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[. Overview and Motivation



Conventional superconductivity

e.g. Pb, Hg Zero dc resistance below T..

Electrons on the Fermi surface form
Cooper pairs.
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T Gap to electronic excitations opens at

Lé o o T the Fermi energy.
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Properties of conventional superconductors

Pairing symmetry is s-wave: constant, momentum-independent gap
function on the Fermi surface.

Insensitive to weak non-magnetic disorder.
No competing magnetic phases.
Exponentially activated specific heat, spin susceptibility, etc.

No spontaneous currents across Josephson junctions.

Normal state is a well-behaved Landau Fermi liquid.



Effective field theory of the Fermi liquid
(Polchinski 1984, Shankar 1994.)

Non-interacting Fixed point action, S;:

So = /Q 27T/ ¢ ZW‘I‘Uf(]%)k} Y

S d de L
znt—/]:[ 2(; d—l—l (2)¢(3)¢(4)g(1234) kg = k1 + ko — k3

Wyqg = W1 + W2 — W3

w;| < Q<< Ep
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Dispersion can be linearized about the FS.
Corrections are small irrelevant terms.



Effective field theory of the Fermi liquid
(Polchinski 1984, Shankar 1994.)

Renormalization group (RG) procedure

() — Q€_€7 />0 Rescale energy, fields to preserve Sy

Generically, the interaction g(1234) is irrelevant except when

ks ko =k, g(1212) = F(12) Forward

scattering

O
() ky = —ki, ks = —ky g(1122) = V(12) Sooper

Infinitessimally thin energy shells are integrated out and the flow of
the couplings are determined.



Effective field theory of the Fermi liquid
(Polchinski 1992, Shankar 1994.)

F(12) and V(12) are both marginal. They are also small in the weak-
coupling limit. RG done perturbatively to one-loop order produces

dF — 0 Forward scattering remains marginal (Landau Fermi
dr liquid parameters).
v
d_V = —pV* V = L
d/ 1+ pVylog (Q0/9)

In the Cooper channel, repulsive interactions (Vo > 0) weaken
whereas attractive interactions (Vo < 0) grow at low energies,

producing the BCS instability. This is the only way to destroy a
Fermi liquid in the weak-coupling limit.



Alternative perspective: partial summation of
" ladder” diagrams

Multiple scattering processes cannot be neglected:

T T _ diverges logarithmically
l:]:[:l = pVo log [QO/Q] at low energy (i.e. close to FS).

The entire sum of “ladders” must be taken into account:
o I
+ + + - -
| b b |
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Conventional pairing mechanism

2 well-separated energy scales: 1) wp, 2) Fr wp << Ef
9(1234) = gc — gpO(wp — w2 — ws))
d.: instantaneous screened Coulomb interaction: short-ranged and

repulsive.

d,: retarded attractive interaction due to electron-phonon coupling.

Pairing occurs due to the separation in time-scales between the
instantaneous Coulomb and retarded electron-phonon interaction.

At high frequencies, electron-phonon coupling is not renormalized.
Therefore, it can be estimated from microscopic calculations and
experiments.



Conventional pairing mechanism

2 step RG treatment

Step1: wp < Q<< Ep 9B unaffected, and g. becomes weaker

under RG.
gp(Wp) = gp ge(wp) = g" = e
1+ pge,0log ($o/wp)
Qo/wp ~ (M/m)"/?
Step 2: () < wp geffzg*—gpf(ﬂ*—)\)/ﬂ

P A
Perf(§2) = 1 (u* — A) log (wp/Q)

If gefr < O, there is a BCS instability below 1. ~ wDe_l/()\—M )



Unconventional superconductivity

A number of materials do not obey this simple physical picture.

Such systems occur when electrons are more tightly bound to the
atom producing narrow bandwidths.

Interaction effects also enhance the electron’s effective mass, and
produces “heavy” quasiparticles.

In this case, the separation in scale of Debye and Fermi temperature
is less sharp.

There can be new bosons, e.g. spin fluctuations, or even emergent
bosons, that replace the role of phonons in mediating pairing. It's

even possible that a sharp bosonic ‘glue’ isn't even present in these
materials.



Unconventional superconductivity

e.g. Cuprates YBCO
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Unconventional superconductivity

e.g. 115 systems

p (GPa)

CeRhIns J. Flouquet (2009)

Antiferromagnetism competes with superconductivity.

The same electronic correlations which give rise to magnetism
are likely to play a role in mediating superconductivity.



