What Have We Learned So Far?

Superconductors Without Any Symmetry (Besides
Particle-Hole “Redundancy” Which Squares to | - the

Usual Case) Have Z2 Classification in |-d and 2-d

Edge States - Mirror of Topologically Nontrivial Bulk

Topological Indices Can (and should) Be Understood
Through Both Bulk Topology and Edge Stability
Arguments

Majorana Zero Modes Can Appear as Edge Modes in a
Topologically Nontrivial Phase of the Kitaev P-Wave
Wire and Can Form Non-Local Hilbert Spaces



Last Thing About 1-d (ideas will help later)

Cartan label

A (unitary)

AT (orthogonal)

ATl (symplectic)

AIIT (ch. unit.)

BDI (ch. orth.)

CII (ch. sympl.)

D (BdG)

C (BdG)

DIII (BdG)

CI (BdG)

== OOl =R|l=|Oo|lo| ol

Work it out

during break.

Why is there no C (BdG)
class in d=1?

(hint: because CA2=-1, we
need two flavors at least.
The symmetry cannot keep
the two flavor Majorana
edge modes from gapping -
just like CA2=1 cant either,
but with CA2=1 we do not
need two flavors)



Two Dimensions: First the Easy Classes

Lets analyze first the classes with no chiral symmetry S

Cartan label T | C|S|d=1|d=2|d=3
A (unitary) 01| 0 |0 - 7 .
AT (orthogonal) || +1 | 0 |0 - - -
AII (symplectic) || =1 | 0 | O - Lo Lo
ATIT (ch. unit.) 0] 0 |1 7 _ 7,
BDI (ch. orth.) || +1 | +1 |1 7, _ _
CII (ch. sympl.) || =1 | =1 | 1 7 3 Lo
D (BdG) 0 | +1 |0 7Z, 7, _
C (BdG) 0 |—-11]0 _ _
DIII (BdG) 1| +1 |1 Zs | Zo 7
CI (BdG) +1 | —-1]1 - - 7
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Look at class D in 2d.We can understand the
classification by thinking what protected edge
states could we have if we cut the system.




General Theory for the D and C classes in 2 Dimensions

These are classes with Chiral Majorana edge modes.
They have a Z classification, which is the number of chiral edges.

They are described by a projector (spectral) Chern number, identical to the case of the Chern
insulator of IQH or TKNN formula.

The only difference is that unlike in the insulator, the Chern number is not related to the Hall
conductance.

Pc is the spectral projector onto the lower Bogoliubov bands EijTT[(az'PG) (aj Pg)Pg]

We can alternatively define the Berry potential and curvature of the Bogoliubov occupied bands and
express the Chern number just as TKNN did
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P+1P Superconductor

Simplest example of a chiral superconductor is the p+ip in 2d
There is even a candidate material SrRu - see Prof Raghu’s talk right after this one.

px+i py needed. Only px would be gapless in 2 dimensions. T
¥p = (cp cp)

s — 1 Z - —2t(cos px + cos p,) — (u —4t)  2IA(SIin py + i sin p,) v,
—2IA*(sin py — i sin p,) +2t(cos py + cos p,) + (u — 4t)

Ak e A(k.’lf + iky)/kl"



Phases of the P+iP Superconductor

A simple way of seeing that this Hamiltonian has nontrivial edges for 0 « 2 is to linearize it

1
T a
Hgac 5 Ep ‘I’pda(p w)T p

da(p 1) (_2 Ap, =2 A py Pz Zm_ﬂ)

This now looks like a Dirac Hamiltonian.

M<O0 >0
Trivial (strong pairing Fermi Non-trivial
level below band) (weak pairing Fermi level in band)
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Open Boundary Spectrum of P+IP Superconductor
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Majorana Modes on Vortices of Chiral Superconductors

One can do a proper theory of defects in topological phases and the existence/stability of modes
on defects.

Defects can have a different than their host medium because they have different dimensionality

Vortices in 2D Chiral Superconductors have a Z2 classification, even though the chiral
superconductor has a Z classification.

On general grounds we expect a zero mode stuck on the vortex in a p+ip superconductor. This is
because in a disk geometry, the boundary conditions on the gapless edge are antiperiodic (the only
way to be because otherwise PH symm would require 2 modes, with only | edge)

P=Tt




Explicit Form of A Vortex

We pick a vortex located at the origin r=0:

A@r, 0) = |A(r)]e“® AO)] = 0

We take the phase a(r) to be equal to the polar angle atr. Y(r) — e'ur)/2 Y(r)

o 2800 (55 + 55
2N vortices with zero Huge = & or 10
modes on them lead do a 2 _21A(r)|e—0 (i _ fi) L
degeneracy of 2N (N or 1 a0
complex fermions). Then
27M(N-1) even and 2*(N-1) ; L) 2 N
odd fermion parity. Folr. 0) = 7757 exp [—5 /O |A(r,)|dr’] <ei9/2> = ig(r) <6i0/2>

