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Early Digital Memory 

The iStone: 1 bit  



Early Digital Memory 

The iStone 5: ~ 20 bits 
 



Modern Digital Memory 

The iPhone 5: ~ 5.5 x 1011 bits 
 



Modern Digital Memory 

The iPod: ~ 1.4 x 1012 bits 
 



Modern Digital Memory 

http://en.wikipedia.org/wiki/Hard_disk_drive 
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A spin-1/2 particle: 
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Use periodic boundary 
conditions 
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A valence bond: 

Quantum superposition 
of valence-bond states. 
         A “spin liquid.” 



( )↓↑−↑↓=
2

1

Another Kind of Order 

2 2 0 2 Even 

A valence bond: 



( )↓↑−↑↓=
2

1

Another Kind of Order 

2 0 0 2 Even 

A valence bond: 



( )↓↑−↑↓=
2

1

Another Kind of Order 

Even 

A valence bond: 



( )↓↑−↑↓=
2

1

Another Kind of Order 

3 1 3 1 Odd 

|0 

A valence bond: 



( )↓↑−↑↓=
2

1

Another Kind of Order 

Odd 

A valence bond: 

|0 



( )↓↑−↑↓=
2

1

Another Kind of Order 

2 0 0 2 Even 

|1 

A valence bond: 



( )↓↑−↑↓=
2

1

Another Kind of Order 

Even 

A valence bond: 

|1 



Is it a 0 or a 1? 



Is it a 0 or a 1? 



Is it a |0    or a |1   ? 



Is it a |0    or a |1   ? 



Is it a |0    or a |1   ? 



Topological Order  (Wen & Niu, PRB 41, 9377 (1990)) 

Conventionally Ordered States:  Multiple “broken symmetry” 
ground states characterized by a locally observable order 
parameter. 

Topologically Ordered States:  Multiple ground states on 
topologically nontrivial surfaces with no locally observable 
order parameter. 
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Nature’s classical error correction 

Nature’s quantum error correction 
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Topological Order: Excitations 

Breaking a bond creates an excitation with Sz = 1 
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Topological Order: Excitations 

Breaking a bond creates an excitation with Sz = 1 



Fractionalization 

Sz = 1 excitation fractionalizes into two Sz = ½ excitations 



Fractional Quantum Hall States 

B 

A two dimensional gas of electrons in a strong 
magnetic field B. 

Electrons 



Fractional Quantum Hall States 

B Quantum Hall Fluid 

An incompressible quantum liquid can form when 
the Landau level filling fraction ν = nelec(hc/eB) is a 
rational fraction. 



Charge Fractionalization 

Electron 
(charge = e) 

When an electron is added to a FQH state it can be 
fractionalized  ---  i.e., it can break apart into 
fractionally charged quasiparticles. 



Charge Fractionalization 

Quasiparticles 
(charge = e/3 for ν = 1/3) 

When an electron is added to a FQH state it can be 
fractionalized  ---  i.e., it can break apart into 
fractionally charged quasiparticles. 



Topological Degeneracy 
As in our spin-liquid example, FQH states on topologically 
nontrivial surfaces have degenerate ground states which can 
only be distinguished by global measurements. 

Degeneracy 
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For the ν  = 1/3 state: 
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Fractionalized quasiparticles 

A degenerate Hilbert space whose dimensionality is 
exponentially large in the number of quasiparticles. 

States in this space can only be distinguished by global 
measurements provided quasiparticles are far apart.                  

Essential features: 

A perfect place to hide quantum information!  

“Non-Abelian” FQH States (Moore & Read ‘91) 



Exchanging Particles in 2+1 Dimensions 

2 space dimensions 

1 time 
dimension 

Particle “world-lines” form braids in 2+1 (=3) dimensions 



Clockwise 
exchange 

Counterclockwise 
exchange 

Exchanging Particles in 2+1 Dimensions 

Particle “world-lines” form braids in 2+1 (=3) dimensions 



Many Non-Abelian Anyons 
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Matrix depends only on the topology of the braid swept out by 
anyon world lines! 

Robust quantum computation? 



Possible Non-Abelian FQH States 

ν = 12/5:  Possible Read-Rezayi 
“Parafermion” state. Read & Rezayi, ‘99 
 
Charge e/5 quasiparticles  
are Fibonacci anyons. 
Slingerland & Bais ’01 
 
 
 
Universal for Quantum Computation! 
Freedman, Larsen & Wang ’02 
 
 
 

J.S. Xia et al., PRL (2004). 
ν = 5/2:  Probable Moore-Read 
Pfaffian state.    
 
Charge e/4 quasiparticles  
are Majorana fermions. 
Moore & Read ‘91 
 

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Fibonacci.html
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2 dimensional Hilbert space 



Quantum states are protected 
from environment if particles 

are kept far apart 

Need to measure all the way around both 
particles to determine what state they are in 
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Unique unitary solution (up to irrelevant phase factors): 
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Hilbert Space Dimensionality 
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Hilbert Space Dimensionality 
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•  Hilbert space dimensionality grows as the Fibonacci sequence! 
   
 

•  Exponentially large in the number of quasiparticles (deg ~ φ N), 
   so big enough for quantum computing. 

“charge” 

Hilbert Space Dimensionality 

Fibonacci Anyons 



Problem 1. Pentagon Equation for Fibonacci Anyons.

For Fibonacci anyons the 2× 2 F matrix,

F =

(
F00 F01

F10 F11

)
,

describes the following basis change,

a 1 b 1
b

abF

.

The pentagon equation then equates the results of two distinct ways
of using the F matrix to express a four anyon state from the basis,

a cb

as a superposition of states from the basis,

a cb

For each of the seven pentagon diagrams that follow, use the fact
that the two paths (top and bottom) should yield the same amplitude
for the contribution of the rightmost state in the expansion of the
leftmost state to derive seven polynomial equations for F00, F11 and
the product F01F10.

Now solve these equations. You should find two solutions, only one of
which yields a unitary F matrix if you take F01 = F10 =

√
F01F10.

Find this 2×2 unitary F matrix.

You may find it convenient to express your answer in terms of
τ = (

√
5 − 1)/2 ' 0.62, where τ is the inverse of the golden mean

φ = (
√

5 + 1)/2 ' 1.62.
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Problem 2. Hexagon Equation for Fibonacci Anyons.

For Fibonacci anyons the 2× 2 R matrix,

R =

(
R0 0
0 R1

)
,

describes the phase factor acquired when anyons with a given total
topological charge are exchanged in a clockwise manner,

aR
a a .

The hexagon equation then describes two different ways to use the
F and R matrices to compute the effect of moving two anyons around
a third.

For each of the four hexagon diagrams that follow, use the fact that
the two paths (top and bottom) should yield the same amplitude for
the contribution of the rightmost state to the expansion of the state
obtained by carrying out the anyon exchanges on the leftmost state to
derive four polynomial equations for R0 and R1. (In this calculation
you should use the unitary F matrix obtained in Problem 1).

Again you should find two solutions, this time corresponding to the
two possible choices for the ‘handedness’ of the anyons.

The following identities might be useful in simplifying your results for
R0 and R1,

sin

(
3π

5

)
=

√
10− 2

√
5

4
, cos

(
3π

5

)
=

1−
√

5

4
.
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