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Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling
solution
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We study the phase diagram of the Hubbard model in the limit where U, the onsite repulsive interaction, is
much smaller than the bandwidth. We present an asymptotically exact expression for Tc, the superconducting
transition temperature, in terms of the correlation functions of the noninteracting system which is valid for
arbitrary densities so long as the interactions are sufficiently small. Our strategy for computing Tc involves first
integrating out all degrees of freedom having energy higher than an unphysical initial cutoff !0. Then, the
renormalization group !RG" flows of the resulting effective action are computed and Tc is obtained by deter-
mining the scale below which the RG flows in the Cooper channel diverge. We prove that Tc is independent of
!0. Using this method, we find a variety of unconventional superconducting ground states in two- and three-
dimensional lattice systems, and present explicit results for Tc and pairing symmetries as a function of the
electron concentration.
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I. INTRODUCTION

The Hubbard model is widely studied as the paradigmatic
model of strongly correlated electrons.1,2 However, in more
than one dimension there is controversy concerning even the
basics of the phase diagram of the model. Most theoretical
work on the model has focused on intermediate to strong
interactions, U#W since this is the physically relevant range
of parameters for any of the intended applications of the
model to real solid-state systems. !Here, U is the repulsion
between two electrons on the same site and W is the band-
width in the limit U=0." However, for such strong interac-
tions the only well-controlled solutions are numerical and the
application of detrimental quantum Monte Carlo methods3

and the density-matrix renormalization group4 have been
limited by the fermion sign5 and two-dimensional entangle-
ment problems,6 respectively.

Here, we study the limit of weak interactions, U / t→0,
where we compute the phase diagram and obtain expressions
for the critical temperatures which, assuming the validity of
certain assumptions discussed below, are asymptotically ex-
act. To be explicit, we consider the Hubbard model

H = H0 + U$
i

ci↑
† ci,↓

† ci,↓ci,↑,

H0 = − t $
%i,j&,#

'ci,#
† cj,# + H.c.( − t! $

!i,j",#
'ci,#

† cj,# + H.c.( !1"

for a variety of lattice systems in two dimension !2D" and
three dimension !3D". Here, ci,#

† creates an electron with spin
polarization # on lattice site i, and %i , j& and !i , j" signify,
respectively, pairs of nearest-neighbor and next-nearest-
neighbor sites.

Since the Cooper instability is the only generic instability
of a Fermi liquid, except for certain fine tuned values of t! / t
and the electron density n, the only ordered states that can be
stabilized by weak interactions are superconducting states.

For repulsive interactions, W$U%0, the superconducting
transition temperature has an asymptotic expansion

Tc # W exp)− &2!t/U"2 − &1!t/U" − &0* ' '1 + � !U/t"( ,

#W exp)− 1/'(Veff(*'1 + � !U/t"( !2"

where &n are dimensionless functions of t! / t, and n and ( are
the density of states at the Fermi energy. The principal result
we report here is to give an explicit prescription for comput-
ing &2 and &1 as a function of the electron density, n, and the
“band structure.” On the basis of the present analysis, we
conclude that the resulting phase diagram is asymptotically
exact in the sense that

lim
U→0

)!U/t"2ln'W/Tc(* = &2. !3"

We will also explain why we are unable to give a prescrip-
tion for computing &0. In the process of computing &2, one
determines the symmetry of the superconducting ground
state !e.g., s wave, p wave, d wave, etc." and the form of the
pair wave function.

There are, of course, special situations in which a variety
of different nonsuperconducting ordered phases occur. While
these situations are potentially significant in what they imply
about the behavior of the system at intermediate U, in the
small U limit they always involve a large degree of fine
tuning of parameters. The canonical example is the case of a
square lattice, in which the model with t!=0 has a nonge-
neric particle-hole symmetry which leads to perfect nesting
of the Fermi surface when the mean electron density per site
is n=1, where

n + N−1$
j#

%cj,#
† cj,#& . !4"

These special situations are thus, in some sense, not really a
part of the weak-coupling problem but rather a piece of the
strong correlation problem that persists to weak coupling. If
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We present a well-controlled perturbative renormalization-group treatment of superconductivity from short-
ranged repulsive interactions in a variety of model two-dimensional electronic systems. Our analysis applies in
the limit where the repulsive interactions between the electrons are small compared to their kinetic energy.
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I. INTRODUCTION

In a variety of recently discovered materials, superconduc-
tivity apparently arises directly from the electron correlations
themselves. However, these materials are complex, and many
material-specific details can play a role in the mechanism
of superconductivity. The problem is greatly simplified in
the weak-coupling limit, where we recently showed1 that an
asymptotically exact treatment of the problem is possible, valid
in cases in which the superconducting state emerges at low
temperatures from a well-formed Fermi liquid. Nonetheless,
even under these circumstances, the character of the super-
conducting state and the transition temperature depend in a
complicated way on details of the band structure, both near
and far from the Fermi surface.

To the extent that there are basic principles at work
underlying the mechanism of unconventional superconduc-
tivity, it would be a great advance to find simple model
systems which exhibit such behavior. Here, we consider
the possibility of unconventional superconductivity in some
model systems with particularly simple electronic structures,
where controlled theory is possible, and where, conceivably,
experimental tests of the theory are feasible. Specifically,
we consider circumstances in which superconductivity may
occur in a two-dimensional electron gas (2DEG) in a high
mobility heterostructure. Here, due to the the stiffness of
the lattice and the limited phase space for electron-phonon
scattering, electron-phonon coupling is probably negligible,
and the single-particle dynamics can be treated accurately
within a rotationally invariant effective mass approximation.
Moreover, the strength of the correlations can, to a large extent,
be tuned by varying the electron density.

The possibility of an electronic pairing mechanism in
systems with rotational invariance was first put forth in a
seminal paper by Kohn and Luttinger.2 Although � , the
bare interactions among electrons, are repulsive, there are
effective attractive interactions that arise at � (� 2). Kohn and
Luttinger focused on the portion of the effective attractions
associated with the nonanalyticities in χ (	 ), the particle-
hole susceptibility, at momentum 	 � 2� � which reflect the
sharpness of the Fermi surface at zero temperature. More
generally, what is required for this mechanism to work is strong
	 dependence of χ (	 ) for 	 ! 2� � . Indeed, the Kohn-Luttinger
instability of a three-dimensional rotationally invariant system
results in the formation of a � -wave superconducting ground
state due to the peak in χ (	 ) near 	 � 0.3,4 While this result
is valid only in the weak-coupling regime where � " � � , it

is widely believed that the � -wave ground state obtained this
way is adiabatically connected to the more realistic (and more
strongly correlated) example of helium-3.5

However, the Kohn-Luttinger effect is exponentially weaker
in a rotationally invariant 2DEG,6–8 due to the fact χ (	 )
is independent of momentum for momenta 	 ! 2� � . It was
later shown that at � (� 3), the 2DEG does exhibit a pairing
instability.9 Still, at least in weak coupling, electronically
mediated superconductivity in the 2DEG is negligible.

In this paper, we show that by perturbing the 2DEG,
it is possible to significantly enhance the superconducting
transition temperature by engineering circumstances in which
instabilities arise at � (� 2) in perturbation theory. We present
asymptotically exact1 weak-coupling solutions of the super-
conducting instability in several systems that are variants of
the simplest, rotationally invariant 2DEG. As a first example,
we show that partially spin polarizing the 2DEG produces
a nonunitary � � � � superconductor. Kagan and Chubukov
have previously addressed this problem using an expansion in
powers of the electron concentration,10 and their result reduces
to ours in the weak-coupling limit. As a second example,
we consider the 2DEG in a semiconductor heterostructure
quantum well with two populated subbands. We show that this
system can possess both � -wave and � -wave ground states and
present the phase diagram of this system.

This paper is organized as follows. In the next section,
we review the method developed in Ref. 1 and discuss its
straightforward generalization needed for the present context.
In Sec. III, the effect of partially polarizing the 2DEG is
studied. In Sec. IV, we consider two subbands in a 2DEG
quantum well. Technical details of the various calculations are
presented in the Appendix. In a forthcoming paper11 we will
consider a variety of slightly more complex situations pertinent
to particular semiconductor heterostructures.