Spin triplet superconductivity

SrzRUO4

de Haas-van Alphen

Fermi surface

Likely to be a py+ipy

superconductor which is odd
under parity and time-
reversal.

UPt;

UPts : a hexagonal system

with multiple superconducting
phases, f-wave pairing.



e to other forms of order
JRhGe can be compared
-2D material SryRu,O.,.

Exotic superconductivity

URhGe: an orthorhombic
ferromagnetic superconductor
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Properties of unconventional superconductors

(AE)) g < Amaz(k)

Often exhibit coexistence and competition with magnetism.

Typically exhibit phase diagrams that depend in a non-
monotonic fashion on pressure or doping.

Some spontaneously break time-reversal symmetry (e.g. p+ip,
d+id pairing).

Repulsive interactions among electrons (on the scale of the
bandwidth) are likely to be the origin of unconventional pairing.

Paradigmatic lattice model of electron interactions: Hubbard
model.



Hubbard model
H = H() + UZniTnil

Hy = —t Z (c}facjg + h.c.) — ¢ Z (C;-facjg + h.c.)

(i7),0 ((i7)),0

Proposed to be the minimal model for the Cuprates (Anderson 1987).

Model cannot be solved for arbitrary U in d>1.

Monte Carlo methods - Fermion sign problem.

We can consider the weak coupling limit, U/W<<1, and establish in a
well-controlled fashion that the ground state in d>1 is generically an
unconventional superconductor.



Summary of results
T, ~ W exp {—a2 (t/U)? — ay (t/U) — ao} < [14+ OU/t)

~ Wexp{—1/[pVessl} x [1+O(U/1)]

@y = lim {(U/t)2 In [W/TC]}

We have derived an explicit expression for .

From (9, the pairing symmetry of the superconductor, and
explicit pair wave functions are obtained.

We have obtained an explicit prescription for computing the
correction term (v7q.



How to compute s

Electron bandstructure and concentration are basic inputs.

X(E) _ _/ ddq f(€E+(i’) B f(ecf) non-interacting

d . s susceptibilit
(2m) “k+q ~ Ca PR

/ @ngg)wg?t)),(j — )\wi?’t)) : eigenvalue problem

; on the Fermi surface

Singlet channel: = 7
9; :pUQ\/ A [X(k‘—l-c_?)—l-q} \/ )



How to compute o

Triplet channel:
Uf ~ ) Uf

= —pU? - [x(/f — q)} .

q \/vf(k) vy (Q)

In both cases, (9 is related to the most negative eigenvalue of ¢

>

g

s(t) .

oy = || (U/1)°

The gap function is related to the associated eigenfunction:

A vr(k) () i
As(t)(k) NTC\/ U %(t)(k)



II. Survey of results



Tetragonal lattice systems

square lattice t'=0.3

d,2 _,pairing is dominant near half-filling.
D- wave and d,, pairing occur for dilute concentrations. Suppression

of d-wave pairing strength occurs near the van Hove filling when t'>
t/2e, and enhancement for t'<t/2e.



Hexagonal lattice systems

Triangular lattice

Energy contours 0.25

0.2f = {x-y*.2xy }

f-wave regime
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d+id regime

Lifshitz transition at the van Hove filling separates the d+id and f-wave
pairing regimes.

f-wave state: fully gapped, alternating sign, reminiscent of S, - state of
Pnictide superconductors.

Similar phases occur on a honeycomb lattice.



3D Lattice systems

We have studied the Hubbard Model on the simple cubic, BCC,
FCC, diamond lattices.

We find p-wave, d-wave, and f-wave solutions.

p-wave solutions occur at dilute concentrations and are
identical to those found in the continuum limit (i.e. the Kohn-
Luttinger instability) with a spherical Fermi surface.

d-wave solutions are both doubly degenerate (e4) and
triply degenerate (t,5). The former is directly related to the d-
wave state found on the square lattice near half-filling.

In general, pairing strengths are considerably lower in 3d than
in 2d.



III. RG treatment



Application to the Hubbard model

In contrast to Polchinski/Shankar problem, when studying the
Hubbard model, we consider electron states with energies O(W)
above and below Eg.

The dispersion cannot be linearized about the Fermi surface -
the higher order terms are irrelevant but not small!

Frequency dependence of the interaction vertices cannot be
ignored.

It is not clear how Shankar/Polchinski’s results can be applied
straightforwardly to the Hubbard model.

We solve this problem by taking a two-stage renormalization
group approach.



