superconductor order parameter jumps by 2p. Because our solution of the Majorana bound
states used the gauge-transformed fermion operators, we see that the bound state on the red
vortex, which passes through the branch cut of the green vortex, picks up an additionalminus
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We pick a vortex located at the origin r=0:

2N vortices with zero 
modes on them lead do a 
degeneracy of 2^N (N 
complex fermions). Then 
2^(N-1) even and 2^(N-1) 
odd fermion parity. 

E

0
Vortex classification is Z_2. Two majorana modes on the 
same vortex (as would come from a Chern number 2 
topological superconductor) would split up and move into 
the vortex core continuum of states.  
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Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N) U(2n)/U(n) ×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 1 U(N +M)/U(N) ×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 1. Listed are the ten generic symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.

2

TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -
CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 - - Z

TABLE I: Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-reversal
symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.

Again we can understand everything from bulk or 
from edge. 

Simplest example: why is the class BD1 Z in 1D?  

BD1 is class D plus added spinless time-reversal 
T=K (complex conjugation)

We can then add an integer number N (flavor) of D-class 1-dimensional open chains and ask what 
happens to their edges. 

In the absence of any other symmetry, for the D 
class, N  Majorana fermions they would have a local 
hilbert space and gap (mod 2) by a one-body term:
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Figure 55: Schematic illustration of the lattice p-wave superconductor Hamil-

tonian in the (a) trivial limit (b) non-trivial limit. The white (empty) and

red(filled) circles represent the Majorana fermions making up each physical

site (oval). The fermion operator on each physical site (cj) is split up into two

Majorana operators (a2j−1 and a2j). In the non-trivial phase the unpaired

Majorana fermion states at the end of the chain are labelled with a 1 and a

2. These are the states which are continuously connected to the zero-modes

in the non-trivial topological superconductor phase.
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Figure 16.4. Schematic illustration of the lattice p-wave superconductor Hamiltonian in
the (a) trivial limit and (b) nontrivial limit. The empty and filled circles represent the
Majorana fermions making up each physical site (oval). The fermion operator on each
physical site (c j ) is split up into two Majorana operators (a2 j−1 and a2 j ). In the nontrivial
phase, the unpaired Majorana fermion states at the end of the chain are labeled with a 1
and a 2. These are the states that are continuously connected to the zero modes in the
nontrivial topological superconductor phase.

thus, the ground state is trivial. If the chain has open boundary conditions, there will be
no low-energy states on the end of the chain if the boundaries are cut between physical
sites. That is, we are not allowed to pick boundary conditions where a physical site is cut
in half.

2. The topological phase: |D| = t > 0 and l = 0. For this case the Hamiltonian reduces to

H = it
∑

j

a2 j a2 j+1. (16.33)

A pictorial representation of this Hamiltonian is shown in figure 16.4b. With open-
boundary conditions, it is clear that the Majorana operators a1 and a2L (where L is the
last physical site) are not coupled to the rest of the chain and are “unpaired.” In this
limit the existence of two Majorana zero modes localized on the ends of the chain is
manifest.

These two limits give the simplest representations of the trivial and non-trivial phases. By
tuning away from these limits, the Hamiltonian will have somemixture of couplings between
Majorana operators on the same physical site and operators between physical sites. However,
because the twoMajoranamodes are localized at different ends of a gapped chain, the coupling
between them will be exponentially small in the length of the wire, and they will remain at
zero energy. In fact, in the nontrivial phase, the zero modes will not be destroyed until the
bulk gap closes at a critical point. Unfortunately, even though this model is simple and clear,
there are no confirmed candidates for materials that would realize it.

16.3 2-D Chiral p-Wave Superconductor

We now continue our study of topological p-wave superconductors, but here we move one
dimension higher, to two dimensions. The paradigmatic example is the chiral p-wave super-
conductor whose vortices exhibit anyon excitations that have exotic non-Abelian statistics
[28, 60, 75]. For pedagogy we will use both lattice and continuum models of the chiral
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bulk gap closes at a critical point. Unfortunately, even though this model is simple and clear,
there are no confirmed candidates for materials that would realize it.

16.3 2-D Chiral p-Wave Superconductor

We now continue our study of topological p-wave superconductors, but here we move one
dimension higher, to two dimensions. The paradigmatic example is the chiral p-wave super-
conductor whose vortices exhibit anyon excitations that have exotic non-Abelian statistics
[28, 60, 75]. For pedagogy we will use both lattice and continuum models of the chiral
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Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N) U(2n)/U(n) ×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 1 U(N +M)/U(N) ×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 1. Listed are the ten generic symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.

2

TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -
CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 - - Z

TABLE I: Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-reversal
symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.
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Time-Reversal-Invariant Topological
Superconductors

by Taylor Hughes

After using the simplified spinless models of the previous chapter, we now go on to study
topological superconductors with spin. We will begin by reviewing the common conventions
for singlet- and triplet-pairing terms for single-bandmetals. We then will discuss TR-invariant
topological superconductors in 2 and 3 dimensions, including their classification and edge–
surface–state-properties. We will conclude with a brief discussion of a 1-D TR-invariant
topological superconductor, which is closely related to the 1-D p-wave wire discussed in the
previous chapter.

17.1 Superconducting Pairing with Spin

We are now very familiar with the mean-field description of superconductors, albeit using
simplified models. We now discuss a more-general model, which includes the spin of the
constituent electrons. The generic form of the pairing term for a translationally invariant
model with a single band is

HD =
∑

p

1
2

[
c†prDrr′ (p)c̄†−pr′ + c̄−pr

(
D†
)
rr′ (p)cpr′

]
, (17.1)

where c̄pr ≡ iry
rr′cpr′ . We use this convention of explicitly factoring out the TR matrix so

that singlet, s-wave pairing is Drr′ = Irr′ , which is the convention most commonly found
in the literature of unconventional superconductivity. Because Drr′ is a 2 × 2 matrix, we can
decompose it into a scalar piece and a vector piece [43]:

Drr′ (p) = d0(p)Irr′ + da(p)ra
rr′ . (17.2)

To understand the meaning of each term, let us explicitly write out the particle pieces of the
pairing terms:

I : 1
2
d0(p)

(
c†p↑c

†
−p↓ − c†p↓c

†
−p↑

)
,

rx :
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2
d1(p)
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c†p↓c

†
−p↓ − c†p↑c

†
−p↑

)
,

ry :
−i
2
d2(p)

(
c†p↑c

†
−p↑ + c†p↓c

†
−p↓

)
,

rz :
1
2
d3(p)

(
c†p↑c

†
−p↓ + c†p↓c

†
−p↑

)
.

(17.3)

Generic form for the pairing:

October 19, 2012 Time: 03:24pm chapter17.tex

17
Time-Reversal-Invariant Topological
Superconductors

by Taylor Hughes

After using the simplified spinless models of the previous chapter, we now go on to study
topological superconductors with spin. We will begin by reviewing the common conventions
for singlet- and triplet-pairing terms for single-bandmetals. We then will discuss TR-invariant
topological superconductors in 2 and 3 dimensions, including their classification and edge–
surface–state-properties. We will conclude with a brief discussion of a 1-D TR-invariant
topological superconductor, which is closely related to the 1-D p-wave wire discussed in the
previous chapter.