II. PERTURBATIVE RENORMALIZATION GROUP
TREATMENT OF SUPERCONDUCTVITY

In this section, we review the prescription of Ref. 1 and
discuss its generalization to the present context. We integrate
out high-energy modes in two steps. In the first step, we inte-
grate out all modes outside a narrow range of energies " about
the Fermi energy. " is not a physical energy in the problem,
but rather a calculational device. It is chosen large enough so
that the interactions can be treated perturbatively but small
enough that it can be set to zero in all nonsingular expressions
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as longer range interactions increase in strength, but superconductivity is not destroyed. Our results confirm
that electron-electron interaction can lead to unconventional superconductivity under physically realistic
circumstances.
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I. INTRODUCTION

That unconventional superconductivity can arise in models
with short-ranged repulsive interactions between fermions has
been known for some time, beginning with the pioneering
work by Kohn and Luttinger.1 This issue has been revisited
multiple times in the last few decades, since the discovery
of unconventional superconductivity in the cuprates. For
the Hubbard model with local repulsion � and fermionic
bandwidth � , the existence of superconductivity in 
 -, 
 -,
� -, or � -wave, as well as sign-changing � -wave, channels has
been established from asymptotic weak-coupling analysis in
the limit � � � " 1 in two and three dimensions,2–8 from
the observation of a positive pair-binding energy computed
from exact diagonalization on various “Hubbard molecules,”9

from dynamical cluster approximation (DCA)10 and cluster
dynamical mean-field theory (DMFT) calculations,11 and
from extensive density-matrix renormalization group (DMRG)
studies12,13 of various ladder systems extrapolated to the
thermodynamic limit.

While there is still some controversy over the strength
of the pairing tendencies under particular circumstances,
there is a growing consensus that superconductivity in the
repulsive Hubbard model is generic under a wide range of
circumstances. Various physically motivated approximate
calculations, including numerically implemented functional
renormalization group (FRG),14 dynamical cluster approx-
imation (DCA)10 and cluster dynamical mean-field theory
(DMFT) calculations,11 fluctuation exchange approximation
(FLEX),15 Eliashberg,16 and self-consistent two-particle
calculations,17 as well as strong-coupling approaches based
on variational wave functions18 and slave-particle mean-field
theories,19,20 have also strongly indicated that such
unconventional pairing is present, especially near half filling,
and that � 	 is maximized in the physically relevant range of
intermediate coupling, � ∼ � , and decreases at both larger
and smaller � . The decrease of � 	 at smaller � is due to the
fact that the strength of any induced attractive interaction must
vanish as � → 0, while the decrease as � → ∞ is due to
Mott physics which tends to localize fermions near particular

lattice sites,20,21 potentially suppressing both the superfluid
stiffness22 and the pairing tendencies23 of the electrons.

It is broadly (although not universally24) accepted that the
basic features of superconductivity arising from short-range
repulsion between electrons are moderately generic and must
be in play in a broad class of unconventional superconductors
such as the cuprates, heavy-fermion and organic supercon-
ductors, Sr2RuO4, and the recently discovered Fe pnictides,
despite differences in band structure and local quantum
chemistry.25 In particular, estimates of the optimal � 	 for

 -wave pairing in 2D Hubbard models, obtained using a va-
riety of approximate computational approaches,10,11,13,15–18,26

suggest that Max[� 	 ] ∼ 10−2 � � � � 0, where � � is the Fermi
velocity averaged over the Fermi surface (FS) and � 0 is the
interatomic distance. Using � � � � ∼ 1 eV,27 one obtains an
estimate of the optimal � 	 of order 100 K, comparable to
the 
 -wave transition temperatures found in optimally doped
cuprates.

However, in addition to the vexing problem of how to
unambiguously establish or falsify the applicability of a
particular electronic pairing mechanism to real materials, at
least one key theoretical question remains to be addressed:
It is well known that longer-ranged components of the
electron-electron interaction, even simply a nearest-neighbor
repulsion � between electrons, suppress the pairing tendencies
of the Hubbard model. As we will discuss below, this can
be seen clearly from the structure of the asymptotic weak-
coupling approach and also in exact diagonalization studies
of Hubbard molecules. This effect has also been investigated
in DMRG studies of t-J ladders28 (which we extend to
Hubbard ladders in the present paper). Thus, the issue to be
addressed is whether the deleterious effects of longer-range
components of the electron-electron repulsion make a purely
electronic mechanism of superconducting pairing physically
implausible.

The physics behind the suppression of � 	 is transparent:
An effective attraction which can give rise to unconventional
superconductivity in 
 -wave, 
 -wave, extended � -wave, and
other channels emerges in the theory from the renormalization
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I. INTRODUCTION

The superconducting properties of the cuprates are widely
believed to be determined by the electrons in the copper-
oxide (CuO2) layer. This is confirmed by experiments that
have identified these electrons as the low-energy degrees of
freedom.1 Furthermore, the study of simplified low energy
effective models, such as the single-band Hubbard model
and its descendants have provided overwhelming evidence
in favor of this view. The robust broken symmetry phases
found in the cuprates, such as antiferromagnetism and � -wave
superconductivity, are unequivocally obtained as ground states
of these models in appropriate limits.

However, assuming that the CuO2 layers in different cuprate
materials are electronically similar, the origin of substantial
diversity of their optimal transition temperatures (i.e., � � at
optimal doping) is an important issue that remains poorly
understood. For instance, the optimal � � of La2−� Sr� CuO4
(LSCO) is 40 K, whereas that of the single layer Hg-2201
compound is more than twice as large. It is difficult to
ignore this spectacular variation, despite the fact that � � is
a nonuniversal quantity. Indeed, various theories have been
proposed to address this issue: the prevailing view is that
alterations of the electronic structure of the CuO2 layer itself
must be responsible for the differences in optimal � � . For
instance, the variations could occur due to differential amounts
of disorder in the CuO2 layer. Another popular approach to
the problem involves relating changes in � � to differences in
copper-apical oxygen bond lengths,2,3 which in turn induce
subtle changes in the structure of the Fermi surface.4–6

A more radical proposal7,8 invokes the role of charge
reservoir layers (CRLs), which are spatially separated from
the CuO2 layer, in determining the optimal � � . The CRLs
are coupled to the CuO2 layer capacitively. Taken at face
value, the notion that CRLs affect � � is not unreasonable:
systems with CRLs such as the mercury cuprates have
higher optimal � � s than materials such as LSCO, which do
not possess CRLs. Moreover, materials with different CRLs
also have substantially different optimal � � s. However, the
mechanism by which the CRLs affect � � is unclear. Here, we
attempt to place the possibility that CRLs can affect � � on
more firm theoretical footing. The work in Refs. 7 and 8
suggested that resonant pair tunneling due to negative U
centers was responsible for this enhancement. Here, however,
we take a very different approach: we argue instead that if

reservoir layers were highly polarizable, they can significantly
alter the effective pairing interaction (and therefore � � ) of
unconventional superconductors.

The intuition underlying our argument can be stated as
follows. Any realistic system will always have both onsite
and longer range repulsive electron interactions. Whereas the
onsite interactions (as emphasized in Hubbard-like models)
reflect atomic physics at the shortest distance scales, longer
range interactions reflect the solid state environment in which
the low energy degrees of freedom are embedded: they are
effective interactions among the essential degrees of freedom
generated by “integrating out” the environment. While the
onsite repulsive interactions are directly responsible for the
unconventional pairing, more extended repulsive interactions
have the opposite effect—they weaken the scale at which
pairing occurs.9 Therefore, if the environment (i.e., the CRL
in the present context) was highly polarizable, it could act
to weaken longer range interactions in the CuO2 layer and
therefore to enhance � � .

While the discussion here is framed largely in the context
of the cuprates, we believe that the robust qualitative effects on
� � emphasized here are relevant to a broader class of materials
exhibiting unconventional superconductivity. Some of the
effects described here could also be explored in artificially
engineered systems consisting of hybrids of distinct parent
materials.

The outline of the paper is as follows. In Sec. II, we
review phenomenological arguments that lead to the effective
Hamiltonian constructed in Sec. III. Section IV discusses the
superconducting properties of the system of interest in various
limits. We present our conclusions and outline future directions
in Sec. V.

II. RELEVANT PHENOMENOLOGY OF MULTI-LAYERED
CUPRATES

In this section, we discuss phenomenological arguments
that inspired us to construct and analyze the model Hamil-
tonian of Sec. III. Figure 1 shows the optimal � � of several
families of multilayer cuprate superconductors, each having
different CRLs. In these systems, each unit cell consists of
n-CuO2 layers stacked along the � axis and is separated
from the next by a CRL. The CRL is separated from the
outermost CuO2 plane (OP) by an insulating oxide layer,
which suppresses single electron tunneling between them.

094506-11098-0121/2012/86(9)/094506(7) ©2012 American Physical Society



I. Overview and Motivation
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Cooper pairs.  
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Conventional superconductivity



Pairing symmetry is s-wave: constant, momentum-independent gap
function on the Fermi surface.

Insensitive to weak non-magnetic disorder. 