- / rdrdd ig(r) (—e2c(r, 0) + e (r, 0))

E
Vortex classification is Z_2.Two majorana modes on the
same vortex (as would come from a Chern number 2 0
topological superconductor) would split up and move into

the vortex core continuum of states. _




Time-Reversal Topological Superconductors

Cartan label T | C |S|d=1|d=2|d=3
A (unitary) 0] 010 - 7 -
AT (orthogonal) || +1 | 0 |0 - - -
ATl (symplectic) || =1 | 0 | O - Lo L
AIII (ch. unit.) || 0 | 0 |1 7 _ 7
BDI (ch. orth.) || +1 | +1 | 1 [ Z _ _
CII (ch. sympl.) || =1 | =1 |1 ' - Zo
D (BdG) 0 [f1L |0 Z, | Z T -
C (BdQ) 0| 1|0 - T 7 [ -

DIII (BdG) 1| +1 |\ 1 ||(Zs | Zo | Z )
CI (BdG) N N I ~ | Z

Again we can understand everything from bulk or
from edge.

Simplest example: why is the class BDI Zin |D?

BDI is class D plus added spinless time-reversal
T=K (complex conjugation)

We can then add an integer number N (flavor) of D-class |-dimensional open chains and ask what
happens to their edges.

In the absence of any other symmetry, for the D
class, N Majorana fermions they would have a local
hilbert space and gap (mod 2) by a one-body term:

2 Zg<n:1 Ym In

With spinless TR added (class BD ),
this term is not allowed and the

classification is Z

) Z%<n:1 ’Vm’VnT_l =TT Zg<n:1 YmYn = —1 ZTNn<n:1 Ym In



Time-Reversal Topological Superconductors With Spin

Cartan label T|C|S|d=1|d=2|d=3
A (unitary) 01010 - Z -
AT (orthogonal) || +1 | 0 |0 - - -
AII (symplectic) || =1 | 0 | O - Lo Lo
AIIT (ch. unit.) 0| 0 |1 7 - 7
BDI (ch. orth.) || +1 | +1 |1 7 _ _
CII (ch. sympl.) || =1 | =1 | 1 7 - Zio
D (BdG) 0 | +1 |0 7Zs 7, _
C (BdG) 0 |—-11]0 _ 7, _

DIII (BdG) 1| +1 |1 (CZ | Zo | Z )
CI (BdG) +1 | =11 - - Z

|dentity term is singled, pauli terms are triplet.

Generic form for the pairing: Cpo = 10, Cpor
1 _ _
Hy =" 5 [hlhor @)+ po (A),,, D)y, |

p

In this form singlet proportional to identity

Gap can be expanded (as learned in this school)
Aaa’ (P) — dO (P)Haa/ + dél (p) O-ga’

d()(p) = d()(—p) da(p) = _da(_p)

Because time-reversal is spinful, and hence squares to -1, states come in Kramers
pairs. If translational invariance exists the states at k and -k are related by time-
reversal, while Kramers doublets exist at k=0, Pi

Can we build a time-reversal topological superconductor in 2 dimensions!?



Time-Reversal Topological Superconductors With Spin
in 2-dimensions

From our experience, we know the quantum spin hall insulator is two copies of the integer
quantum Hall state, plus a Z 2 mod due to time-reversal.

We expect to be able to build a “helical” superconductor by doubling the Chiral
superconductors learned before.
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Time-Reversal Topological Superconductors With Spin
in 2-dimensions

Put together a C=1 and C=-1| Chiral topological superconductors and relate them by
time-reversal. Simplest way P+iP and P-IP

[ P - r
S — U 0 0 —A(px ip )\ f f
2m 2 ’ Yp (CpT Cpy —Cpy C—m)
1 0 = —u  Alpx—ipy) 0
H 2 Z \PL 2m pz \Pp T I iV K
P 0 A*(px ipy) o M O R 1o
\ A" (px—ipy) O 0 —o M C=7 ® 0K

In d-vector notation of the gap: d  —iA(pyy p,x)
If each spin had same chirality: d —iA(p; ipy)'y; Sr;RuO,  Would break TR

The P+iP half of the superconductor has chiral Majorana, the P-iP has anti-chiral Majorana
edge states e :
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Stability of Edge States

The decoupled edge Hamiltonian is invariant under TRand C: 7T = i0vK. C = 1IK
520 () ) 8- S
p

C{[{edge(p)c(_1 — pO_Z — _(_p)az — _Hedge(_p)- THedge(p)T_l — pO-yO-ZO-y — _pUZ — Hedge(_p)

Now try to open a one-body gap without breaking TR or C. Add a generic mass:

/

- a
Hedge — edge _|_Ln0]1 _|_ maO'

/

- X, Y, Z not allowed by TR.
not allowed by C x,z break C.