17.1 Superconducting Pairing with Spin

We are now very familiar with the mean-field description of superconductors, albeit using
simplified models. We now discuss a more-general model, which includes the spin of the
constituent electrons. The generic form of the pairing term for a translationally invariant
model with a single band is

HD =
∑

p

1
2

[
c†prDrr′ (p)c̄†−pr′ + c̄−pr

(
D†
)
rr′ (p)cpr′

]
, (17.1)

where c̄pr ≡ iry
rr′cpr′ . We use this convention of explicitly factoring out the TR matrix so

that singlet, s-wave pairing is Drr′ = Irr′ , which is the convention most commonly found
in the literature of unconventional superconductivity. Because Drr′ is a 2 × 2 matrix, we can
decompose it into a scalar piece and a vector piece [43]:

Drr′ (p) = d0(p)Irr′ + da(p)ra
rr′ . (17.2)

To understand the meaning of each term, let us explicitly write out the particle pieces of the
pairing terms:

I : 1
2
d0(p)

(
c†p↑c

†
−p↓ − c†p↓c

†
−p↑

)
,

rx :
1
2
d1(p)

(
c†p↓c

†
−p↓ − c†p↑c

†
−p↑

)
,

ry :
−i
2
d2(p)

(
c†p↑c

†
−p↑ + c†p↓c

†
−p↓

)
,

rz :
1
2
d3(p)

(
c†p↑c

†
−p↓ + c†p↓c

†
−p↑

)
.

(17.3)

In this form singlet proportional to identity
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2
d0(p)

(
c†p↑c

†
−p↓ − c†p↓c

†
−p↑

)
,

rx :
1
2
d1(p)

(
c†p↓c

†
−p↓ − c†p↑c

†
−p↑

)
,

ry :
−i
2
d2(p)

(
c†p↑c

†
−p↑ + c†p↓c

†
−p↓

)
,

rz :
1
2
d3(p)

(
c†p↑c

†
−p↓ + c†p↓c

†
−p↑

)
.

(17.3)

Gap can be expanded (as learned in this school)
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It is now clear why we chose the matrix convention: the identity term is the singlet-pairing
term and the Pauli matrix terms make up the vector components of triplet pairing. It is
interesting to note that Fermi statistics puts constraints on the functions d0(p), da(p). As an
example, take

1
2

∑

p

d0(p)
(
c†p↑c

†
−p↓ − c†p↓c

†
−p↑

)
= 1

2

∑

p

d0(−p)
(
−c†p↓c

†
−p↑ + c†p↑c

†
−p↓

)
,

which vanishes identically if d0(p) is an odd function of p. Thus, Fermi statistics implies that
the only allowed singlet-pairing termsmust have

d0(p) = d0(−p). (17.4)

Let us now take one of the triplet terms,

1
2

∑

p

d1(p)
(
c†p↓c

†
−p↓ − c†p↑c

†
−p↑

)
= 1

2

∑

p

d1(−p)
(
−c†p↓c

†
−p↓ + c†p↑c

†
−p↑

)
.

This implies that the only nonvanishing term is when d1(p) is an odd function ofp. In fact, all
the triplet terms transform the same way, such that

da(p) = −da(−p) (17.5)

is required. Thus, singlet-pairing terms must have even powers of momentum, and triplet-
pairing terms must have odd powers. As we saw in the previous chapter, spinless fermions
can also have pairing with odd powers of momentum, which is analogous to a spin-polarized
systemwith triplet pairing.

17.2 Time-Reversal-Invariant Superconductors in Two Dimensions

In the previous chapter we discussed the chiral p-wave superconductor, which is the super-
conductor relative of the quantumHall effect. Both states have gapless chiral fermions on the
boundary (the fermions on the superconductor are also Majorana fermions) and are classified
by integer topological invariants. In light of our earlier discussions on the TR-invariant
topological insulators, it is natural to ask if there are TR-invariant topological superconductors
in two and three dimensions. We begin with the 2-D case and schematically illustrate the
relationship between the QSH effect, chiral superconductors, the QSH effect, and helical
superconductors in figure 17.1.

Just as the QSH effect can be thought of as two copies of quantum Hall (one copy for each
spin andwith the opposite sense of TR breaking for each copy), the helical superconductor can
be thought of as two copies of the chiral superconductor. The simplest model Hamiltonian we
can write is [57, 64]

H = 1
2

∑

p

W†p





p2

2m
− l 0 0 −D(px + ipy)

0
p2

2m
− l D(px − ipy) 0

0 D∗(px + ipy) − p2

2m
+ l 0

−D∗(px − ipy) 0 0 − p2

2m
+ l





Wp, (17.6)

Identity term is singled, pauli terms are triplet.
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Because time-reversal is spinful, and hence squares to -1, states come in Kramers 
pairs. If translational invariance exists the states at k and -k are related by time-
reversal, while Kramers doublets exist at k=0, Pi

Can we build a time-reversal topological superconductor in 2 dimensions?



From our experience, we know the quantum spin hall insulator is two copies of the integer 
quantum Hall state, plus a Z_2 mod due to time-reversal.

We expect to be able to build a “helical” superconductor by doubling the Chiral 
superconductors learned before.
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Time-Reversal Topological Superconductors With Spin 
in 2-dimensions

H � 1
2

∑

p

W†p





p2

2m
− l 0 0 −D(px � ipy)

0
p2

2m
− l D(px − ipy) 0

0 D∗(px � ipy) − p2

2m
� l 0

−D∗(px − ipy) 0 0 − p2

2m
� l





Wp �

whereWp �
(
cp↑ cp↓ − c†−p↓ c†−p↑

)T

Put together a C=1 and C=-1 Chiral topological superconductors and relate them by 
time-reversal. Simplest way P+iP and P-IP

d � −iD(px �y � py �x)�In d-vector notation of the gap:

The TR operator in this basis is T � I ⊗ iryK and the charge-conjugation operator is
a

sy ⊗ ryK , where
which would break time reversal, then an appropriate

C=

is spin. If each spin had the same chirality,
-vector would be d � −iD(px � ipy) �y,

There are no known
If each spin had same chirality:which is amodel suggested to be relevant for the pairing state in Sr2RuO4 � Would break TR

Hedge =
�

p

Φ†
p

�
p 0
0 −p

�
Φp =

�

p

Φ†
ppσ

zΦp

The P+iP half of the superconductor has chiral Majorana, the P-iP has anti-chiral Majorana 
edge states
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where Φp = (γp↑ γp↓)
hole states with spin



Stability of Edge States

topological insulators it is natural to ask if there are time-reversal invariant
topological superconductors in 2D and 3D. We begin with the 2D case and
schematically illustrate the relationship between the quantum Hall effect,
chiral superconductors, the quantum spin Hall effect, and helical supercon-
ductors in Fig. 59.

Just as the quantum spin Hall effect can be thought of as two copies of
quantum Hall (one copy for each spin and with the opposite sense of time-
reversal breaking for each copy) the helical superconductor can be thought of
as two copies of the chiral superconductor. The simplest model Hamiltonian
one can write is[41, 36]:

H =
1

2

�

p

Ψ†
p





p2

2m − µ 0 0 −∆(px + ipy)

0 p2

2m − µ ∆(px − ipy) 0

0 ∆∗(px + ipy) − p2

2m + µ 0

−∆∗(px − ipy) 0 0 − p2

2m + µ




Ψp(739)

where Ψp =
�
cp↑ cp↓ − c

†
−p↓ c

†
−p↑

�T
. In the d-vector notation this state

has
d = −i∆(pxŷ + pyx̂). (740)

The time-reversal operator in this basis is T = Iotimesiσy
K and the charge-

conjugation operator is C = τ y⊗σy
K where τa is particle/hole space and σa

is spin. If each spin had the same chirality, which would break time-reversal,
then an appropriate d-vector would be d = −i∆(px + ipy)ŷ which is a model
suggested to be relevant for the pairing state in Sr2RuO4. There are no known
material candidates for the time-reversal invariant pairing.