No competing magnetic phases.  

Exponentially activated specific heat, spin susceptibility, etc. 

No spontaneous currents across Josephson junctions.

Normal state is a well-behaved Landau Fermi liquid.  

Properties of conventional superconductors
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Effective field theory of the Fermi liquid



Rescale energy, fields to preserve S0.� ! �e�`, � > 0

(Polchinski 1984, Shankar 1994.)  

Renormalization group (RG) procedure

Generically, the interaction g(1234) is irrelevant except when
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Infinitessimally thin energy shells are integrated out and the flow of
the couplings are determined.  

Effective field theory of the Fermi liquid



F(12) and V(12) are both marginal. They are also small in the weak-
coupling limit.  RG done perturbatively to one-loop order produces  

dF

d�
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dV
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Forward scattering remains marginal (Landau Fermi
liquid parameters).  

In the Cooper channel, repulsive interactions (V0 > 0)  weaken
whereas attractive interactions (V0 < 0) grow at low energies,
producing the BCS instability.  This is the only way to destroy a
Fermi liquid in the weak-coupling limit.    

Effective field theory of the Fermi liquid
(Polchinski 1992, Shankar 1994.)  



Alternative perspective: partial summation of
``ladder” diagrams

Multiple scattering processes cannot be neglected:
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diverges logarithmically 
at low energy (i.e. close to FS).
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�D << EF2 well-separated energy scales: 1) �D, 2) EF

g(1234) = gc � gp�(�D � |�2 � �3|)

gc: instantaneous screened Coulomb interaction: short-ranged and
repulsive.  

gp: retarded attractive interaction due to electron-phonon coupling.

Pairing occurs due to the separation in time-scales between the
instantaneous Coulomb and retarded electron-phonon interaction.  

At high frequencies, electron-phonon coupling is not renormalized.
 Therefore, it can be estimated from microscopic calculations and
experiments.    

Conventional pairing mechanism



2 step RG treatment

Step 1: �D < ⌦ << EF

gp(�D) = gp

gp is unaffected, and gc becomes weaker
under RG.  

Step 2: ⌦ < �D

gc(⇥D) = g⇤ =
gc,0

1 + �gc,0 log (�0/⇥D)
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⇥geff (�) =
µ⇤ � �

1 + (µ⇤ � �) log (⇤D/�)

If geff < 0, there is a BCS instability below Tc ⇠ �De�1/(��µ⇤)

�0/�D ⇠ (M/m)1/2

Conventional pairing mechanism



A number of materials do not obey this simple physical picture.  

Such systems occur when electrons are more tightly bound to the
atom producing narrow bandwidths.  

Interaction effects also enhance the electron’s effective mass, and
produces “heavy” quasiparticles.  

In this case, the separation in scale of Debye and Fermi temperature
is less sharp.  

There can be new bosons, e.g. spin fluctuations, or even emergent
bosons, that replace the role of phonons in mediating pairing.  It’s
even possible that a sharp bosonic ‘glue’ isn’t even present in these
materials.  

Unconventional superconductivity



e.g. Cuprates
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Unconventional superconductivity
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Antiferromagnetism competes with superconductivity.  

The same electronic correlations which give rise to magnetism
are likely to play a role in mediating superconductivity.  

J. Flouquet (2009)

Unconventional superconductivity
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We begin in Sec. II with a brief description of the
normal state. Section III contains the background for
understanding the three classes of theories of the super-
conducting state. The peculiar phase diagram of the su-
perconductor is the topic of Sec. IV. The physical prop-
erties of the material in each of the superconducting
phases, particularly in phase B, are discussed in detail in
Sec. V, which is thus devoted to experiments in classes
(b) and (c). In Sec. VI, we summarize the current status
of our understanding of UPt3 and suggest ways to fur-
ther that understanding.

II. NORMAL STATE

A. Crystal lattice

UPt3 crystallizes in the MgCd3-type structure shown
in Fig. 2. The uranium atoms form a closed-packed hex-
agonal structure with the platinum atoms bisecting the
planar bonds. There are two formula units per unit cell.
The compound belongs to the space group P63 /mmc
and the point group D6h . The lattice parameters are
a!5.764 Å and c̃!4.899 Å, so that c̃/a!0.845, not too
far from the hard-sphere value of 0.816. Here c̃ is the
distance between neighboring planes, not the length of
the unit cell. When discussing transport properties, the b
axis is usually defined to be perpendicular to the a axis

(i.e., parallel to the a* axis). In terms of reciprocal
space, we have a!!K and b!!M . The nearest U-U dis-
tance is between atoms in adjacent layers, equal to 4.132
Å. Correspondingly, as we shall see in Sec. II.C, the con-
ductivity is greatest along the c axis. The volume of the
unit cell is 140.96 Å3, the molar volume Vm!42.43
"10#6 m3/mol U, the mass density 1.940"104 kg/m3,
and molar weight 823.3 g. The mean atomic volume is
17.62 Å3.

In 1993, a study of the crystal structure of UPt3 using
transmission electron microscopy (TEM) discovered a
complex set of incommensurate structural modulations
at room temperature, corresponding to several q! vectors
of magnitude around 0.1"/a (Midgley et al., 1993). A
similar TEM study performed on a whisker of UPt3
found a well-developed incommensurate modulation
with a single q! !(0.1,#0.1,#0.1), i.e., of the same mag-
nitude, corresponding to a modulation of wavelength
#70 Å, coherent over microns (Ellman, Zaluska, and
Taillefer, 1995). However, a subsequent x-ray investiga-
tion of the structure of a whisker by Ellman et al. (1997)
found no trace of any incommensurate modulation, at
the level of one part in 105 (see also Walko et al., 2001).
This suggests that the structural distortions seen with
TEM may be the result of the rather violent surface
preparation techniques used to thin the samples (e.g.,
ion milling). We conclude that the intrinsic crystal struc-
ture of UPt3 is perfectly hexagonal. (Note, however, a
recent x-ray study which reports the observation of a
slight trigonal distortion; Walko et al., 2001.) Deviations
from this correspond to extrinsic lattice defects (such as
stacking faults), which of course are present to a varying
degree in different samples, as discussed in Sec. II.E.

The basic elastic properties of UPt3 are well described
by de Visser, Menovsky, and Franse (1987). Longitudinal
acoustic waves travel at a speed of 3860 and 3993 m/s
parallel and perpendicular to the c axis, respectively.
The two transverse acoustic modes propagate at 1385
m/s along the c axis and 1388 m/s (2076 m/s) along the b
axis with polarization parallel (perpendicular) to the c
axis. The Debye temperature is found to be 217 K, in
agreement with an estimate from specific heat (Sec.
II.C.1). The compressibilities are calculated by de Visser,
Menovsky, and Franse (1987):

$a!#
1
a

da
dP

!0.164, $c!#
1
c

dc
dP

!0.151,

$V!2$a$$c!0.479 Mbar#1. (2)

B. Quasiparticle spectrum

1. Band structure

UPt3 is the archetype of a heavy-fermion system. It
has the qualitative properties of a Fermi liquid, but the
magnitude of the effective masses, reflected in the spe-
cific heat and magnetic susceptibility, is very much larger
than the free-electron value. The heaviness of the elec-
trons is generally attributed to electron correlations
which come from the strong repulsions on the U sites.

FIG. 2. Crystal structure of UPt3 (a) and its first Brillouin zone
(b).

239R. Joynt and L. Taillefer: Superconducting phases of UPt3

Rev. Mod. Phys., Vol. 74, No. 1, January 2002

Flouquet, 1988) pointed to the possible presence of ad-
ditional transitions, and it was the resolution of a second
jump in the specific heat, first by Fisher et al. (1989) on
two polycrystals and soon after by Hasselbach, Taillefer,
and Flouquet (1989) on a single crystal, that brought
clear thermodynamic evidence for a multiphase super-
conducting regime. The phase diagram is shown in Fig.
1. The names of the three phases shown—A, B, and
C—have now become standard.

There is now little doubt that UPt3 is an unconven-
tional superconductor with a multicomponent supercon-
ducting order parameter. One should know that this is a
rare occurrence. With the possible exception of UBe13
when doped with Th impurities in the narrow concentra-
tion window of 2–6 % Th (see Heffner and Norman,
1996), UPt3 is the only compelling instance in nature of
a superconductor with multiple phases. Because it ex-
hibits this exciting new physical phenomenon and be-
cause it can be prepared in very pure single-crystalline
form, its physical properties are now probably the best
studied of any superconducting binary compound.