RG strategy

Stage 1: Perturbation theory in U/t.

Integrate out all states down to an unphysical cutoff ().

We VPVl « Qy < U? /t

This produces a k-dependent effective interaction in the Cooper channel.

Stage 2: Polchinski/Shankar RG treatment of action obtained above.

RG flow of the 2-particle scattering amplitude in the Cooper channel
is marginally relevant -> |leads to BCS instability.

T. : energy scale where the flows diverge. Independent of ().



Stage 1: perturbation theory in U/t

d%k
So:/ / o (iw — € + 1) Yo
S =50+ 95

3
> dw,,; ddkz - -
51 :E/—m o (21) Up1921p3142-3

Integrate out states above Qoperturbatively in U/t.

7

—q,0 —q,0

FU o' : two particle scattering amplitude with zero CM momentum.
)




Stage 1: perturbation theory in U/t

Singlet channel: [', = % [FT,l + Fl,T]

These do not mix in a
system with inversion
symmetry.

Triplet channel: Ft — FT,T

1 11 (. !

FS _ + + + o o o
lIl 1]:[:1 l:X:l

= U + U?log QKO —|—U2x(k—|-q; QO) +0O(U?)

fo—r1
L= e

= —U’x(k — ¢; Q) +O(U?)



Stage 1: perturbation theory in U/t

After doing perturbation theory, momentum-dependent effective
interactions are found. What about frequency dependence?

U*x(k 4 ¢; ) = Ux(k + q) + O(Q)

Since X(C]) ~ 1/72 the frequency-dependent correction is small if

(g << Uz/t

By choosing the initial cutoff judiciously, we are justified in

neglecting frequency dependence so long as the zero frequency limit
of the effective interaction is non-singular.



End product of first stage

From stage 1, we obtain an effective action involving electrons

within a width 2({)gabout the Fermi surface with k-dependent
interactions.

200 < U/t

This is just the action for a Landau
Fermi liquid studied by Shankar and
Polchinski .

€2 d
O dw d®k
S%/ / d%a iw — €+ 1) Vro

Qo 27T

Q2 d d

0 dwldwg / d kld kg — —

| Faa’ k 7k 10¥W—kio0’"V—koo! ¥V —kso
/QO (27)? (27)2¢ (k1 k2) ks 0V =k 0/ Y —hyor Pk



Stage 2: RG analysis

Forward scattering amplitudes are constant and finite. Only
relevant couplings occur in the Cooper channel.

RG flows obtained as . .y
cutoff is lowered. 2 = {oe

() A () .
Define gl%,(j p— 10 FA) F(k) q)\/ F,\ Hermitian

UF(k UF(Q) matrix
RG flow @ — g+
eq. dé o g g
dp
(a* b)/%,g — E%,pbﬁ,d



Stage 2: RG analysis

RG flow in the d)\n

diagonal basis: 5y, — _)\721
An(€20)
= A\, () =
(£2) 1 4+ A (£20) log [Q0/€2)

When the most negative e.v. grows to be O(1), the superconducting
transition occurs.

T. ~ Q* = Qge~ /1ol

There is a problem with this expression: the arbitrary initial cutoff
appears in it which cannot be physical.

A careful analysis of perturbation expansion shows that this is not
the case.



Cutoff independence of results

The basic idea: the most negative eigenvalue has an implicit
dependence on ()jand must be taken into account.

Simple illustration: negative U Hubbard model - spin singlet pairing.

Aol = plU|[1+ p|U]log(W/€))
T. ~ Qge /rlUlos(W/Q) _ yy7o—1/plU]

In a similar fashion, the cutoff independence of the repulsive U
case may be established.



Cutoff independence of results

Consider the spin-triplet channel. To O(U?3),

F 9

o

F3
H

LTI
il

IR

49
o
49
||
44
¢
¢
44
;

.....

Diagonalizing this, we will find again that TC ~ Q* — Qog_l/p‘(ﬂ

However, a careful perturbation analysis leads us to consider

— g% 4 ' % ¢ log (W /)

3
rnn
A4 ~
€9 e

I
o

++++

Bl BESESRRS B )
This quantity has precisely the log divergence needed to eliminate

the cutoff dependence, as in the negative U case. The analysis in the
singlet channel is more technical but conceptually identical.



Summary of weak-coupling perspective

The bare repulsive interaction U>0 prevents onsite pairing. States with
sign-changing order parameters are unaffected by it.