Since this Hamiltonian has the Dirac form we know immediately from
our analysis of the chiral superconductor that when µ > 0 the system will
be in a non-trivial topological state with gapless edge modes. On a single
edge there will be a chiral Majorana fermion and an anti-Chiral Majorana
fermion with the opposite spin. The edge Hamiltonian is

Hedge =
�

p

Φ†
p

�
p 0
0 −p

�
Φp =

�

p

Φ†
ppσ

zΦp (741)

where Φp = (γp↑ γp↓) , γpσ are equal weight superpositions of particle and
hole states with spin σ coming from the solution of Eq. 739 with open
boundaries. This Hamiltonian is time-reversal invariant under T = iσy

K. It
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d = −i∆(pxŷ + pyx̂). (740)

The time-reversal operator in this basis is T = Iotimesiσy
K and the charge-

conjugation operator is C = τ y⊗σy
K where τa is particle/hole space and σa

is spin. If each spin had the same chirality, which would break time-reversal,
then an appropriate d-vector would be d = −i∆(px + ipy)ŷ which is a model
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also satisfies the charge-conjugation symmetry with C = IK. To verify this

one can easily show that

THedge(p)T
−1

= pσyσzσy
= −pσz

= Hedge(−p) (742)

where in the last equality we used the fact that Hedge(p) is real. For charge-

conjugation

CHedge(p)C
−1

= pσz
= −(−p)σz

= −Hedge(−p). (743)

Time-reversal symmetry is a required symmetry, and the charge-conjugation

‘symmetry’ is an invariance of our use of the BdG formalism in Eq. 739. We

can now test to see if we can open a gap in the edge state spectrum while

preserving T (we must preserve C as well to maintain consistency). The

possible mass terms we can add to the Hamiltonian are

H
�

edge = Hedge + m0I + maσ
a

(744)

for constants m0, mx, my, mz. Adding the identity term breaks C and is not

allowed though this term would not open a gap anyway. The mx, my, mz

terms all break T and are thus forbidden. For completeness we note that the

mx, mz terms also break C. If we did not require T symmetry we could just

turn on a finite myσy
and open a gap. Thus the robustness of the edge states

relies on time-reversal symmetry.

From the edge states we should also be able to see if the classification

should be Z or Z2. The following example is simply testing whether 1+1 = 2

or 1 + 1 = 0 i.e. if having two identical sets of edge states on a single edge

is still stable or if a gap can be opened while preserving T (and C). The

Hamiltonian for two sets of edge states is simply

H
(2)
edge(p) = p(I⊗ σz

). (745)

This Hamiltonian satisfies the same symmetries as the single-copy. To find a

possible mass term we need a matrixM that satisfies T and C symmetries as

well as {M, I⊗σz} = 0. The last condition is specified because a Hamiltonian

H
(2)
edge(p)+mM will have the gapped energy spectrum ±

�
p2 + m2 if the anti-

commutation property holds. We can simply guess the form ofM. Let’s take

M = τ y ⊗ σx
(746)
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The decoupled edge Hamiltonian is invariant under TR and C:

Now try to open a one-body gap without breaking TR or C.  Add a generic mass:

not allowed by C
x, y, z not allowed by TR. 
x,z break C.
If we relax TR, we can add a y mass which is allowed.
So our superconductor is protected by time-reversal

Is the classification Z2 or Z? Add 2 copies of surface 
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(2)
edge(p) = p(I⊗ σz
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This Hamiltonian satisfies the same symmetries as the single-copy. To find a

possible mass term we need a matrixM that satisfies T and C symmetries as

well as {M, I⊗σz} = 0. The last condition is specified because a Hamiltonian

H
(2)
edge(p)+mM will have the gapped energy spectrum ±

�
p2 + m2 if the anti-

commutation property holds. We can simply guess the form ofM. Let’s take

M = τ y ⊗ σx
(746)
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where τ y is a Pauli matrix in the edge state flavor index. Under T we have

TmMT−1 = m(−τ y)⊗ (−σx) = mM (747)

and is thus invariant. Under C we have

CmMC−1 = mM = −mM∗. (748)

Thus we have found a mass-term which is invariant under both symmetries.
This indicates that the classification should be Z2 since two identical copies
can cancel. This matches the classification of the quantum spin Hall in-
sulator, however we will see that 3D topological superconductors with T
symmetry are classified by integers, unlike their insulator counterparts.

In the limit where the spin-up and spin-down blocks remain decoupled
we can define two winding numbers N↑, N↓. Since time-reversal is preserved
we always find that N↑ + N↓ = 0. However, in this decoupled limit we can
define a Z2 index by

νZ2 =
1

2
(N↑ −N↓) mod 2. (749)

The winding number, when defined, indicates the number of branches of
edge modes. If νZ2 = 0 there are an even number of pairs of edge states
and we showed above that this means there is no generic robustness of the
edge modes. When νZ2 = 1 there is always one pair of edge modes which
is stable. One can couple the different spin blocks via s-wave singlet pairing
i.e. a non-zero d0. As long as the pairing is weak enough to leave the bulk
gap open, the topological character of the state is unchanged. More generic
bulk topological invariants have been defined in the literature which do not
require decoupled spin blocks, but we will not discuss these quantities here.

17.2.1 Vortices in 2D time-reversal invariant superconductors

The form of the order parameter we have been using is

∆ =

�
0 −∆(px + ipy)

∆(px − ipy) 0

�
. (750)

We want to consider two different types of vortex defects, both of which can
be written in the form

∆vortex =

�
0 −∆eiφ↑(px + ipy)

∆eiφ↓(px − ipy) 0

�
. (751)
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Vortices with the form φ↑ = θ(r), φ↓ = 0 (and vice-versa) are only felt by one

spin-component[42]. From our study of the spinless chiral superconductor we

know that vortices of this form will contain a single, spin polarized Majorana

bound state which leads to non-Abelian statistics.

Another interesting vortex is the time-reversal invariant vortex with φ↑ =

−φ↓ = θ(r)[36, 42]. Note that we are still considering a simplified model with

conserved Sz. This type of vortex will contain a Kramers’ pair of Majorana

bound states γ↑, γ↓. For the entire system to preserve time-reversal symmetry

there must exist another Kramers’ pair of modes (α↑, α↓) localized on another

vortex, or on the boundary. Thus, there will be four Majorana modes in total,

which give rise to a single Kramers’ pair of complex fermions. We can make

the combinations:

ψ↑ = (1/2)(γ↑ + iα↑), ψ†
↑ = (1/2)(γ↑ − iα↑)

ψ↓ = (1/2)(γ↓ + iα↓), ψ†
↓ = (1/2)(γ↓ − iα↓) (752)

Under time-reversal we know that ψ↑ → −ψ↓ and ψ↓ → ψ↑ which implies

that

γ↑ → −γ↓, γ↓ → γ↑
α↑ → −α↓, α↓ → α↑ (753)

On a single vortex there is an interesting consequence of the time-reversal

symmetry[36]. Instead of the ψ fermions described in Eq. 752 let us define

φ1 = (1/2)(γ↑ + iγ↓)

φ†
1 = (1/2)(γ↑ − iγ↓)

φ2 = (1/2)(α↑ + iα↓)

φ†
2 = (1/2)(α↑ − iα↓) (754)

which is a local fermion on each vortex. Now consider the following operators

iγ↑γ↓ = 2φ†
1φ1 − 1

iα↑α↓ = 2φ†
2φ2 − 1. (755)

We see that these two operators are related to the local fermion occupation

number on each vortex. Acting with time-reversal we find, for example

T (iγ↑γ↓)T
−1

= (−i)(−γ↓)(γ↑) = −iγ↑γ↓ (756)
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Dimensions

and thus time-reversal changes the local fermion occupation from one to zero
or vice-versa. It thus acts to locally change fermion parity. Of course, time-
reversal acting on the entire system will flip the parities of both vortices
leaving the whole system with the same fermion parity with which it started.
Unfortunately one cannot use the time-reversal invariant vortices to estab-
lish a topological quantum computation architecture because there are two
Majorana modes on each vortex and thus, one can locally couple to a single
vortex.