The primary aim of this extensive research has been
to determine the form of the superconducting order pa-
rameter, in particular its momentum dependence. In
having such a dependence, unconventional supercon-
ductivity is to conventional superconductivity as antifer-
romagnetism is to ferromagnetism. However, the stu-
dent of magnetism has the luxury of being able to
consult neutron diffraction data from which the mag-
netic structure can be read off. In superconductivity, the
order parameter sets up no measurable field and there is
no experimental probe which couples directly to it. Pre-
cisely for the reason that experiments to determine the
order parameter structure are so indirect, a very close
connection between experiment and theory is essential.
This connection has indeed marked the nearly 20-year
history of UPt3 studies. We hope it marks this review as
well.

B. Unconventional superconductors and superfluids

Superconductivity is defined as a state in which the
order parameter spontaneously breaks gauge symmetry.

Unconventional superconductivity is defined as a super-
conducting state in which the order parameter also
breaks the crystal symmetry. The order parameter of an
unconventional superconductor may also have more
than one component, but this is not part of the defini-
tion.

The superfluidity of 3He is both unconventional (the
order parameter breaks rotation symmetry) and multi-
component (for a review, see Leggett, 1975). As a result,
it became a paradigm for research in heavy-fermion su-
perconductivity, so we briefly summarize the comparison
to UPt3 . 3He is a strongly interacting system. The en-
hancement of its specific heat over the free-particle
value depends on pressure, but is generally in the range
of 4–5. This is less than in UPt3 , where the enhance-
ment over the value given by band calculations is about
20. There are strong magnetic fluctuations in 3He but
these are concentrated near zero momentum, i.e., ferro-
magnetic fluctuations. By contrast, in UPt3 , antiferro-
magnetic fluctuations and ordering are predominant.
Magnetic interactions are surely the most important part
of the pairing interaction in 3He and almost certainly
also in UPt3 . But the difference in the momentum-space
weighting of the magnetic fluctuation spectrum in the
two means that the symmetry of the ordering in the two
systems is also likely to be different.

The electrons in UPt3 move on a lattice of consider-
able complexity; this feature is not present in 3He. Spin-
orbit coupling, a tiny (but important) force in 3He, is
very strong in UPt3 . This complicates the band structure
of UPt3 , but in some respects it simplifies the phenom-
enological theory of the superconducting state. This
paradox comes about in the following way. 3He is a spin-
triplet superfluid—the Cooper pairs are in an S!1 spin
state. The orbital wave function in this rotationally in-
variant system belongs to the l !1 representation. Due
to the weakness of the spin-orbit force, this gives a nine-
fold degeneracy before nonlinear effects are considered.
This multiplicity of low-lying degrees of freedom gives
rise to great complexity (or richness, according to your
taste) when calculating the collective modes or vortex
structures. In UPt3 , on the other hand, the spin-orbit
coupling locks the spin and orbital angular momenta,
reducing the degeneracy from 9 to 3 in the triplet case.
The absence of complete rotational symmetry reduces
this further, to two or one, which are the possible dimen-
sions of the representations of the point group. In the
spin-singlet case, there is no spin degeneracy to start
with: we end up again with a degeneracy of two or one
for the pair state.

3He exhibits two superfluid phases as a function of
temperature and pressure, the A and B phases. UPt3 has
three phases as a function of temperature and applied
magnetic field: the A, B, and C phases. However, it is
unlikely that the transitions between different superfluid
states in the two systems are caused by similar factors.
The interaction strength, as measured by the dimension-
less parameters of Fermi-liquid theory, is a very strong
function of pressure in 3He. The A-B transition is asso-
ciated with this dependence. There is no analogous de-

FIG. 1. Schematic superconducting phase diagram of UPt3 in
the magnetic field-temperature plane. Note the three distinct
superconducting phases, labeled A, B, and C, which exist be-
low an upper critical field line Hc2(T) that separates them
from the normal state. Note also that these phases all meet at
a tetracritical point (T!, H!).
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Exotic superconductivity

than a critical value (determined by the values
of the other coefficients, ax, ay, bx, and by). For
URhGe the various coefficients can be deter-
mined from the initial differential susceptibility
parallel to the b axis and Arrott plots of the
magnetization for fields parallel to the c axis and
for fields H 9 HR parallel to the b axis. The
condition for a first order transition for fields
close to the b axis is found to be satisfied,
and the computed phase diagram based on
the above expression for the free energy is
qualitatively compatible with that shown in
Fig. 2B.

The theory of superconductivity mediated
by the exchange of spin fluctuations is most
often considered close to a ferromagnetic-
paramagnetic quantum critical point where the
longitudinal differential susceptibility diverges
at low energy and wave vectors. Only this re-
gion of energy–wave vector space then has to be
considered (11, 12). Under these conditions, a
large value of the uniform differential suscep-
tibility parallel to the magnetization favors the
formation of Cooper pairs with equal spins,
whereas a large value of the differential sus-
ceptibility perpendicular to the magnetization
breaks such pairs. The situation is modified
well inside the ferromagnetic state, because the
transverse excitations no longer have the same
form; they are collective spin waves rather than
incoherent overdamped modes. In an isotropic
ferromagnet, they can lead to an enhancement
of the longitudinal susceptibility due to mode
coupling that outweighs their pair-breaking
effect (13). For URhGe this same mechanism
could be active in a modified form. An im-
portant aspect not considered in previous theory
is the anisotropy of the spin fluctuation spec-
trum for different directions of the wave-vector
transfer, q

Y
. For example, a magnetic-field en-

ergy is incurred when q
Y
is not perpendicular to

the change in magnetization associated with an
excitation (14). For spin rotation excitations in
the bc plane, this energy would be absent for
wave-vector transfers along the a axis, and
excitations propagating in this direction would
consequently have a lower energy than along
other directions of q

Y
. This could favor a polar

superconducting order parameter oriented along
the a axis. It is noteworthy that such a state can
explain the critical field of the low field super-
conductivity (4). Theoretically, the symmetry
of such a state would also be consistent with
the crystal structure and ferromagnetism with
the moments aligned along the b axis (15).

Over recent years, the application of a
magnetic field at very low temperature has
been established to be an effective tuning param-
eter to drive a number of materials to a quantum
critical point or QCEP Eexamples are YbRh2Si2
(16), Sr3Ru2O7 (17), and URu2Si2 (18)^. In the
limit of zero temperature, the divergence of the
differential magnetic susceptibility at this point
implies a diverging amplitude for zero-point
motion (quantum fluctuations) that can desta-

bilize the system relative to other forms of order
(19). The behavior in URhGe can be compared
with that of the almost-2D material Sr3Ru2O7,
where a new as-yet incompletely identified
ground state appears in high quality samples
enveloping a QCEP at 7.8 T. For Sr3Ru2O7 it
has been argued that superconductivity is not
viable because of the large field at which the
QCEP occurs (17). For opposite-spin pairing
both paramagnetic limitation and orbital limita-
tion restrict the maximum field up to which
superconductivity can survive. For equal-spin
pairing only the second limit applies. This
requires that the superconducting coherence
length, � 0, is small enough to satisfy the re-

lation � 0/(2� � 0
2) 9 B (� 0 is the flux quantum

and B the magnetic induction); a value � 0 G 50
) would be compatible with the high field
superconducting phase of URhGe.

It appears that the high field supercon-
ductivity in URhGe, like the superconductivity
at low field in UGe2, is not directly driven by
fluctuations associated with a quantum critical
point or QCEP separating ferromagnetism from
paramagnetism. In both materials super-
conductivity is instead associated with a mag-
netic transition between two strongly polarized
states, although the transitions differ; in URhGe
there is a large change in the transverse moment
at the transition, whereas in UGe2 only the lon-

Fig. 2. The low tem-
perature resistivity and
magnetic phase dia-
gram for fields in the
crystallographic bc
plane. (A) The mea-
sured resistance for
fields in the bc plane.
The resistance at 40 mK
is represented by the
color (top scale). The
black areas are regions
where the sample has
zero resistance and is
superconducting. Con-
tour lines depict the
resistance at 500 mK
(bottom scale). The ar-
ea where supercon-
ductivity occurs at low
temperature is seen to
correspond to the re-
gion over which the
resistance is peaked at
higher temperature. (B)
A representation of the magnetic phase diagram at low temperature. The thin lines are contours of
constant angle, � , of the magnetic moment from the b axis. The thick line denotes a first order transition
across which � changes discontinuously. The first order line ends at a QCEP. Beyond this point a sharp
crossover behavior still occurs in the field dependence of the moment orientation. The definition of � is
illustrated in the sketch at the right, with arrows depicting the direction of the magnetization, M, and of
the components of the applied field, Hb and Hc.
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Fig. 3. The field-
temperature phase di-
agram for applied fields
parallel to the b axis.
The color represents the
resistivity. Superconduc-
tivity occurs throughout
the black region where
the resistivity is zero.
The maximum transi-
tion temperature corre-
sponds to the field, HR,
at which the resistivity
has a sharp maximum
at higher temperature.
The blue solid lines
show the position at
which the resistance is
half its normal-state
value (for the data at
low field, this was de-
termined more precise-
ly in separate measurements). (Inset) The resistance as a function of field at several temperatures
corresponding to horizontal cuts through the main figure.
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Re-entrant
superconductivity!

