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Quick Review of the Basics  
of  

Quantum Information 
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Quantum bits (‘qubits’)  

Quantum information is stored in the physical 
states of a quantum system:  
•  atoms, molecules, ions, superconducting 

circuits, photons, mechanical oscillators, … 



Quantum Information is 
Paradoxical 
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Is quantum information carried  
by waves or by particles? 

YES! 
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Is quantum information  
analog or digital? 

YES! 
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Quantum information is digital: 

ENERGY 

0 

2

1 

4 
3 

} ground state 0 g= = ↓

excited state 1 e= = ↑

Energy levels of a quantum system are discrete.  
 
We use only the lowest two. 

Measurement of the state of a qubit 
yields 1 classical bit of information. 
 
Stern-Gerlach surprise. 
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Quantum information is analog: 

cos sin
2 2

ie ϕθ θ
ψ ⎛ ⎞ ⎛ ⎞↓ + ↑⎜ ⎟= ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 latitude
 longitude

θ

ϕ

=

=

↓

A quantum system with two distinct states can exist in an  
Infinite number of physical states (‘superpositions’) 
intermediate between      and     .   
(Requires infinite number of classical bits to specify) 

↑

ENERGY 
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2

1 

4 
3 

STATE 

STATE } ↓

↑

State defined by ‘spin 
polarization vector’ 
on Bloch sphere 
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Quantum information is analog/
digital: 

ENERGY 

0 

2

1 

4 
3 

STATE 

STATE } ↓

↑

State defined by ‘spin 
polarization vector’ 
on Bloch sphere. 
 
Every two-level 
system is equivalent 
to a spin ½. 
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Equivalently: a quantum bit is like a classical bit except there  
are an infinite number of encodings (aka ‘quantization axes’). 

Alice Bob 

1Z = ± 1Z ʹ = ±

Quantum information is analog/
digital: 

2

2

If Alice gives Bob a 1,
Bob measures:

1 with probability 

1 with prob

cos

ability 

2

sin
2

Z

Z P

Z P

θ

θ
−

+

= +

ʹ = +

ʹ = =−

=

‘Back action’ of Bob’s 
measurement changes  
the state, but this is 
invisible to Bob. 

θ
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The huge information content of quantum superpositions 
comes with a price: 

 
Great sensitivity to noise perturbations and dissipation. 

The quantum phase of superposition states is  
well-defined only for a finite ‘coherence time’         2T

0 0

2

noise spectral densityrandom wal
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ϕϕ
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ϕ

ω δω
σ ψ α β

ϕ τδω τ
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−− 〈 〉

↓ + ↑

= =

+
= =

==∫ 14 2 431 4 2 43

Example: qubit transition frequency noise 

2 1

1 1 1
2T T Tϕ

= +
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“Moore’s Law” for T2 

Oliver & Welander, MRS Bulletin (2013) 

lowest thresholds 
for quantum  
error correction 
  

several groups 100-200 us 
(Delft, IBM, MIT, Yale, …) 

NIST/IBM, 
Yale, ... 

MIT-LL	Nb	Trilayer	

3D multi-mode 
 cavity 

Cat Code 
 QEC 

Exponential Growth in  
SC Qubit Coherence 

R. Schoelkopf and M. Devoret 

Defeating noise through clever 
engineering and qubit design. 



Girvin’s Law: 

There is no such thing as  
too much coherence. 

We need quantum error correction! 
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The 
Quantum Error Correction 

Problem 
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I am going to give you an unknown quantum state. 

If you measure it, it will change randomly due to 
state collapse (‘back action’). 

If it develops an error, please fix it. 

Mirable dictu:  It can be done! 
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Quantum Error Correction for an unknown state requires 
storing the quantum information non-locally in (non-
classical) correlations (entanglement) over multiple 
physical qubits.  ‘Logical’ qubit 

N
  ‘

P
hy

si
ca

l’ 
qu

bi
ts

 

Non-locality: No single physical qubit can  
“know” the state of the logical qubit. 