17.3 Time-Reversal Invariant Superconductors in 3D

With our understanding of 3D time-reversal invariant topological insulators,
and our recent considerations for topological superconductors we can imme-
diately guess the form of a BdG Hamiltonian for a 3D topological supercon-
ductor

HBdG =
1

2

�

p

Ψ†
p





p2

2m − µ 0 |∆|pz |∆|p−
0 p2

2m − µ |∆|p+ −|∆|pz

|∆|pz |∆|p− − p2

2m + µ 0

|∆|p+ −|∆|pz 0 − p2

2m + µ




Ψp (757)

where p± = px±ipy, Ψp =
�
e
−iθ/2

cp↑ e
−iθ/2

cp↓ − e
iθ/2

c
†
−p↓ e

iθ/2
c
†
−p↑

�T
, and

we have gauged away the phase θ of the order parameter from the Hamil-
tonian matrix into the fermion operators. While no known realistic super-
conductors have this type of Hamiltonian, the B-phase of Helium-3 exhibits
such a superfluid state[25, 36, 45, 21, 42]. As a function of the chemical po-
tential µ this system exhibits a phase transition between the strong-pairing,
trivial superfluid state (µ < 0) and the weak pairing, topological superfluid
state (µ > 0). If we compare the form of the matrix HBdG(p) to the Bloch
Hamiltonian for a 3D time-reversal invariant topological insulator we imme-
diately see the analogy. The order parameter |∆| serves the same purpose
as the Fermi-velocity/speed of light, for the insulator case, and the chemical
potential µ in the superfluid represents the mass parameter in the insulator
case.

Using the analogy with the topological insulator we know that in the topo-
logical phase there will be gapless fermionic modes on the boundary which
are protected from disorder. Like all topological superconductors/superfluids
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The B-Phase of He-3 exhibits this Hamiltonian

If we stare intensely, this is a 3-D Dirac gapped Hamiltonian. In fact, its identical to the 
topological insulator “effective” bulk Hamiltonian say for Bi2 Se3. For               the kinetic 
term winds and we have a topological superconductor (or insulator)
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We expect surface states on any cut surface.  Propagating Majorana 
fermions (non-chiral). Just like Dirac Fermion on the surface of a 
bulk 3D topological insulator

the boundary states will be neutral and have a Majorana character. The sur-

face state Hamiltonian for the 3D topological superconductor, with a surface

normal to the z-axis is

Hsurf =

�

p

Φ†
p (pxσ

x
+ pyσ

y
) Φp (758)

where Φp = (γp↑ γp↓)
T

and γpσ satisfy γ†
pσ = γ−pσ. The surface states are

thus propagating (non-chiral) Majorana fermions. The surface Hamiltonian

has two symmetries, time-reversal with T = iσy
K, and charge-conjugation

with C = σx
K. We have already shown that pxσx

and pyσy
are T invariant,

so let us quickly show they are C invariant. The Hamiltonian must satisfy

σx
(pxσx

+ pyσy
) σx

= −(−pxσx∗ − pyσy∗
) which it clearly does. Since the

Hamiltonian satisfies both T and C we can define a chiral-symmetry operator

χ = CT = iσz
. A Hamiltonian has a chiral symmetry if

χH(p)χ−1
= −H(p). (759)

Clearly Hsurf has this property and thus is chiral symmetric.

If we were to naively classify the topological states coming from the Bloch

matrix part of Eq. 757 we might say that there should be a Z2 classification

of the topological superconductor states, based purely on the analogy with

the topological insulator case. After all, the primary difference in the matrix

Hamiltonians for the superconductor and insulator case is just the addition

of a strict charge conjugation symmetry. Interestingly, in this case it turns

out that the additional C symmetry strengthens the classification from Z2 to

Z[45, 21]. The reason the classification changes can be seen two ways: (i)from

an understanding of the surface-state stability (ii) from a bulk topological

invariant. We will cover both of these cases and begin with the surface

state picture since we have already introduced the Hamiltonian. The test of

whether the surface states are Z2 or Z stable was mentioned in the section

on 2D time-reversal invariant superconductors, namely we want to see if two

copies of the surface states add up together or cancel out. Before we perform

this test let us comment on the stability of a single-copy. For a single-copy we

could try to destroy the surface states by opening a gap with the perturbation

H
�
= mzσz

however we can easily see that this term breaks, for example, χ
and is not allowed

χmzσ
zχ−1

= mzσ
z �= −mzσ

z
= −H(p). (760)
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Time-Reversal Invariant Superconductors in 3 
Dimensions

So: form of the simplest 3D topological superconductor Hamiltonian same as that of the 3D 
topological insulator. 

Also time-reversal symmetry has Kramers pairs. So very similar. Is the topological superconductor 
Z2? NO - it is Z!!!

Charge conjugation symmetry has the effect that, when coupled to spinful time-reversal, enhances 
the symmetry class to Z

the boundary states will be neutral and have a Majorana character. The sur-

face state Hamiltonian for the 3D topological superconductor, with a surface

normal to the z-axis is

Hsurf =

�

p

Φ†
p (pxσ

x
+ pyσ

y
) Φp (758)

where Φp = (γp↑ γp↓)
T

and γpσ satisfy γ†
pσ = γ−pσ. The surface states are

thus propagating (non-chiral) Majorana fermions. The surface Hamiltonian

has two symmetries, time-reversal with T = iσy
K, and charge-conjugation

with C = σx
K. We have already shown that pxσx

and pyσy
are T invariant,

so let us quickly show they are C invariant. The Hamiltonian must satisfy

σx
(pxσx

+ pyσy
) σx

= −(−pxσx∗ − pyσy∗
) which it clearly does. Since the

Hamiltonian satisfies both T and C we can define a chiral-symmetry operator

χ = CT = iσz
. A Hamiltonian has a chiral symmetry if

χH(p)χ−1
= −H(p). (759)

Clearly Hsurf has this property and thus is chiral symmetric.