URhGe: an orthorhombic
ferromagnetic superconductor

F. Levy et al., (2005)

High magnetic field SC - twice
as large Tc as low magnetic field
SC!  



Properties of unconventional superconductors

Often exhibit coexistence and competition with magnetism.

Typically exhibit phase diagrams that depend in a non-
monotonic fashion on pressure or doping.

Some spontaneously break time-reversal symmetry (e.g. p+ip,
d+id pairing).  

Repulsive interactions among electrons (on the scale of the
bandwidth) are likely to be the origin of unconventional pairing.

Paradigmatic lattice model of electron interactions: Hubbard
model.

⇥�(k̂)⇤F.S � �max(k̂)⇥�(k̂)⇤F.S � �max(k̂)



Hubbard model

H = H0 + U
�

i

ni�ni⇥

H0 = �t
⇤

⇥ij⇤,�

�
c†i�cj� + h.c.

⇥
� t�

⇤

⇥⇥ij⇤⇤,�

�
c†i�cj� + h.c.

⇥

Proposed to be the minimal model for the Cuprates (Anderson 1987).  

Model cannot be solved for arbitrary U in d>1. 

Monte Carlo methods - Fermion sign problem.

We can consider the weak coupling limit, U/W<<1, and establish in a
well-controlled fashion that the ground state in d>1 is generically an
unconventional superconductor.  



Summary of results

Tc ⇤ W exp
�
��2 (t/U)2 � �1 (t/U)� �0

⇥
⇥ [1 +O(U/t)]

⇤ W exp {�1/ [�Veff ]}⇥ [1 +O(U/t)]

We have derived an explicit expression for
 

�2.

From      , the pairing symmetry of the superconductor, and 
explicit pair wave functions are obtained.  

�2

We have obtained an explicit prescription  for computing the
correction term  �1.

�2 = lim
U�0

�
(U/t)2 ln [W/Tc]

⇥
�2 = lim

U�0

�
(U/t)2 ln [W/TW/TW c/Tc/T ]

⇥



How to compute �2

Electron bandstructure and concentration are basic inputs.

⇤(�k) = �
�

ddq

(2⇥)d

f(�⌅k+⌅q)� f(�⌅q)
�⌅k+⌅q � �⌅q

non-interacting
susceptibility

�
dq̂

SF
gs(t)

k̂,q̂
⇥(n)

s(t),q̂ = �⇥(n)

s(t),k̂
eigenvalue problem 
on the Fermi surface

Singlet channel:

c1 � O(t/U)⇥ 1

gs
k̂q̂

= �U2

⇤
v̄f

vf (k̂)

�
⇥(k̂ + q̂) + c1

⇥ ⇤
v̄f

vf (q̂)



How to compute �2

Triplet channel:

In both cases,        is related to the most negative eigenvalue of�2

�2 = |⇥0|�1 (U/t)2

gt
k̂q̂

= ��U2

⇤
v̄f

vf (k̂)

�
⇥(k̂ � q̂)

⇥ ⇤
v̄f

vf (q̂)

The gap function is related to the associated eigenfunction:

�s(t)(k̂) � Tc

�
vf (k̂)
v̄f

�(0)
s(t)(k̂)

gs(t) :



II. Survey of results



Tetragonal lattice systems
square lattice t’=0.3

dx2�y2
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dx2�y2              pairing is dominant near half-filling.
p-wave and dxy pairing occur for dilute concentrations.  Suppression
of d-wave pairing strength occurs near the van Hove filling when t’>
t/2e, and enhancement for t’<t/2e.    



Hexagonal lattice systems
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Triangular lattice

Lifshitz transition at the van Hove filling separates the d+id and f-wave pairing regimes.  

Lifshitz transition at the van Hove filling separates the d+id and f-wave
pairing regimes.  

f-wave state: fully gapped, alternating sign, reminiscent of S+- state of
Pnictide superconductors.    

Similar phases occur on a honeycomb lattice.



3D Lattice systems

We have studied the Hubbard Model on the simple cubic, BCC,
FCC, diamond lattices.  

We find p-wave, d-wave, and f-wave solutions.  

p-wave solutions occur at dilute concentrations and are
identical to those found in the continuum limit (i.e. the Kohn-
Luttinger instability) with a spherical Fermi surface.  

d-wave solutions are both doubly degenerate (eg) and 
triply degenerate (t2g).  The former is directly related to the d-
wave state found on the square lattice near half-filling.    

In general, pairing strengths are considerably lower in 3d than
in 2d.  



III. RG treatment



In contrast to Polchinski/Shankar problem, when studying the
Hubbard model, we consider electron states with energies O(W)
above and below EF.  

The dispersion cannot be linearized about the Fermi surface -
the higher order terms are irrelevant but not small!  

Frequency dependence of the interaction vertices cannot be
ignored.     

It is not clear how Shankar/Polchinski’s results can be applied
straightforwardly to the Hubbard model.  

We solve this problem by taking a two-stage renormalization
group approach.  

Application to the Hubbard model



RG strategy

Stage 1: Perturbation theory in U/t.

Stage 2: Polchinski/Shankar RG treatment of action obtained above.
 

RG flow of the 2-particle scattering amplitude in the Cooper channel
is marginally relevant -> leads to BCS instability.  

This produces a k-dependent effective interaction in the Cooper channel.

Tc : energy scale where the flows diverge. Independent of

Integrate out all states down to an unphysical cutoff �0.

�0.

We�1/�|U | � �0 � U2/t



Stage 1: perturbation theory in U/t

Integrate out states above       perturbatively in U/t.�0

k, �

�k,��

q, �

�q, ��

��,�� : two particle scattering amplitude with zero CM momentum.

k, �

�k,�� �q, ��

q, �

S = S0 + S1

S0 =
⇤ ⇥

�⇥

d⇧

2⇤

⇤
ddk

(2⇤)d
⌅̄k�

�
i⇧ � �⌅k + µ

⇥
⌅k�

S1 =
3�

i=1

⇥ ⇥

�⇥

d⇤i

2�

ddki

(2�)d
U ⇥̄1⇥̄2⇥3⇥1+2�3

��,�0(k, q;⇥0)



Stage 1: perturbation theory in U/t

Singlet channel:

Triplet channel:
} These do not mix in a

system with inversion
symmetry.  

�t = ��,�

�s =
1
2

[��,⇥ + �⇥,�]

= U + U2 log
�

W

�0

⇥

+ +�s = +· · ·
+O(U3)

�t = + · · ·
+O(U3)

+U2�(k + q;�0)

= �U2�(k � q;�0)



Stage 1: perturbation theory in U/t

After doing perturbation theory, momentum-dependent effective
interactions are found.  What about frequency dependence?  

U2�(k + q;�0) = U2�(k + q) +O(�0)

Since                  , the frequency-dependent correction is small if�(q) ⇠ 1/t

⌦0 << U2/t

By choosing the initial cutoff judiciously, we are justified in
neglecting frequency dependence so long as the zero frequency limit
of the effective interaction is non-singular.  



End product of first stage

S ⇥
⇤ �0

��0

d⇧

2⇤

⇤
ddk

(2⇤)d
⌅̄k�

�
i⇧ � �⌅k + µ

⇥
⌅k�

+
� �0

��0

d⇤1d⇤2

(2�)2

�
ddk1ddk2

(2�)2d
����(k1, k2)⇥̄k1�⇥̄�k1��⇥�k2��⇥�k2�

within a width         about the Fermi surface with k-dependent
interactions.

2�0

2�0 � U2/t

From stage 1, we obtain an effective action involving electrons

This is just the action for a Landau 
Fermi liquid studied by Shankar and 
Polchinski .  



Stage 2: RG analysis

� = �0e
��

Forward scattering amplitudes are constant and finite.  Only
relevant couplings occur in the Cooper channel.  

(a � b)k̂,q̂ =
�

dp̂

SF
ak̂,p̂bp̂,q̂

RG flows obtained as
cutoff is lowered.  

Define

RG flow
eq.