Effective interaction in the Cooper channel: obtained by integrating out
modes away from the Fermi energy.

7 7 7./ 2
Tk, k) = U+ ag(k, KYU? + - -
O(U?) interactions: induced by particle-hole fluctuations. They are non-

local, and attractive in unconventional pairing channels.

By integrating out high energy modes, we produce an effective action
with states only in a narrow energy shell around Eg.

This is precisely the effective field theory studied by R. Shankar and J.
Polchinski.



Discussion

We have shown, using well-controlled methods that the ground state of
the Hubbard model at small U is an unconventional superconductor.

First analysis of superconductivity from bare repulsive interactions: Kohn
and Luttinger (KL). Non-analyticities occur at T=0 in x(2kr)due to

sharpness of the Fermi surface. They give rise to Friedel osci
which mediate attraction among electrons. This gives rise to
pairing in a 3D electron gas.

lations

D-WaVeE

Our results are identical to Kohn-Luttinger theory in the limit of dilute

electron concentrations in 3d.

“Spin fluctuation exchange” mechanisms are extrapolations of the present
results into a more strong coupling regime. However, these approaches

are uncontrolled in this limit.



Discussion

While we do obtain d-wave pairing on a square lattice, there are important
discrepancies between our results and the physics of real materials.

T.is an emergent scale exponentially smaller than bare energy scales.

Above it, the system is a well-behaved Fermi liquid. There are no bad
metals, non-Fermi liquids, etc.

Induced pairing interactions are non-local in the weak-coupling limit. Gap
functions have more structure in momentum space than is seen in highly
correlated systems.

In the weak-coupling limit, the gap function summed over the FS is zero.
Sign changing solutions which violate this criterion (as proposed for the
pnictides) reflect underlying strong coupling phenomena.

Competition between non-superconducting orders is absent in the weak-
coupling limit. In the weak-coupling limit, a well-behaved Fermi liquid is
present, and it is destabilized only by a BCS instability.



lll. Effect of longer range
Interactions



Longer range repulsive interactions

Generically, longer ranged, repulsive interactions, V, weaken pairing
strengths of the Hubbard model.

Scattering amplitude in the Cooper channel (weak-coupling limit):

Dk, EY=U~+V +aU?+bV2+cUV +---

V directly competes with induced attraction and tend to suppress pairing
tendency of the Hubbard model.

At what scale V, is superconducting solutions from the Hubbard model
suppressed?

2 reasonable guesses:

1) V()NTC 2) VONUa



Longer range repulsive interactions

Generically, longer ranged, repulsive interactions, V, weaken pairing
strengths of the Hubbard model.

Scattering amplitude in the Cooper channel (weak-coupling limit):

Dk, EY=U~+V +aU?+bV2+cUV +---

V directly competes with induced attraction and tend to suppress pairing
tendency of the Hubbard model.

At what scale V, is superconducting solutions from the Hubbard model
suppressed?

Our conclusion: 2) V() ~ [J%




Extended Hubbard model

H=H H,
0+ Hint Consider electrons on a
square lattice for simplicity.
— —1 E c Cioc + h.c.
(1j)0

H,.,; = UZnZan + Van] + VvV’ Z ;70

(25) ({23))
In the weak-coupling limit: U — 0,V —0,V’ — 0
The phase diagram depends sensitively on how this limit is taken.

WV ~U?*/W
2 distinct asymptotic regimes:

NV ~ U



—7—‘—)— o —P—'—'—P— -t
I () R (22) (2b)

— s T T
(2¢) (2d) (2e)

Obtain effective interactions to O(U%): Only first order
correction from V is needed - the next correction is O(V?) ~
O(U%) and is negligible.



v

1) V ~ U2/W

Bare V repels states with
nearest-neighbor pairing.

It competes with the
induced attractive

interactions ~ O(U%/W).

dxy, g-wave states are
unaffected by it.

dz2_,Pairing survives for a finite V near half-filling. It's
pairing strength decreases as V increases.

“1”: extended s-wave state ~ Real(x+iy)?.
“xy(x2-y2)": g-wave state ~ Im(x+iy)*.



1) V ~ UYW, V'~
V

The effect of a non-zero second-neighbor repulsive interaction
V'~V ~ U%/W. Is surprisingly weak.

Pairing strengths decrease, but
superconductivity remains stable.