If we were to naively classify the topological states coming from the Bloch

matrix part of Eq. 757 we might say that there should be a Z2 classification

of the topological superconductor states, based purely on the analogy with

the topological insulator case. After all, the primary difference in the matrix

Hamiltonians for the superconductor and insulator case is just the addition

of a strict charge conjugation symmetry. Interestingly, in this case it turns

out that the additional C symmetry strengthens the classification from Z2 to

Z[45, 21]. The reason the classification changes can be seen two ways: (i)from

an understanding of the surface-state stability (ii) from a bulk topological

invariant. We will cover both of these cases and begin with the surface

state picture since we have already introduced the Hamiltonian. The test of

whether the surface states are Z2 or Z stable was mentioned in the section

on 2D time-reversal invariant superconductors, namely we want to see if two

copies of the surface states add up together or cancel out. Before we perform

this test let us comment on the stability of a single-copy. For a single-copy we

could try to destroy the surface states by opening a gap with the perturbation

H
�
= mzσz

however we can easily see that this term breaks, for example, χ
and is not allowed

χmzσ
zχ−1

= mzσ
z �= −mzσ

z
= −H(p). (760)
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These are “symmetries” of the Hamiltonian and they commute with each other. They relate p to -p 
points. However, crucially different from the TR-only case, we can now take their product and have 
a “chiral” symmetry (has nothing to do with chiral edge states in 2D)
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Both the edge and the bulk have this extra, chiral symmetry



Stability of Surface States of 3-d Topological 
Superconductors

The Chiral symmetry enhances the classification to Z. How?

the boundary states will be neutral and have a Majorana character. The sur-

face state Hamiltonian for the 3D topological superconductor, with a surface

normal to the z-axis is

Hsurf =
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y
) Φp (758)

where Φp = (γp↑ γp↓)
T

and γpσ satisfy γ†
pσ = γ−pσ. The surface states are

thus propagating (non-chiral) Majorana fermions. The surface Hamiltonian

has two symmetries, time-reversal with T = iσy
K, and charge-conjugation

with C = σx
K. We have already shown that pxσx

and pyσy
are T invariant,

so let us quickly show they are C invariant. The Hamiltonian must satisfy

σx
(pxσx

+ pyσy
) σx

= −(−pxσx∗ − pyσy∗
) which it clearly does. Since the

Hamiltonian satisfies both T and C we can define a chiral-symmetry operator

χ = CT = iσz
. A Hamiltonian has a chiral symmetry if

χH(p)χ−1
= −H(p). (759)

Clearly Hsurf has this property and thus is chiral symmetric.

If we were to naively classify the topological states coming from the Bloch

matrix part of Eq. 757 we might say that there should be a Z2 classification

of the topological superconductor states, based purely on the analogy with

the topological insulator case. After all, the primary difference in the matrix

Hamiltonians for the superconductor and insulator case is just the addition

of a strict charge conjugation symmetry. Interestingly, in this case it turns

out that the additional C symmetry strengthens the classification from Z2 to

Z[45, 21]. The reason the classification changes can be seen two ways: (i)from

an understanding of the surface-state stability (ii) from a bulk topological

invariant. We will cover both of these cases and begin with the surface

state picture since we have already introduced the Hamiltonian. The test of

whether the surface states are Z2 or Z stable was mentioned in the section

on 2D time-reversal invariant superconductors, namely we want to see if two

copies of the surface states add up together or cancel out. Before we perform

this test let us comment on the stability of a single-copy. For a single-copy we

could try to destroy the surface states by opening a gap with the perturbation

H
�
= mzσz

however we can easily see that this term breaks, for example, χ
and is not allowed

χmzσ
zχ−1

= mzσ
z �= −mzσ

z
= −H(p). (760)
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Stability of one Majorana cone is guaranteed by TR, but can also be seen through Chiral symmetry 

Try to open a gap by a mass                        not allowed!: 
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of a strict charge conjugation symmetry. Interestingly, in this case it turns

out that the additional C symmetry strengthens the classification from Z2 to

Z[45, 21]. The reason the classification changes can be seen two ways: (i)from

an understanding of the surface-state stability (ii) from a bulk topological

invariant. We will cover both of these cases and begin with the surface

state picture since we have already introduced the Hamiltonian. The test of

whether the surface states are Z2 or Z stable was mentioned in the section

on 2D time-reversal invariant superconductors, namely we want to see if two

copies of the surface states add up together or cancel out. Before we perform

this test let us comment on the stability of a single-copy. For a single-copy we

could try to destroy the surface states by opening a gap with the perturbation
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295So one Dirac node is stable towards opening a gap, known because of Kramers pairs

Thus a single-copy of the surface states is stable to perturbations that pre-

serve the required symmetries T,C and the induced symmetry χ.

Now let us consider two identical copies of the surface state Hamiltonian

H
(2)
surf (p) = pxI⊗ σx

+ pyI⊗ σy
. (761)

To find a mass term we must find a matrix M that anti-commutes with

H
(2)
surf and preserves all the symmetries. To anti-commute we must have

M = X ⊗ σz
for a 2 × 2 matrix X. We can easily see that any matrix of

this form breaks the chiral symmetry χ = I ⊗ iσz
and thus is not allowed.

So, we cannot find any allowable mass terms to open a gap and two such

surface state copies are stable. The only way to allow for a gap opening is

to add a surface state with the opposite ‘chirality.’ By chirality we mean the

Fermi-surface Berry phase for the massless fermion surface states. The Berry

phases are quantized to be ±π and the sign determines the chirality. If we

began instead with the Hamiltonian

H
(2�)
surf (p) = pxτ

z ⊗ σx
+ pyI⊗ σy

. (762)

we could look for mass terms of the form M = τ y ⊗ σx
. This mass term

satisfies T = I⊗ iσy
K, C = I⊗ σx

K and χ = I⊗ iσz
symmetries and opens

a gap. Thus an anti-chiral state can cancel the chiral state.

These surface state arguments indicate that the classification should be

characterized by a topological integer and Schnyder, Ryu, Furusaki and Lud-

wig introduced just such a quantity[45]:
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1

24π2
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(763)

where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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We now consider two cones, first decoupled: 

We must see if we can add a mass term which anticommutes with the 
Hamiltonian but preserves all the symmetries. To anticommute, we need:
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where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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However, this does not anticommute with the Chiral symmetry, so it is not 
allowed! We have added 2 Majorana Cones together!  Classification is Z!

the boundary states will be neutral and have a Majorana character. The sur-

face state Hamiltonian for the 3D topological superconductor, with a surface

normal to the z-axis is

Hsurf =

�

p

Φ†
p (pxσ

x
+ pyσ

y
) Φp (758)

where Φp = (γp↑ γp↓)
T

and γpσ satisfy γ†
pσ = γ−pσ. The surface states are

thus propagating (non-chiral) Majorana fermions. The surface Hamiltonian

has two symmetries, time-reversal with T = iσy
K, and charge-conjugation

with C = σx
K. We have already shown that pxσx

and pyσy
are T invariant,

so let us quickly show they are C invariant. The Hamiltonian must satisfy

σx
(pxσx

+ pyσy
) σx

= −(−pxσx∗ − pyσy∗
) which it clearly does. Since the

Hamiltonian satisfies both T and C we can define a chiral-symmetry operator

χ = CT = iσz
. A Hamiltonian has a chiral symmetry if

χH(p)χ−1
= −H(p). (759)

Clearly Hsurf has this property and thus is chiral symmetric.