Hermitian
matrix  

dg

d⇥
= �g � g

dg

d⇥
= �g � g

gk̂,q̂ = �

s
v̄F

vF (k̂)
�(k̂, q̂)

r
v̄F

vF (q̂)



d�n

d⇥
= ��2

n
d�n

d⇥
RG flow in the 
diagonal basis:

� �n(�) =
�n(�0)

1 + �n(�0) log [�0/�]

Stage 2: RG analysis

Tc � �⇥ = �0e
�1/|�0|

There is a problem with this expression: the arbitrary initial cutoff
appears in it which cannot be physical.

A careful analysis of perturbation expansion shows that this is not 
the case.    

When the most negative e.v. grows to be O(1), the superconducting 
transition occurs.  



Cutoff independence of results

The basic idea: the most negative eigenvalue has an implicit
dependence on      and must be taken into account.  �0

Simple illustration: negative U Hubbard model - spin singlet pairing.  
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|�0| = ⇥|U | [1 + ⇥|U | log(W/�0)]
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�1/�|U |elog(W/�0) = We�1/�|U |

In a similar fashion, the cutoff independence of the repulsive U 
case may be established.  



Cutoff independence of results

Consider the spin-triplet channel.  To O(U3),  

! "
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"
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� g(3)
t

Diagonalizing this, we will find again that Tc � �⇥ = �0e
�1/|�0|

However, a careful perturbation analysis leads us to consider
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= g(3)
t + g(3)

t ⇥ g(3)
t log(W/�0)

This quantity has precisely the log divergence needed to eliminate 
the cutoff dependence, as in the negative U case. The analysis in the 
singlet channel is more technical but conceptually identical.  



Summary of weak-coupling perspective

Effective interaction in the Cooper channel: obtained by integrating out
modes away from the Fermi energy.

�(k̂, k̂0) = U + a2(k̂, k̂
0)U2 + · · ·

O(U2) interactions: induced by particle-hole fluctuations.  They are non-
local, and attractive in unconventional pairing channels.

The bare repulsive interaction U>0 prevents onsite pairing.  States with
sign-changing order parameters are unaffected by it.  

By integrating out high energy modes, we produce an effective action
with states only in a narrow energy shell around EF.  

This is precisely the effective field theory studied by R. Shankar and J.
Polchinski.  



Discussion

We have shown, using well-controlled methods that the ground state of
the Hubbard model at small U is an unconventional superconductor.  

First analysis of superconductivity from bare repulsive interactions: Kohn
and Luttinger (KL).  Non-analyticities occur at T=0 in            due to 
sharpness of the Fermi surface.  They give rise to Friedel oscillations
which mediate attraction among electrons.  This gives rise to p-wave 
pairing in a 3D electron gas.

Our results are identical to Kohn-Luttinger theory in the limit of dilute
electron concentrations in 3d.  

“Spin fluctuation exchange” mechanisms are extrapolations of the present
results into a more strong coupling regime.  However, these approaches
are uncontrolled in this limit.  

�(2kF )



Discussion

While we do obtain d-wave pairing on a square lattice, there are important
discrepancies between our results and the physics of real materials.  

Tc is an emergent scale exponentially smaller than bare energy scales.
 Above it, the system is a well-behaved Fermi liquid.  There are no bad
metals, non-Fermi liquids, etc.  

Induced pairing interactions are non-local in the weak-coupling limit.  Gap
functions have more structure in momentum space than is seen in highly
correlated systems.  

In the weak-coupling limit, the gap function summed over the FS is zero.  
Sign changing solutions which violate this criterion (as proposed for the
pnictides) reflect underlying strong coupling phenomena.  

Competition between non-superconducting orders is absent in the weak-
coupling limit.  In the weak-coupling limit, a well-behaved Fermi liquid is
present, and it is destabilized only by a BCS instability.



III. Effect of longer range
interactions



Longer range repulsive interactions

V directly competes with induced attraction and tend to suppress pairing
tendency of the Hubbard model.  

1) 2)

At what scale V0 is superconducting solutions from the Hubbard model
suppressed?

V0 ⇠ Tc V0 ⇠ U↵

Generically, longer ranged, repulsive interactions, V, weaken pairing
strengths of the Hubbard model.  

Scattering amplitude in the Cooper channel (weak-coupling limit):

�(k̂, k̂0) = U + V + aU2 + bV 2 + cUV + · · ·

2 reasonable guesses:



Longer range repulsive interactions

V directly competes with induced attraction and tend to suppress pairing
tendency of the Hubbard model.  

2)

At what scale V0 is superconducting solutions from the Hubbard model
suppressed?

V0 ⇠ U↵

Generically, longer ranged, repulsive interactions, V, weaken pairing
strengths of the Hubbard model.  

Scattering amplitude in the Cooper channel (weak-coupling limit):

�(k̂, k̂0) = U + V + aU2 + bV 2 + cUV + · · ·

Our conclusion: 2) V0V0V ⇠ U↵



Extended Hubbard model

H = H0 +Hint

H0 = �t
X

hiji�

c†i�cj� + h.c.

Hint = U
X

i

ni"ni# + V
X

hiji

ninj + V 0
X

hhijii

ninj

In the weak-coupling limit: U ! 0, V ! 0, V 0 ! 0

The phase diagram depends sensitively on how this limit is taken.

2 distinct asymptotic regimes:{

Consider electrons on a
square lattice for simplicity.

2)V ⇠ U

1)V ⇠ U2/W



Obtain effective interactions to O(U2): Only first order
correction from V is needed - the next correction is O(V2) ~
O(U4) and is negligible.  

1) V ~ U2/W

!"# !$%# !$&#

!$'# !$(# !$)#

� � σ

− � � σ
′

�
′
� σ

− �
′
� σ

′



1) V ~ U2/W

EFFECTS OF LONGER-RANGE INTERACTIONS ON � � � PHYSICAL REVIEW B 85, 024516 (2012)

nearest-neighbor hopping. As is well known, such a system
possesses a nongeneric particle-hole symmetry. This feature,
however, does not play a significant role in the resulting phase
diagram since we consider the model away from half filling.
(See, however, Ref. 37.)

To begin with, for � ′ � 0 we show that the phase diagram
is drastically different depending on the ratio � � � , even as
� ∼ � � � → 0. Different asymptotic analysis is required for
the case � � α � 2 � 
 (i.e., for � → 0 with � 
 � � 2 � α � 0
held constant), and � � α′ � (i.e., for � → 0 with � � � �
α′ � 0 held fixed). We find that in both cases, the ground state
is superconducting for all dopings, but the symmetry of the
pairing state is generally different. We then add � ′ ∼ � and
show that it adds other pairing states to the phase diagram.

A. V ∼ U2 � W , V ′ = 0

Since the effective interaction is computed to 
 (� 2), when
� � α � 2 � 
 , we only need take � into account to first order
(diagram 1 in Fig. 1), i.e., at the bare level. A nonzero V then
produces a correction to the effective "(k� p) in the form

δ"(k� p) � α
� 2



[cos (� � − � � ) � cos (� � − � � )]

� α
� 2




′∑

(η)

φ(η � 1)(k)φ(η � 1)(p)� (17)

where in the second line the sum is taken over appropriate
basis functions defined on nearest-neighbor sites with � 1� or
extended � -wave symmetry, � 1� or � � 2−� 2 -wave symmetry, and
	 � or � -wave symmetry:

� 1� : φ(� � 1)(k) � [cos(� � ) � cos(� � )]�
√

2�

� 1� : φ(� 2−� 2 � 1)(k) � [cos(� � ) − cos(� � )]�
√

2� (18)

	 � : φ(� � 1)(k) � sin(� � )� φ(� � 1)(k) � sin(� � )�

Thus, the nearest-neighbor interaction acts as a separable
repulsive interaction within these subspaces. Because all three
components are repulsive, � tends to suppress the pairing
tendency in all three of these channels. However, note that
unlike the case in the continuum, there are multiple (infinite)
orthogonal functions defined on the FS which transform
according to each irreducible representation of the point
group—for instance φ(� � 2) ∼ [cos(� � ) � cos(� � )]2 also trans-
forms according to � 1� under operations of the point group.
Thus, even for large α, the presence of a repulsive first-order
term in a given channel does not preclude the existence of a
more “extended” form of pairing in the same channel.