Quantum Error Correction 
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‘Logical’ qubit 

N
  ‘

P
hy

si
ca

l’ 
qu

bi
ts

 
Cold bath 

Maxwell 
Demon 

Entropy 

N qubits have errors N times faster.   Maxwell demon 
must overcome this factor of N – and not introduce 
errors of its own! (or at least not uncorrectable errors) 



Quantum Error Correction 
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‘Logical’ qubit 

N
  ‘

P
hy

si
ca

l’ 
qu

bi
ts

 
Cold bath 

Maxwell 
Demon 

Entropy 

QEC is an emergent collective phenomenon:  
adding N-1 worse qubits to the 1 best qubit gives an 
improvement! 



Let’s start with classical  
error heralding 
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Classical duplication code: 
 
Herald error if bits do not match. 

0 00 1 11→ →

In Out # of Errors Probability Herald? 

00 00 0 Yes 

00 01 1 Yes 

00 10 1 Yes 

00 11 2 Fail 

2(1 )p−
(1 )p p−

(1 )p p−

2p

And similarly for 11 input. 
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In Out # of Errors Probability Herald? 

00 00 0 Yes 

00 01 1 Yes 

00 10 1 Yes 

00 11 2 Fail 

2(1 )p−
(1 )p p−

(1 )p p−

2p

And similarly for 11 input. 

2

2

Using duplicate bits:
-lowers channel bandwidth by factor of 2            (bad)
-lowers the fidelity from  (1- )  to (1- )          (bad)
-improves unheralded error rate from  to       (good)

p p
p p



Quantum Duplication Code 
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No cloning prevents duplication 
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( ) { ( ) ( )U α β α β α β+ ⊗ = + ⊗ +↓ ↑ ↓ ↓ ↑ ↓ ↑
1 44 2 4 43

Unknown 
quantum state 

Ancilla 
initialized to 
ground state 

 and  are unknown;  Hence  cannot depend on them.
No such unitary ca

Proof of no-clo

n exist if QM i

ni

s 

ng theore

linear.
Q. D

m:

E. .

Uα β



Don’t clone – entangle! 
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( ) {
U α β α β↓ ↑ ↓ ↓ ↓ ↑ ↑+ ⊗ = +
1 44 2 4 43

Unknown 
quantum state 

Ancilla 
initialized to 
ground state 

α β↓ + ↑

↓

 CNOTU = α β↓ ↓ + ↑ ↑

Quantum circuit notation: 



Heralding Quantum Errors 
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Measure the 
Joint Parity operator: 12 1 2ZZΠ =

12

12

12

12

Π ↑ ↑ ↑ ↑

Π ↓ ↓ ↓ ↓

Π ↑ ↓ ↑ ↓

Π ↓

= +

= +

= −

↑ = − ↓ ↑

1 2, 1Z Z = ±

( ) ( )12 α β α βΠ ↓ ↓ ↑ ↑ = + ↓ ↓+ + ↑ ↑

12 1 heralds single bit flip errorsΠ = −



Heralding Quantum Errors 
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12 1 2ZZΠ =

Not easy to measure a joint operator while not 
accidentally measuring individual operators! 
 
(Typical ‘natural’ coupling is                   ) 
 
 
 
 
But it can be done if you know the right 
experimentalists... 

1 2ZM ZZ= +

 and  are very different, 

yet we must make that difference invisible

↑ ↑ ↓ ↓



Heralding Quantum Errors 
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Example of error heralding: 

1

1

2

2 cos sin

Relative weight of ,  is untou

Introduce single qubit rotatio

ched.

Probability of error:   s

n error on 1 (say)

e
2 2

2
If no error 

in

and 
is her

ther
alded, state collapses to 

Xi
i X

θ

α β

θ θ

α β

θ

Ψ = ↓ ↓ ↑ ↑

Ψ =

Ψ

+

Ψ + Ψ

e is no error!