If we were to naively classify the topological states coming from the Bloch

matrix part of Eq. 757 we might say that there should be a Z2 classification

of the topological superconductor states, based purely on the analogy with

the topological insulator case. After all, the primary difference in the matrix

Hamiltonians for the superconductor and insulator case is just the addition

of a strict charge conjugation symmetry. Interestingly, in this case it turns

out that the additional C symmetry strengthens the classification from Z2 to

Z[45, 21]. The reason the classification changes can be seen two ways: (i)from

an understanding of the surface-state stability (ii) from a bulk topological

invariant. We will cover both of these cases and begin with the surface

state picture since we have already introduced the Hamiltonian. The test of

whether the surface states are Z2 or Z stable was mentioned in the section

on 2D time-reversal invariant superconductors, namely we want to see if two

copies of the surface states add up together or cancel out. Before we perform

this test let us comment on the stability of a single-copy. For a single-copy we

could try to destroy the surface states by opening a gap with the perturbation

H
�
= mzσz

however we can easily see that this term breaks, for example, χ
and is not allowed

χmzσ
zχ−1

= mzσ
z �= −mzσ

z
= −H(p). (760)
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of the topological superconductor states, based purely on the analogy with

the topological insulator case. After all, the primary difference in the matrix

Hamiltonians for the superconductor and insulator case is just the addition

of a strict charge conjugation symmetry. Interestingly, in this case it turns

out that the additional C symmetry strengthens the classification from Z2 to

Z[45, 21]. The reason the classification changes can be seen two ways: (i)from

an understanding of the surface-state stability (ii) from a bulk topological

invariant. We will cover both of these cases and begin with the surface

state picture since we have already introduced the Hamiltonian. The test of

whether the surface states are Z2 or Z stable was mentioned in the section

on 2D time-reversal invariant superconductors, namely we want to see if two

copies of the surface states add up together or cancel out. Before we perform

this test let us comment on the stability of a single-copy. For a single-copy we

could try to destroy the surface states by opening a gap with the perturbation

H
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however we can easily see that this term breaks, for example, χ
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Stability of Surface Majorana Cones on the Surface of a 
Topological Superconductor

We can add as many Majorana cones as we want, as long as their Berry phase (plus minus Pi)  
is of the same sign, hence the classification is Z. If we add a Berry phase Pi with a Berry phase 
- Pi then we can gap the system:

Thus a single-copy of the surface states is stable to perturbations that pre-

serve the required symmetries T,C and the induced symmetry χ.

Now let us consider two identical copies of the surface state Hamiltonian

H
(2)
surf (p) = pxI⊗ σx

+ pyI⊗ σy
. (761)

To find a mass term we must find a matrix M that anti-commutes with

H
(2)
surf and preserves all the symmetries. To anti-commute we must have

M = X ⊗ σz
for a 2 × 2 matrix X. We can easily see that any matrix of

this form breaks the chiral symmetry χ = I ⊗ iσz
and thus is not allowed.

So, we cannot find any allowable mass terms to open a gap and two such

surface state copies are stable. The only way to allow for a gap opening is

to add a surface state with the opposite ‘chirality.’ By chirality we mean the

Fermi-surface Berry phase for the massless fermion surface states. The Berry

phases are quantized to be ±π and the sign determines the chirality. If we

began instead with the Hamiltonian

H
(2�)
surf (p) = pxτ

z ⊗ σx
+ pyI⊗ σy

. (762)

we could look for mass terms of the form M = τ y ⊗ σx
. This mass term

satisfies T = I⊗ iσy
K, C = I⊗ σx

K and χ = I⊗ iσz
symmetries and opens

a gap. Thus an anti-chiral state can cancel the chiral state.

These surface state arguments indicate that the classification should be

characterized by a topological integer and Schnyder, Ryu, Furusaki and Lud-

wig introduced just such a quantity[45]:
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where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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Thus a single-copy of the surface states is stable to perturbations that pre-

serve the required symmetries T,C and the induced symmetry χ.

Now let us consider two identical copies of the surface state Hamiltonian
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H
(2)
surf and preserves all the symmetries. To anti-commute we must have

M = X ⊗ σz
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where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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Thus a single-copy of the surface states is stable to perturbations that pre-

serve the required symmetries T,C and the induced symmetry χ.

Now let us consider two identical copies of the surface state Hamiltonian

H
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. (761)

To find a mass term we must find a matrix M that anti-commutes with

H
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M = X ⊗ σz
for a 2 × 2 matrix X. We can easily see that any matrix of

this form breaks the chiral symmetry χ = I ⊗ iσz
and thus is not allowed.

So, we cannot find any allowable mass terms to open a gap and two such

surface state copies are stable. The only way to allow for a gap opening is

to add a surface state with the opposite ‘chirality.’ By chirality we mean the

Fermi-surface Berry phase for the massless fermion surface states. The Berry
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where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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i

Conclusion: with Chiral symmetry, we can add any number of Majorana cones as long as they 
have the same Berry phase, hence classification is Z. Majorana modes with opposite Berry phases 
can still annihilate each other. 

Why cant we add two Dirac nodes with just time-reversal symmetry, even if their Berry phases 
are both Pi?

Thus a single-copy of the surface states is stable to perturbations that pre-

serve the required symmetries T,C and the induced symmetry χ.

Now let us consider two identical copies of the surface state Hamiltonian

H
(2)
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for a 2 × 2 matrix X. We can easily see that any matrix of
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and thus is not allowed.

So, we cannot find any allowable mass terms to open a gap and two such

surface state copies are stable. The only way to allow for a gap opening is
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symmetries and opens

a gap. Thus an anti-chiral state can cancel the chiral state.

These surface state arguments indicate that the classification should be
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where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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Because here I can add a mass that anticommutes with the Hamiltonian                         that 
also is TR invariant if I pick X= \tau_y 

Another moral of the story: for Berry phases to act like monopoles and give Z classification, one 
needs extra symmetries (like C and T here, or Inversion and Time-Reversal in Graphene)
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Flat-band your Bdg Hamiltonian:

Build the projector onto occupied Bogoliubov bands:

quasiparticle Bloch functions for this Hamiltonian are
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where M(p) =
p2

2m − µ and E(p) =

�
|∆|2p2 + M2(p). To find q(p) we will

need the projection operator onto the occupied states

P (p) = |u1(p)��u1(p)| + |u2(p)��u2(p)| (766)
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We can now form the combination

Q(p) ≡ 2P (p)− 1 =
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E(p)
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−|∆|p · σ M(p)I
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By definition, to extract the necessary q(p) matrix we need transform Q(p)

into block off-diagonal form[45] which we do by performing a basis change,

essentially rotating Q(p) around the τx
axis to send τx → τx

and τ z → τ y

leaving us with

Q(p) = − 1

E(p)

�
0 |∆|p · σ − iM(p)I
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. (769)

Thus

q(p) = − 1

E(p)
(|∆|p · σ − iM(p)I) . (770)
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By definition, to extract the necessary q(p) matrix we need transform Q(p)

into block off-diagonal form[45] which we do by performing a basis change,

essentially rotating Q(p) around the τx
axis to send τx → τx

and τ z → τ y

leaving us with

Q(p) = − 1

E(p)

�
0 |∆|p · σ − iM(p)I

|∆|p · σ + iM(p)I 0

�

≡
�

0 q(p)

q†
(p) 0

�
. (769)

Thus

q(p) = − 1

E(p)
(|∆|p · σ − iM(p)I) . (770)
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Build the matrix:                        .  With Chiral symmetry, it is easy to show that 
we can ALWAYS put this matrix into the following form:

quasiparticle Bloch functions for this Hamiltonian are

|u1(p)� =
1�

2E(p)(E(p) + M(p))





−p−
pz

0

E(p) + M(p)