It has been shown previously in various studies of the
repulsive � Hubbard model that near half filling,5,8,29,37

predominant pairing instability to order � 2 is in the � � 2−� 2

channel, and the subdominant pairing eigenvalue occurs in
the � 2� or � -wave channel, while somewhat further from half
filling, at � � 0� 62, there is a range of electron concentrations
for which the � 2� or � � � pairing solution is dominant:
Representative gap functions (of the shortest possible spatial
range) with these symmetries are

φ(� � 3) ∼ [cos(� � ) − cos(� � )] sin(� � ) sin(� � )�

φ(� � � 2) ∼ sin(� � ) sin(� � )�
(19)
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FIG. 2. Phase diagram as a function of electron concentration for
the 2D extended Hubbard model in the regime where � ∼ � 2 � 
 and
� ′ � 0. The region of extended � -wave superconductivity is labeled
as 1. For � � 0, our phase diagram is similar but not identical to
the one obtained by Hlubina (Ref. 5). In his calculation, there is a
small region of � -wave superconductivity between the � � � and � � 2−� 2

phases. We found only � -wave states.

Figure 2 shows the phase diagram to order � 2, which we
obtained numerically for � � α � 2 � 
 , as a function of α
and � . Since the analysis considered here breaks down for
concentrations sufficiently close to half filling because of
competition with antiferromagnetism, we have investigated
solutions only for 0 � � � 0� 95. For 0� 76 � � � 0� 95, a
finite α ! 0� 2 destabilizes the � � 2−� 2 solution in favor of the
subdominant � -wave solution [labeled as � � (� 2 − � 2) on the
phase diagram in Fig. 2]. For 0 � 68 � � � 0� 76 a finite α again
destabilizes the � � 2−� 2 solution, but the state that emerges
instead has a particular extended � -wave symmetry, which
is dominantly of the form Re(� � � � )4. To shorten notations,
we have labeled it as “1”.

This state has zero amplitude for on-site pairing in this
limit but transforms nevertheless as a trivial irreducible
representation of the tetragonal point group. Note that since
the � -wave state is Im( � � � � )4, in the continuum limit, the
“1” and � states are degenerate corresponding to angular
momentum & � 4 pairing. However, lattice effects lift this
degeneracy. Indeed, there is a phase transition between the
� -wave and extended � -wave state at � � 0� 76, which reflects
a level crossing of these two eigenvalues, both of which are
subleading at � � 0. Note that this phase boundary is vertical
since the two solutions are unaffected by � to first order.
For 0� 58 � � � 0� 68, we have found that a finite α favors the
� � � solution. The phase boundary between � � � and extended
� -wave phases is also vertical.

B. V ∼ U2 � W , V ′ ∼ V

Next, we consider the effect of a nonzero second-neighbor
interaction � ′ on the phase diagram. Specifically, we take
� ′ � α2 � � 0 � α2 � 1. In this case, � ′ ∼ � 2 � 
 , so like � , its
effects can be computed via the first-order diagram 1 in Fig. 1.
The expansion of the � ′ interaction into angular harmonics
is straightforward, and in addition to terms already present in

024516-5

          pairing survives for a finite V near half-filling.  It’s
pairing strength decreases as V increases.  
d
x

2�y

2

Bare V repels states with
nearest-neighbor pairing.  

It competes with the
induced attractive
interactions ~ O(U2/W).

dxy, g-wave states are
unaffected by it.  

“1”: extended s-wave state ~ Real(x+iy)4.
“xy(x2-y2)”: g-wave state ~ Im(x+iy)4.



1) V ~ U2/W, V’~
V

The effect of a non-zero second-neighbor repulsive interaction
V’ ~ V ~ U2/W.  Is surprisingly weak.  

S. RAGHU, E. BERG, A. V. CHUBUKOV, AND S. A. KIVELSON PHYSICAL REVIEW B 85, 024516 (2012)
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xy(x 2−y2)
1

FIG. 3. The effective interaction � eff � λ � 
 
 , where 
 
 is the
density of states at the Fermi level, as a function of � ′ � � � α2.
� � 0� 6 with � � α � 2 � � , α � 0� 16, and nonzero � ′.

Eq. (17), one finds the following contribution to the effective
Cooper channel interaction from � ′:

δ$� ′(k � p) � 2αα2
� 2

�
cos (� � − � � ) cos (�  − �  )� (20)

This term is a sum of separable repulsive interactions in the
extended � - ( � 1� ), � �  - ( � 2� ), and � -wave ( 	 � ) subspaces. It
is important to stress that it does not affect the � � 2− 2 - (� 1� )
or the � -wave ( � 2� ) subspaces. Thus, relatively close to half
filling where the leading eigenvalues belong to the � � 2− 2 -
and � -wave subspaces, the phase boundaries are unaffected
by � ′. We have studied the phase diagram in the presence of
nonzero � ′ and have found that while the phase boundaries
are affected quantitatively by nonzero α2, the topology of the
phase diagram itself is unchanged. We have observed that
the pairing strengths are surprisingly robust in this regime,
as α2 is increased. Figure 3 displays the effective interactions
� eff � � λ� � 
 
 , where 
 
 is the density of states at the Fermi
energy, in the presence of nonzero � ′. For definiteness, we
work in a fixed density of electrons � � 0� 6 and fixed α � 0� 16
and show the effective interaction as a function of α2. The
� � 2− 2 pairing strength is the weakest one here and is not
shown. It is apparent from the figure that while the pairing
strengths of the � �  - and extended � -wave states are affected
by nonzero α2, this repulsion is not strong enough to suppress
superconductivity altogether.

C. V ∼ U

Next, we consider the case when � ∼ � , in which case the
bare repulsive interactions are of the form

$� (k � k′) � � � � � (k − k′)� (21)

where the subscript on $ above is to remind the reader that this
comes from diagram I in Fig. 1. The dimensionless function

� (q) � cos � � � cos �  � 2β cos � � cos �  (22)

specifies the momentum dependence of the interactions, where
β � � ′ � � . We must now compute the perturbation expansion
of the effective interaction in the Cooper channel to second

order in all the bare interactions, which has the form

$(� )(k � k′) � $ � (k � k′) � � 2 �
(� )
1 (k � k′) � � 2 �

(� )
2 (k � k′)

� � � �
(� )
3 (k � k′) � � � � � (23)

where � denotes the spin-singlet channel. It is straightforward
to show that

�
(� )
1 (k � k′) � 
 
 ln

[
�

&0

]
� χ (k � k′) � � (&0)� (24)

where 
 
 is the density of states at the Fermi energy. The first
term is obtained from diagram 2a and the second from 2b in
Fig. 1. Similarly,

�
(� )
2 (k � k′) � 
 
 (� ( � )(k − k′) ln

[
�

&0

]

� χ1(k � k′) � � (k − k′)χ2(k � k′)

− 2[� (k − k′)]2χ (k − k′) � � (&0)� (25)

where the first term comes from diagram 2a, the second from
2b, the third from 2c and 2d, and the last term from 2e in
Fig. 1. The convolution that enters in the first term is found
to be [assuming that the FS averages 〈cos 2� � 〉 � 〈cos 2�  〉 �
0, where l and −l are intermediate fermionic momenta in
Fig. 1(a)]

(� ( � )(q) � 1
2 (cos � � � cos �  ) � β2 cos � � cos �  � (26)

Lastly,

�
(� )
3 (k � k′) � � 
 
 � (k − k′) ln

[
�

&0

]
� χ2(−k � k′)

� χ2(k � k′) � 2� (k − k′)χ (k − k′) � � (&0)�

(27)

where � is a constant of order unity. The first term is obtained
from diagram 2a, the second from 2b, the third from 2c, and
the last from 2e in Fig. 1. The functions χ (q)� χ1(k � k′), and
χ2(k � k′) are generalized susceptibilities and are all expressible
in terms of the one-electron Matsubara Green’s function,
� (� ) � (� ω� − ε � )−1:

χ (q) �
∫

�

� (� )� (� � � )�
∫

�

≡
∫

� � � � ω �

(2π ) � � 1
�

χ1(k � k′) �
∫

�

� (k − p)� ( p − k′)� (� )� (� − � − � ′)�

χ2(k � k′) �
∫

�

[� ( p � k) � � ( p − k′)]

× � (� )� (� � � − � ′)� (28)

Similarly, in the spin-triplet channel, the effective interaction
takes the form

$(� )(k � k′) � � � (k − k′) � � 2 �
(� )
1 (k � k′) � � 2 �

(� )
2 (k � k′)

� � � �
(� )
3 (k � k′) � � � � � (29)

where

�
(� )
1 (k � k′) � −χ (k − k′)�

�
(� )
2 (k � k′) � �

(� )
2 (k � k′)� (30)

�
(� )
3 (k � k′) � −2� (k − k′)χ (k − k′)�
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Pairing strengths decrease, but
superconductivity remains stable.
 

On a lattice, first order repulsion does not preclude more
“extended” variants of a given pairing symmetry.  

Closer to half-filling, the dx2-y2

state is also stable against V’ ~ V
~ U2/W.  



