High-Field EPR Identification of a Spin Clock Transition in the $[Cp'_{3}Pr^{II}]^{-}$ Qubit with a 4f²5d¹ Configuration

Patrick W. Smith¹, Jakub Hrubý², William J. Evans³, Stephen Hill^{2,4}, Stefan G. Minasian¹ **1. Lawrence Berkeley National Lab; 2. NHMFL – Tallahassee; 3. University of California – Irvine; 4. Florida State University, Physics**

Funding Grants: K. M. Amm (NSF DMR-2128556); W. J. Evans (NSF CHE-2154255); S. G. Minasian (DOE BES DE-AC02-05CH11231)

The present investigation sought to explore whether large hyperfine clock transitions are possible in other lanthanide (Ln) ions with partially filled f-shells. The strategy relies on the fact that reduction of certain Ln^{III} (4fⁿ configuration) ions to Ln^{II} results in the extra electron occupying a mixed 5d/6s orbital, giving rise to a $4f^{n}(5d/6s)^{1}$ configuration. The trick then is to identify Ln^{III} ions with non-magnetic singlet ground states, requiring an even f-electron count, e.g., Pr^{III} with a 4f² configuration. Achieving a singlet ground state then boils down to molecular design. Finally, reducing to Pr^{II} results in a $4f^{2}(5d/6s)^{1}$ configuration with an effective two-level spin-¹/₂ ground state.

Residual exchange coupling between the lone 5d/6s electron and the anisotropic $4f^2$ spin-orbital moment, along with a colossal electron-nuclear hyperfine interaction, gives rise to an EPR spectrum that is impossible to interpret at low fields. However, in the high-field limit, the different components (x, y and z) of the spectrum are well resolved and easily interpretable, yielding a unique set of Zeeman (g_i) and hyperfine (A_i , i = x, y, z) parameters (see **Fig. 1**). In turn, this enabled identification of a low field clock transition and demonstration of appreciably enhanced spin coherence for this prototype molecular lanthanide spin qubit.

Fig. 1. Multi-frequency, high-field EPR spectra of the $[K(crypt)]^+[Cp'_3Pr^{II}]^-$ complex, which has an effective spin-1/2 ground state. Different components of the Landé *g*-tensor are well-resolved at the highest frequency. Spectral simulations then allow determination of the *g*- and *A*-tensor components.

Facilities and instrumentation used: EMR program, 15/17 Tesla Transmission Spectrometer **Citation:** Smith, P.; Hrubý, J.; Evans, W.; Hill, S.; Minasian, S., *Identification of an X-band Clock Transition in Cp'₃Pr⁻ Enabled by a 4f²5d¹ Configuration, Journal of the American Chemical Society, 146 (9), 5781-5785 (2024) <u>doi.org/10.1021/jacs.3c12725</u>*