 (764)

|u2(p)� =
1�

2E(p)(E(p) + M(p))





−pz

−p+

E(p) + M(p)

0



 (765)

where M(p) =
p2

2m − µ and E(p) =
�

|∆|2p2 + M2(p). To find q(p) we will

need the projection operator onto the occupied states

P (p) = |u1(p)��u1(p)| + |u2(p)��u2(p)| (766)

=
1

2E(p)

�
|∆|2p2

E(p)+M(p)I −|∆|p · σ

−|∆|p · σ (E(p) + M(p))I

�
. (767)

We can now form the combination

Q(p) ≡ 2P (p)− 1 =
1

E(p)

�
−M(p)I −|∆|p · σ
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�
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By definition, to extract the necessary q(p) matrix we need transform Q(p)

into block off-diagonal form[45] which we do by performing a basis change,

essentially rotating Q(p) around the τx
axis to send τx → τx

and τ z → τ y

leaving us with

Q(p) = − 1

E(p)

�
0 |∆|p · σ − iM(p)I

|∆|p · σ + iM(p)I 0

�

≡
�

0 q(p)

q†
(p) 0

�
. (769)

Thus

q(p) = − 1

E(p)
(|∆|p · σ − iM(p)I) . (770)
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By definition, to extract the necessary q(p) matrix we need transform Q(p)

into block off-diagonal form[45] which we do by performing a basis change,

essentially rotating Q(p) around the τx
axis to send τx → τx

and τ z → τ y

leaving us with

Q(p) = − 1

E(p)

�
0 |∆|p · σ − iM(p)I

|∆|p · σ + iM(p)I 0
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≡
�

0 q(p)
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Thus
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We know that Q(p)
2

= 4P (p)
2−4P (p)+1 = 4P (p)−4P (p)+1 = 1 and thus

q
†
(p)q(p) = q(p)q

†
(p) = 1 so q(p) is unitary. The topological information

of HBdG(p) is stored in q(p) which is a map from (px, py, pz)→ U(2) in this

case. If we take the limit as p→∞ in any direction q(p) has a unique limit

limp→∞ q(p) = −iI. Thus we can one-point compactify momentum space

to get R3 ∪ {∞} ≡ S
3
. Then all the topological information is contained

in the map from compactified momentum space to U(2) i.e. S
3 → U(2).

This set of maps is classified by the homotopy group π3(U(2)) = Z. The

topological invariant which distinguishes these classes was already listed in

Eq. 763. Although the existence of an integer valued index is necessary for an

integer classification it is not sufficient. In principle we should also carry out

an analysis of the properties of Eq. 763 under symmetry preserving gauge

transformations to show that the class cannot be modified. For example,

as we saw in Chapter ?? the Z2 topological invariant for 3D topological

insulators can be cast in the form of an integer valued winding number.

However, the number can be modified by gauge transformations and is only

well defined as a Z2 quantity. We leave the analysis for the 3D superconductor

case as an exercise for the interested reader.

Plugging the explicit q(p) matrix into Eq. 763 we find, after tedious

algebra,

Nw =
1

24π2

�
d

3
p

12

�
µ +

p2

2m

�

E4(p)

=
2

π

� ∞

0

dp

p
2
�
µ +

p2

2m

�

E4(p)
(771)

This integral is quantized and always yields an integer. It can be carried out

numerically and we find that for µ < 0, Nw = 0 and for µ > 0, Nw = −1 as

we expected. The winding number Nw gives a bulk integer classification of

3D time-reversal invariant superconductors/superfluids.

17.4 Finishing the Classification of TRI superconduc-
tors

The 2D and 3D examples of time-reversal invariant topological superconduc-

tors (with T
2

= −1) were illustrated via the analogy with the corresponding

298



Bulk Index of 3D Time-Reversal Topological 
Superconductors

Importantly         is unitary U(N) matrix. 

For the Dirac model of B-phase of Helium (previous slides), we have that

We know that Q(p)
2

= 4P (p)
2−4P (p)+1 = 4P (p)−4P (p)+1 = 1 and thus

q
†
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†
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This integral is quantized and always yields an integer. It can be carried out

numerically and we find that for µ < 0, Nw = 0 and for µ > 0, Nw = −1 as

we expected. The winding number Nw gives a bulk integer classification of

3D time-reversal invariant superconductors/superfluids.

17.4 Finishing the Classification of TRI superconduc-
tors

The 2D and 3D examples of time-reversal invariant topological superconduc-

tors (with T
2

= −1) were illustrated via the analogy with the corresponding
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CONTENTS 9

Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N) U(2n)/U(n) ×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 1 U(N +M)/U(N) ×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 1. Listed are the ten generic symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.

2

TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -
CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 - - Z

TABLE I: Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-reversal
symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.

quasiparticle Bloch functions for this Hamiltonian are

|u1(p)� =
1�

2E(p)(E(p) + M(p))





−p−
pz

0

E(p) + M(p)



 (764)

|u2(p)� =
1�

2E(p)(E(p) + M(p))





−pz

−p+

E(p) + M(p)

0



 (765)

where M(p) =
p2

2m − µ and E(p) =

�
|∆|2p2 + M2(p). To find q(p) we will

need the projection operator onto the occupied states

P (p) = |u1(p)��u1(p)| + |u2(p)��u2(p)| (766)

=
1

2E(p)

�
|∆|2p2

E(p)+M(p)I −|∆|p · σ

−|∆|p · σ (E(p) + M(p))I

�
. (767)

We can now form the combination

Q(p) ≡ 2P (p)− 1 =
1

E(p)

�
−M(p)I −|∆|p · σ
−|∆|p · σ M(p)I

�

= − 1

E(p)

�
|∆|pi

�
τx ⊗ σi

�
+ M(p) (τ z ⊗ I)

�
(768)

By definition, to extract the necessary q(p) matrix we need transform Q(p)

into block off-diagonal form[45] which we do by performing a basis change,

essentially rotating Q(p) around the τx
axis to send τx → τx

and τ z → τ y

leaving us with

Q(p) = − 1

E(p)

�
0 |∆|p · σ − iM(p)I

|∆|p · σ + iM(p)I 0

�

≡
�

0 q(p)

q†
(p) 0

�
. (769)

Thus

q(p) = − 1

E(p)
(|∆|p · σ − iM(p)I) . (770)
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The matrix            is a map from the d-dimensional torus of lattice momenta p to the unitary 
group of U(N) where N is number of bands

We know that Q(p)
2

= 4P (p)
2−4P (p)+1 = 4P (p)−4P (p)+1 = 1 and thus

q
†
(p)q(p) = q(p)q

†
(p) = 1 so q(p) is unitary. The topological information

of HBdG(p) is stored in q(p) which is a map from (px, py, pz)→ U(2) in this

case. If we take the limit as p→∞ in any direction q(p) has a unique limit

limp→∞ q(p) = −iI. Thus we can one-point compactify momentum space

to get R3 ∪ {∞} ≡ S
3
. Then all the topological information is contained

in the map from compactified momentum space to U(2) i.e. S
3 → U(2).

This set of maps is classified by the homotopy group π3(U(2)) = Z. The

topological invariant which distinguishes these classes was already listed in

Eq. 763. Although the existence of an integer valued index is necessary for an

integer classification it is not sufficient. In principle we should also carry out

an analysis of the properties of Eq. 763 under symmetry preserving gauge

transformations to show that the class cannot be modified. For example,

as we saw in Chapter ?? the Z2 topological invariant for 3D topological

insulators can be cast in the form of an integer valued winding number.