Coherent superposition of 
no error and bit-flip error) 



Heralding Quantum Errors 
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Example of error heralding: 

1

1

2

1

2 cos sin

Relative weight of ,  is untouc

Introduce single qubit rotation 

hed.

Probability of error:   sin

and there

error on 1 (say)

e
2 2

2
If error is heralded, state collapses to X

i X
i X

θ

α β

θ θ

α β

θ

Ψ = ↓ ↓ ↑ ↑

Ψ = Ψ

+

+ Ψ

Ψ

 is a full bitflip error.  We cannot correct it 
because we don't know which qubit flipped.

Coherent superposition of 
no error and bit-flip error) 



Heralding Quantum Errors 
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Quantum errors are continuous (analog!). 
 
But the detector result is discrete. 
 
The measurement back action renders the 
error discrete  (digital!) 
      – either no error or full bit flip. 



Correcting Quantum Errors 
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Extension to 3-qubit code allows full correction 
of bit flip errors (only) 

12 1 2 3 32 2 and Z ZZ Z

α βΨ = ↓ ↓ ↓ ↑

Π

+

= =

↑ ↑

Π

Provide two classical bits of information to 
diagnose and correct all 4 possible bitflip 
errors: 

1 2 3, ,,I X X X



Correcting Quantum Errors 
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Extension to 5,7,or 9-qubit code allows full 
correction of ALL single qubit errors 

1

1

1

 (no error)
X ,...,  (single bit flip)

,...,  (single phase flip; no classical analog)
,...,  (single bit AND phase flip; no classical analog)

N

N

N

I
X

Z Z
Y Y

For N=5,  there are 16 errors and 32 states 
 
32= 16 x 2 
 
Just enough room to encode which error occurred 
and still have one qubit left to hold the quantum 
information. 
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Now for the Mathematical 
Details… 
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1

0 0

111p

00p

01p
10p

noisy classical channel 

11 10

00 01 1
1p p

p p+
=

=

+

There are only two possible errors for a classical channel: 

1

01

01
0

0    with probability 
1    with probability 

p
p

→

→
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noiseless unitary  
quantum channel 

inΨ out inU=Ψ Ψ

ˆˆexp cos sin
2 2 2 x x y y z zi n I i nU n nθ θ θ

σ σ σ σ⎧ ⎫ ⎡ ⎤⋅= += +
⎭

+⎨ ⎬ ⎣ ⎦⎩

rMost general 
unitary for a 
single qubit: 

Coherent superposition 
of 4 possible errors:   

identity 

bit flip 
phase 

flip 
bit-phase 

flip 
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noisy  
quantum channel 

inΨ out injUΨ Ψ=

Random 
unitaries: 

†
out in in

1

out
1

Tr 1

N

j j j
j

N

j
j

p U U

p

ρ

ρ

=

=

Ψ=

= =

Ψ∑

∑

hidden coin toss 

More generally: 
†

out in
1

N

j j j
j

p U Uρ ρ
=

=∑

unknown 
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noisy  
quantum channel 

inΨ out injUΨ Ψ=

Random 
unitaries: 

hidden coin toss 

{ } { }†
out in out out in in

1

Tr ln Tr ln
N

j j j
j

p U Uρ ρ ρ ρ ρ ρ
=

= ≥∑

unknown 

Example: depolarizing channel 

1

2

1

3

4

2

4

3

1 3 / 4
/ 4
/ 4

/

,       

4

,
,

,

x

z

y

U

p
U

U
p

U

I p

p
σ

σ

σ

= −

= =

=

= =

= =

Ú /
Ú
Ú
Ú

out in(1 )
2
I

ρ ρ⎛ ⎞= + −⎜ ⎟
⎝ ⎠
Ú Ú

Fully mixed state 
Untouched state 

Homework exercise: 
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noisy  
quantum channel 