Closer to half-filling, the dx?-y?
state is also stable against V' ~ V

A. V. CHUBUKOV., AND S. A. KIVELSON PHYSICAL 124516 (2012)
order in all the bare interactions, whic he form
Ok K T (kKD 2 Ok KD 2 10k KD
—xy O ,
2 2 U KD @3>
Xy (x Ty T)
to show that n

$ Ok KD In [7] Xk KD (20D @4
<0
here is the density of states at the Fermi energy. The first
t brained from diagram 2a and the second from 2t

2a and the second from 2b in
Yk — Ky In rﬁ-l

On a lattice, first order repulsion does not preclude more
“extended” variants of a given pairing symmetry.



2)V ~ U

Since V~U, in obtaining effective interactions to O(U?), we must consider all
contributions to order V2.

The induced attractive interactions are unable to overcome V in the weak-
coupling limit. All states having nearest-neighbor pairing are disfavored.

When V'=0, the dxy and g-wave states dominate the phase diagram: Cooper
pairing occurs at distances larger than the range of V.

With non-zero V’, the g-wave state remains the dominant superconducting
solution.

Similar results involving Jellium models with screened Coulomb interactions
and r; << 1: Kohn Luttinger instability persists at large angular momentum

(A. Chubukov and M Yu Kagan, J. Phys. Condens. Matt. 1, 3135 (1989)).



Results at intermediate coupling
DMRG solution of 2-leg ladders with extended interactions.
A, =E(S=1)—E(S=0) (L— o)

U=8,V' =0

Spin-gap remains finite in
the presence of non-zero V.

Superconducting correlations: power law decay, and “d-wave like”.
Amplitude of Pair-field susceptibility decreases with V.

Longer ranged interactions have a weak effect even at intermediate coupling.



Role of screening in conventional superconductors

Electron-phonon mediated superconductors are insensitive to the range of
Coulomb interactions.

2 well-separated energy scales: 1) wp, 2) EFr wp << Ep

Scattering amplitude in the Cooper channel (weak-coupling limit):

I‘(,l%, ,lAg’;w) = (u*—A)/p (4 = dimensionless repulsive
interaction (instantaneous)
TS . A= d |
— — dimensionless attractive
14 p log[EF/wD] interaction (retarded)

~ 1/log|Er/wp]

Phonon-mediated attraction is local, and largely insensitive to the range of
Coulomb interactions.



Summary

1) Unconventional superconductivity from repulsive interactions is a robust
phenomenon. Itis stable against the inclusion of longer (but finite) ranged

repulsive interactions.

2) Pairing strengths decrease with longer ranged interactions but d-wave
pairing superconductivity remains present until V ~ U.

3) By contrast, electron-phonon superconductors are largely insensitive to
the presence of longer-range repulsive interactions - due to retardation.

4) This suggests a generic strategy for obtaining higher transition
temperatures: screening by a proximate polarizable medium could reduce

V, V'..., leading enhancement of T...



lll. Application: Raising T, of unconventional

superconductors



Screening due to proximate polarizable medium

7’[:%1 ‘|‘H2—|_Hznt

E E(k cl,wclka

Correlated metal

Z Es(k Cgkgc2ka - Z Va(g)n2(q)n2(—q)

Hint = Z Via(g)ni(q)n2(—q) Purely capacitive coupling

Single electron interlayer tunneling: will introduce disorder into the metal
if layer 1 is disordered. We will neglect it (and justify this below).



Enhanced screening by proximate polarizable medium

Integrate out layer 1: obtain effective Hamiltonian for just the metal.

eff — Z E2 CQkO-CQko' + Z V:eff (q)n2(_q)

_ 12 X : charge susceptibility of
Veff(q) — V2(Q) V1,2(q)X(q7w) polarizable medium.

In lattice systems, these are effective density-density interactions:
To gain qualitative understanding, consider
2 : V; oy g q g

interactions with finite range that are obtained
from the screening process.

Consider this effective model in weak and intermediate coupling.

In both cases, pairing strengths are enhanced as the short-distance
polarizablity of the medium increases.



Strategies for choosing the polarizable medium

(A) Couple metals capacitively to the correlated metal.

Top gate alone: screens Coulomb interactions to dipolar
interactions V(r) ~ 1/r3.

Top and bottom gates: exponential screening of Coulomb
interactions.

(B) Interfaces with amorphous dipolar liquids and anti-ferroelectrics.

Screening occurs over short distances.

The experimental test: couple optimally doped cuprate films to polarizable

media. If screening of long-range interactions by the polarizable medium
occurs, T, is enhanced beyond optimal doping value.



The end