2) V ~ U

Since V~U, in obtaining effective interactions to O(U2), we must consider all
contributions to order V2.  

The induced attractive interactions are unable to overcome V in the weak-
coupling limit.  All states having nearest-neighbor pairing are disfavored.  

When V’=0, the dxy and g-wave states dominate the phase diagram: Cooper
pairing occurs at distances larger than the range of V. 

With non-zero V’, the g-wave state remains the dominant superconducting
solution.   

Similar results involving Jellium models with screened Coulomb interactions
and rs << 1: Kohn Luttinger instability persists at large angular momentum
(A. Chubukov and M Yu Kagan, J. Phys. Condens. Matt. 1, 3135 (1989)).  



Results at intermediate coupling

EFFECTS OF LONGER-RANGE INTERACTIONS ON � � � PHYSICAL REVIEW B 85, 024516 (2012)
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n=0.875

 (π,π)
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FIG. 5. (Color online) The spin gap !� extrapolated to the
thermodynamic limit for two-leg ladders with electron density � �
0� 9375 (circles) and � � 0� 875 (diamonds) and � � 1, 
 � 8, and
� ′ � 0, as a function of � . Beyond � ≈ 2� 6, a transition to a state
with pronounced charge density oscillations at a wave vector close to
(π � π ) is observed.

at � ≈ 2� 5 even for the undoped (� � 1) system. The doped
CDW state supports gapless spin excitations at the edges, but
has a large bulk spin gap !� ≈ 0� 1. (We infer this by noticing
that in the lowest triplet excitation with 	 � � 1, 〈	 � 〉 is nonzero
only close to the edges. We have also computed the gap to an
excitation with 	 � � 2, in which 〈	 � 〉 is nonzero in the bulk,
and found that this gap is finite in the thermodynamic limit.)

We have also examined the effect of a second-neighbor � ′

on the spin gap. Figure 6 shows the spin gap as a function of � ′

for � � 1, � � 0� 9375. Again, we find that while !� decreases
monotonically upon increasing � ′, its effect is not dramatic.
For example, upon reaching � ′ � 0� 5� , ! � has decreased to
about 50% of its � � 1� � ′ � 0 value.

The superconducting response of a ladder system can be
characterized by the rate at which an externally induced
superconducting order parameter at the edge decays as we
move into the bulk. In a gapless one-dimensional system, this
amplitude decays as a power law; in a two-leg ladder with a
spin gap, this power law can be shown to be equal to 1

4� �
,44

where � � is the Luttinger parameter of the (gapless) even
charge mode. Figure 7 shows the induced order parameter on
a � bond,

� � (� ) �
〈 1

2 [� ↑(� � 1)� ↓(� � 2) − � ↓(� � 1)� ↑(� � 2)]
〉
� (35)

as a function of position � , on a log-log scale. In this
calculation, the following boundary term was added to the
Hamiltonian:

� edge � ![� ↑(1� 1)� ↓(1� 2) − � ↓(1� 1)� ↑(1� 2) � H� c� ]� (36)

with ! � 0� 25. This term mimics a proximity-induced gap at
the edge due to a nearby bulk superconductor. The results are
shown for systems of length � � 32� 48, density � � 0� 9375,
and � � 0� 1� 2� 5� 3.

The induced superconducting order parameter is seen to
decrease monotonically upon increasing � . However, the slope
of ln(
 � � 
 ) vs ln( � ) (the power with which the superconducting

0 0.2 0.4
0.01

0.015

0.02

0.025

0.03

0.035

V′

∆ s(L→
∞)

n=0.9375

FIG. 6. (Color online) The spin gap !� (� → ∞) as a function of
� ′ for two-leg ladders with � � 0� 9375, � � 1, 
 � 8, and � � 1.

order parameter decays) far away from the edge is not strongly
dependent on � , except for � � 2� 5. Although our systems
are not long enough to allow an accurate estimate of the
slope, one can roughly estimate � � ∼ 0� 4–0 � 6, well within the
range of divergent superconducting correlations � � � 0� 25,
and close to the value in which superconducting and CDW
correlations decay with the same exponent, � � � 0� 5.

The inset of Fig. 7 shows the induced superconducting
order parameter on various bonds near the middle of the
� � 48 system with � � 1. As can be seen in the figure, the
order parameter is “
 � 2−� 2 like,” in the sense that the pairing
amplitude on � - and � -oriented bonds is opposite in sign,
and the amplitude on the diagonal (next-nearest neighbor) is
relatively small. The order parameter has a 
 � 2−� 2 -like structure

0 1 2 3 4

-12

-10

-8

-6

-4

-2

log(x)

ln(
|P y(x)|

)

V = 0

V = 1

V = 2.5

V = 3

0.0049

−0.0024

0.0003

 (x)ln

FIG. 7. (Color online) Induced superconducting order parameter
as a function of position in a calculation with an edge pair field
[Eq. (36)] of magnitude ! � 0� 5. In these calculations, � � 1, 
 � 8,
� � 0� 9375. Solid (dashed) lines correspond to � � 32 ( � � 48).
Results for � � 0� 1� 2� 5� 3 are shown. The inset shows the induced
order parameter on nearest- and second-nearest-neighbor bonds near
the middle of an � � 48 system with � � 1.
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DMRG solution of 2-leg ladders with extended interactions.  

�s = E(S = 1)� E(S = 0)

Spin-gap remains finite in
the presence of non-zero V.
   

Superconducting correlations: power law decay, and “d-wave like”.  
Amplitude of Pair-field susceptibility decreases with V.  

Longer ranged interactions have a weak effect even at intermediate coupling.
 

U = 8t, V 0 = 0

(L ! 1)



Role of screening in conventional superconductors

Electron-phonon mediated superconductors are insensitive to the range of
Coulomb interactions.  

�D << EF2 well-separated energy scales: 1) �D, 2) EF

Phonon-mediated attraction is local, and largely insensitive to the range of
Coulomb interactions.  

�(k̂, k̂0;!) = (µ⇤ � �)/⇢

Scattering amplitude in the Cooper channel (weak-coupling limit):

� = dimensionless attractive
interaction (retarded)

µ = dimensionless repulsive
interaction (instantaneous)

µ⇤
=

µ

1 + µ log[EF /!D]

⇡ 1/ log [EF /!D]



1) Unconventional superconductivity from repulsive interactions is a robust
phenomenon.  It is stable against the inclusion of longer (but finite) ranged
repulsive interactions.  

2) Pairing strengths decrease with longer ranged interactions but d-wave
pairing superconductivity remains present until V ~ U.  

3) By contrast, electron-phonon superconductors are largely insensitive to
the presence of longer-range repulsive interactions - due to retardation.  

4) This suggests a generic strategy for obtaining higher transition
temperatures: screening by a proximate polarizable medium could reduce
V, V’..., leading enhancement of Tc.  

Summary



III. Application: Raising Tc of unconventional

superconductors



Screening due to proximate polarizable medium

✏(q,!)

Correlated metal
2

1H = H1 +H2 +Hint

H1 =
X

k�

E(k)c†1k�c1k�

Hint =
X

q

V1,2(q)n1(q)n2(�q)

H2 =
X

k�

E2(k)c
†
2k�c2k� +

X

q

V2(q)n2(q)n2(�q)

Purely capacitive coupling

Single electron interlayer tunneling: will introduce disorder into the metal
if layer 1 is disordered.  We will neglect it (and justify this below).  



Enhanced screening by proximate polarizable medium

Integrate out layer 1: obtain effective Hamiltonian for just the metal.  

Heff =
X

k�

E2(k)c
†
2k�c2k� +

X

q

Veff (q)n2(q)n2(�q)

Veff (q) = V2(q)� V 2
1,2(q)�(q,!)

charge susceptibility of
polarizable medium.  

� :

In lattice systems, these are effective density-density interactions:

X

ij

Vi,jninj
To gain qualitative understanding, consider
interactions with finite range that are obtained
from the screening process.  

Consider this effective model in weak and intermediate coupling.

In both cases, pairing strengths are enhanced as the short-distance
polarizablity of the medium increases.  



Strategies for choosing the polarizable medium

(A)  Couple metals capacitively to the correlated metal.  

Top gate alone: screens Coulomb interactions to dipolar
interactions V(r) ~ 1/r3.

Top and bottom gates: exponential screening of Coulomb
interactions.  

21 
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(B) Interfaces with amorphous dipolar liquids and anti-ferroelectrics.

Screening occurs over short distances.
 

The experimental test: couple optimally doped cuprate films to polarizable
media.  If screening of long-range interactions by the polarizable medium
occurs, Tc is enhanced beyond optimal doping value.  



The end