inΨ out injUΨ Ψ=

Random 
unitaries: 

hidden coin toss 

{ } { }†
out in out out in in

1

Tr ln Tr ln
N

j j j
j

p U Uρ ρ ρ ρ ρ ρ
=

= ≥∑

unknown 

N.B. Random unitaries are not the most general possible 
quantum channel.  (They are always unital, mapping I to I.) 
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Most general possible 
quantum channel: U

sysρ

env 0 0e eρ =

Drain 

sysρʹ

{ }
2

2

† †
sys env sys env sys

1

†

1

Tr
d

k k
k

d

k k
k

E E

E E

U U

I

ρ ρ ρ ρ
=

=

= ⊗⎡ ⎤⎣

=

ʹ =⎦ ∑

∑
0

2

 dim sys Hilbert space
Kraus operators  need not be unitary
E  is an operator on the system space

dim env Hilbert space need only be* 

k

k k

d
E

e U e

d

=

=

*See however: Phys. Rev. B 95, 134501 (2017) 
where we prove that repeated unitaries and measurements of  
a single d=2 ancilla can synthesize any quantum channel  
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Most general possible 
quantum channel: U

sysρ

env 0 0e eρ =

Drain 

sysρʹ

2

2

†
sys sys

1

†

1

d

k k
k

d

k k
k

E E

E E I

ρ ρ
=

=

ʹ =

=

∑

∑

Kraus representation 
is not unique: 

is equivalent for any unitary 
mapping  among the errors

k k km mEKE S

S

=→

CPTP:  
completely positive, 
trace-preserving map 
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Most general possible 
quantum channel: U

sysρ

env 0 0e eρ =

Drain 

sysρʹ

2

2

†
sys sys

1

†

1

d

k k
k

d

k k
k

E E

E E I

ρ ρ
=

=

ʹ =

=

∑

∑

Arbitrary channel can decrease the entropy! 
 
Example: 
“Reset channel” 

sys

If         

1 1

1

then  
k kE

ρʹ =

=
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An arbitrary quantum channel is the most general 
possible operation on a quantum system. 
 
Therefore if quantum error correction is possible, it 
can be performed via a quantum channel 

2

2

†
sys sys

1

†
sys sys

1

d

k k
k

d

k k
k

E E

R R

ρ ρ

ρ ρ

=

=

=

ʹ =

ʹ

∑

∑  ‘recovery map’ 

 ‘error map’ 
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Let the ‘system’ be N physical qubits. A 
logical qubit encoded in sys consists of 
two orthogonal ‘words’ in the Hilbert of 
sys 
 
 
 
 
 
Knill-Laflamme condition 
A recovery map for a set of errors  
exists if 
 
 
where        is a Hermitian matrix.   
 

{ }10

code 0 10 1

code = span ,W W

P W W W W= +

{ }1 2, , , NE E E…

†
code code codei j ijP E E P Pα=

α
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Knill-Laflamme condition 
A recovery map for a set of errors  
exists if 
 
 
where        is a Hermitian matrix.   
 
“Proof:” 
 
 
Different error states are orthogonal and 
hence identifiable by measurement of the 
projector 
 
 
 

{ }1 2, , , NE E E…

†
code code codei j ijP E E P Pα=

α
†

†
code code code

.  Let Let  diagonalize .

i j ij

S d
K K d
S K SE

P P P
α α ==

=

†
code 2, ( )jj

j j j
jj

K K
d
P

Π Π =Π=
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Given knowledge of which error occurred, 
there exists a unitary map from the error state 
back to the original state in the code space. 
 
Errors can be non-unitary (increase entropy) 
But Knill-Laflamme condition says we can 
correct them with unitaries if the choice of 
unitary is conditioned on measurement result. 

†
code 2, ( )jj

j j j
jj

K K
d
P

Π Π =Π=
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Next up:  Quantum Error Correction Codes for 
Bosonic Modes (microwave photons) 