If we relax TR, we can add a y mass which is allowed.
So our superconductor is protected by time-reversal

s the classification Z2 or Z? Add 2 copies of surface Hédge( ) =p(I® c7).

Can we find a TR, C invariant mass term that anticommutes with the edge Hamiltonian? YES! Not Z

H, gy (0) +mM M, 1907} =0 M=r1"%0o"



Vortices in Time-Reversal Invariant Superconductors

0 ~Ae1(p, +ip,)
pr =—¢ = 0(r)
o1 = (1/2)(v + i)
o] = (1/2)(v; —iv))
2 = (1/2)(g + 1))
L= (1/2) (e —ia))




Time-Reversal Invariant Superconductors in 3

Dimensions
+ |+ |+ )
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The B-Phase of He-3 exhibits this Hamiltonian

|Alp. |Alp_ \
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If we stare intensely, this is a 3-D Dirac gapped Hamiltonian. In fact, its identical to the
topological insulator “effective” bulk Hamiltonian say for Bi2 Se3.For 1t > 0 the kinetic

term winds and we have a topological superconductor (or insulator)

We expect surface states on any cut surface. Propagating Majorana
fermions (non-chiral). Just like Dirac Fermion on the surface of a
bulk 3D topological insulator

Horp =) ®h (0" + 90" ) Po & — (yo . ~ )T

p

s;v»




Time-Reversal Invariant Superconductors in 3
Dimensions

So: form of the simplest 3D topological superconductor Hamiltonian same as that of the 3D
topological insulator.

Also time-reversal symmetry has Kramers pairs. So very similar. Is the topological superconductor
Z2? NO - it is Z!!

Charge conjugation symmetry has the effect that, when coupled to spinful time-reversal, enhances
the symmetry class to Z

Pp = (p1 7pl>T
T =ioYK C =w*K Hopp =y ®L (0" + pyo¥) @,
p

These are “symmetries” of the Hamiltonian and they commute with each other.They relate p to -p
points. However, crucially different from the TR-only case, we can now take their product and have
a “chiral” symmetry (has nothing to do with chiral edge states in 2D)

x = C1T =107

Both the edge and the bulk have this extra, chiral symmetry



Stability of Surface States of 3-d Topological
Superconductors

The Chiral symmetry enhances the classification to Z. How!?

Stability of one Majorana cone is guaranteed by TR, but can also be seen through Chiral symmetry

Hgyry = Z <I>L (po” 4+ p,0Y) &, Try to open a gap by a mass H' = m_.o? not allowed!:
P
xm.o*x ' =m,o° # —m,o* = —H(p)

So one Dirac node is stable towards opening a gap, known because of Kramers pairs

We now consider two cones, first decoupled: Hﬁizf.f(l)) =pA®c" +p,l®o’

We must see if we can add a mass term which anticommutes with the M v X 2 57
Hamiltonian but preserves all the symmetries. To anticommute, we need: I

However, this does not anticommute with the Chiral symmetry, so it is not x=C1T =10
allowed! We have added 2 Majorana Cones together! Classification is Z! YH(p)x ' =—H(p)



Stability of Surface Majorana Cones on the Surface of a
Topological Superconductor

We can add as many Majorana cones as we want, as long as their Berry phase (plus minus Pi)
is of the same sign, hence the classification is Z. If we add a Berry phase Pi with a Berry phase

- Pi then we can gap the system:

T=1®i0'K, C =1gic"K Hﬁi;)f(p) = 0,7 Q0" +p,l® oY
M =71"® o"

Conclusion: with Chiral symmetry, we can add any number of Majorana cones as long as they
have the same Berry phase, hence classification is Z. Majorana modes with opposite Berry phases

can still annihilate each other.

Why cant we add two Dirac nodes with just time-reversal symmetry, even if their Berry phases
are both Pi?

Because here | can add a mass that anticommutes with the Hamiltonian , ] that
also is TR invariant if | pick X= \tau_y M=X®o

Another moral of the story: for Berry phases to act like monopoles and give Z classification, one
needs extra symmetries (like C and T here, or Inversion and Time-Reversal in Graphene)



Bulk Index of 3D Time-Reversal Topological
Superconductors

Flat-band your Bdg Hamiltonian:

E .

LS

Build the projector onto occupied Bogoliubov bands: P(p) = [ui(p))(ui(p)]+ |uz(p))(ua(p)|

Build the matrix: Q(p) =2P(p) — 1. With Chiral symmetry, it is easy to show that
we can ALWAYS put this matrix into the following form:

Q(p) = (qup) Q(SD) )

¢"(p)g(p) = q(p)¢'(p) =1




Bulk Index of 3D Time-Reversal Topological
Superconductors

Importantly q(p) is unitary U(N) matrix.