However, the number can be modified by gauge transformations and is only

well defined as a Z2 quantity. We leave the analysis for the 3D superconductor

case as an exercise for the interested reader.

Plugging the explicit q(p) matrix into Eq. 763 we find, after tedious

algebra,

Nw =
1

24π2

�
d
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(771)

This integral is quantized and always yields an integer. It can be carried out

numerically and we find that for µ < 0, Nw = 0 and for µ > 0, Nw = −1 as

we expected. The winding number Nw gives a bulk integer classification of

3D time-reversal invariant superconductors/superfluids.

17.4 Finishing the Classification of TRI superconduc-
tors

The 2D and 3D examples of time-reversal invariant topological superconduc-

tors (with T
2

= −1) were illustrated via the analogy with the corresponding
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These mappings have winding numbers if the d’th homotopy group 
of U(N) is nonzero. This is true for d=3, but not for d=1, 2.

Hence a Z winding invariant can be defined for 3-d. Lower 
dimensions have other invariants, which are NOT winding 
numbers of the q(p) matrix( but could be winding numbers of 
other matrices such as the Chern numbers

Thus a single-copy of the surface states is stable to perturbations that pre-

serve the required symmetries T,C and the induced symmetry χ.

Now let us consider two identical copies of the surface state Hamiltonian

H
(2)
surf (p) = pxI⊗ σx

+ pyI⊗ σy
. (761)

To find a mass term we must find a matrix M that anti-commutes with

H
(2)
surf and preserves all the symmetries. To anti-commute we must have

M = X ⊗ σz
for a 2 × 2 matrix X. We can easily see that any matrix of

this form breaks the chiral symmetry χ = I ⊗ iσz
and thus is not allowed.

So, we cannot find any allowable mass terms to open a gap and two such

surface state copies are stable. The only way to allow for a gap opening is

to add a surface state with the opposite ‘chirality.’ By chirality we mean the

Fermi-surface Berry phase for the massless fermion surface states. The Berry

phases are quantized to be ±π and the sign determines the chirality. If we

began instead with the Hamiltonian

H
(2�)
surf (p) = pxτ

z ⊗ σx
+ pyI⊗ σy

. (762)

we could look for mass terms of the form M = τ y ⊗ σx
. This mass term

satisfies T = I⊗ iσy
K, C = I⊗ σx

K and χ = I⊗ iσz
symmetries and opens

a gap. Thus an anti-chiral state can cancel the chiral state.

These surface state arguments indicate that the classification should be

characterized by a topological integer and Schnyder, Ryu, Furusaki and Lud-

wig introduced just such a quantity[45]:

Nw =
1

24π2

�
d

3
p�µνρ

Tr
��

q
−1

(p)∂µq(p)
� �

q
−1

(p)∂νq(p)
� �

q
−1

(p)∂ρq(p)
��
(763)

where q(p) is a special matrix projection operator that will be defined below.

Calculating this invariant involves several steps. Given a Bloch Hamiltonian

HBdG(p) we first need to calculate the occupied Bloch wavefunctions. As an

explicit example we will use the Hamiltonian given in Eq. 757. The occupied
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Can We Go Beyond The Periodic Table?

To date, no real experimental confirmation of topological superconductors.

Spectroscopy (finding in-gap surface states) likely to be easiest way to see edge/surface modes, 
but most superconductors with spin-orbit coupling have small gaps, no arpes possible.

Can we find some topological superconductor without spin-orbit coupling but with (spinless) 
time-reversal? Periodic table says NO. 

CONTENTS 9

Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N) U(2n)/U(n) ×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 1 U(N +M)/U(N) ×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 1. Listed are the ten generic symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.

2

TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -
CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 - - Z

TABLE I: Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-reversal
symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.

However, if we introduce point-group symmetry, we 
now suddenly can!

This leads to extension of the periodic table, and to 
the discovery of new classes, potentially found in 
experiments (since materials have point-group 
symmetries). 

There are MANY crystallographic groups in 1,2,3 
dimensions, large number of possible insulators



A Flavor of What Point Group Symmetry Can Do For U:

An easy example is a spinless time-reversal invariant 2 dimensional superconductor (which the 
classification table says is trivial, due to T^2=1)

At Gamma=(0,0) and M= (Pi, Pi) points, the Hamiltonian 
commutes with the C4 matrix. 

Since C4 is also unitary, the bands at Gamma=(0,0) and M= 
(Pi, Pi) can be described by C4 eigenvalues.

cσ = 1

2
(a1σ + ia2σ) c†σ = 1

2
(a1σ − ia2σ)

H = −µc†σcσ + Bc†σσz
σ,σ′cσ′ + ∆0(c

†
↑c

†
↓ + c↓c↑)

B < µ
|µ| < 2t |µ| > 2t
a1a2La′

1a2L′ c = a1 + ia2L ia1a
′
1 C4H(kx, ky)C

−1

4 = H(ky,−kx)
a2n−1 = 1√

N

∑
n e−iqnaq,1, a2n = 1√

N

∑
n e−iqnaq,2 where 1, 2 are the two flavors of

Majorana coming from splitting the on-site fermion on the zig-zag chain, and q is the
fourrier vector which takes values to be determined below (the several cases for the values
of q depending on the boundary conditions, which in turn depend on the value of the
rotation of the spin, have been analyzed in Section[??] ). We have b†q,1,σ = b−q,1,σ, b†q,2,σ =
b−q,2,σ. We can then write the Hamiltonian in the basis bq = (bq,1,↑, bq,1,↓, bq,2,↑, bq,2,↓):

H = i
4

∑
q a†

qB(q)aq = i
4

∑
q A−qB(q)aqB(q) = −BT (−q) 2t cos[k]+µ sign(µ+2t)sign(µ−

2t)
βn = sin θn+1−θn

2

a2, a3, a4aN

T i
∑N

m<n=1
γmγnT−1 = T iT−1

∑N
m<n=1

γmγn = −i
∑N

m<n=1
γmγn

1

Say now the system also has C4 symmetry (UNITARY)

Since C4^4=1, these eigenvalues can be +1, -1, i, -i

Now suppose i have in my supercondctor the 2 occupied Bogoliubov bands which have eigenvalues 
i,-i under C4. These can and do exist in real materials. (C4= i \sigma_y)

Because of spinless time-reversal T=K, now the band with C4 eigenvalue +i is degenerate (at 
Gamma and M) with the band of C4 eigenvalues -i. At these points only we have effectively built 
Kramers pairs! C4*T= i sigma_y K is now a composite operator that acts like SPINFUL time-
reversal but ONLY at Gamma and M. Hence we can change the symmetry, get nontrivial 



Other Ways of Building Majorana Modes and 
other Interesting states

We could just find the materials which exhibit each of these properties. 

Or take a hint from Kane and Fu and use parent materials to generate the other 
interesting states. 

IQHE

(p+ip/p-ip)

p+ip

Surface
of TI
(e.g.
BiTe,BiSe)



Boundary Modes

QSH

SSH 1d chain

p-wave wire
Doubled p-wave wire



What Next?

Find and propose materials! Find these 

Look for systems without spin-orbit coupling but with 
point-group symmetry - what new phases.

Interacting classification.

Fractional interacting superconductors - is there any 
way of getting a superconductor with a fractional 
index? Similar to the Fractional Topological insulators 
effect but for superconductors