For the Dirac model of B-phase of Helium (previous slides), we have that

a(p) = —ﬁ (|Alp - o — iM(p)I)

The matrix q(p) is a map from the d-dimensional torus of lattice momenta p to the unitary
group of U(N) where N is number of bands

i indi ; J d=1|d=2|d=3
These mappings have winding numbers if the d’th homotopy group Carta? el (11O
. .. _ _ A (unitary) | 0 | 0 |0 7
of U(N) is nonzero. This is true for d=3, but not for d=1, 2.
AT (orthogonal) | +1 ] 0 |0 -] -
AII (symplectic) | =1 0 |0 Ly | Lo
Hence a Z winding invariant can be defined for 3-d. Lower AT (chownit) | 0 ] 0 [ 1] 7 ] - l
dimensions have other invariants, which are NOT winding BDI (ch. orth.) | +1[+1[1] Z | - |~=
numbers of the q(p) matrix( but could be winding numbers of CIL (ch. sympl) | =1 | -1]1 | Z Ly
other matrices such as the Chern numbers DBIG) |0 |+1 1072
CBG) [o[-1[0-T7 -
1 s
Mo = / d’pe"’Tr [ (¢ (p)9ua(p)) (¢ (P)0va(p)) (¢ (P)T,a(P) DITBAG) |-+ 1]% [ D
242 i () ( ) P CI(BG) [+1]-1]1 7]




Can We Go Beyond The Periodic Table?

To date, no real experimental confirmation of topological superconductors.

Spectroscopy (finding in-gap surface states) likely to be easiest way to see edge/surface modes,
but most superconductors with spin-orbit coupling have small gaps, no arpes possible.

Can we find some topological superconductor without spin-orbit coupling but with (spinless)
time-reversal?! Periodic table says NO.

Cartan label T|C|S|d=1]|d=2]d=3
A (unitary) 0] 010 - 7 -
AT (orthogonal) || +1 | 0 | O - - -
ATl (symplectic) || =1 | 0 |0 - Lz Lo
ATII (ch. unit.) 0| 0 |1 7 - 7
BDI (ch. orth) [ +1[+1[ 1] Z - -
CII (ch. sympl.) || =1 | =1 | 1 7 - Lo
D (BdG) 0 | +1 [0 Zs 7 _
C (BdQ) S O O/
DI (BAG) || -1 | +L |1 Zs | Za | Z

CI (BdG) =11 - C)i

However, if we introduce point-group symmetry, we
now suddenly can!

This leads to extension of the periodic table, and to
the discovery of new classes, potentially found in
experiments (since materials have point-group
symmetries).

There are MANY crystallographic groups in 1,2,3
dimensions, large number of possible insulators



A Flavor of What Point Group Symmetry Can Do For U:

An easy example is a spinless time-reversal invariant 2 dimensional superconductor (which the
classification table says is trivial, due to TA2=1)

Say now the system also has C4 symmetry (UNITARY)
—1
C4H(k:v_v ky)Cy " = H(ky, —kz)

At Gamma=(0,0) and M= (Pi, Pi) points, the Hamiltonian
commutes with the C4 matrix.

Since C4 is also unitary, the bands at Gamma=(0,0) and M=
(Pi, Pi) can be described by C4 eigenvalues.

Since C474=1, these eigenvalues can be +1, -1, i, -i

Now suppose i have in my supercondctor the 2 occupied Bogoliubov bands which have eigenvalues
i,-i under C4.These can and do exist in real materials. (C4=i \sigma_y)

Because of spinless time-reversal T=K, now the band with C4 eigenvalue +i is degenerate (at
Gamma and M) with the band of C4 eigenvalues -i. At these points only we have effectively built
Kramers pairs! C4*T= i sigma_y K is now a composite operator that acts like SPINFUL time-
reversal but ONLY at Gamma and M. Hence we can change the symmetry, get nontrivial



Other Ways of Building Majorana Modes and
other Interesting states

We could just find the materials which exhibit each of these properties.

Or take a hint from Kane and Fu and use parent materials to generate the other
Interesting states.

Sum

of Tl

(e.q.

BiTe,BiSe) IQHE
(p+ip/p-ip)
p+ip




Boundary Modes

QSH

I Red Green Bound
. State
M M : fermbon SSH 1d chain
i |l 5% msoranaPoubled p-wave wire
Vo) -wave wir
w5 [ wave wire



What Next?

Find and propose materials! Find these

Look for systems without spin-orbit coupling but with
point-group symmetry - what new phases.

Interacting classification.

Fractional interacting superconductors - is there any
way of getting a superconductor with a fractional
index? Similar to the Fractional Topological insulators
effect but for superconductors





