

NATIONAL HIGH MAGNETIC FIELD LABORATORY 2017 ANNUAL RESEARCH REPORT

Thermal conductivity and magnetic torque study in the honeycomb magnets

Lee, M., Leahy, I.A., Pocs, C.A., Siegfried, P.E. (University of Colorado Boulder); Graf, D. (National High Magnetic Field Laboratory)

Introduction

Low-dimensional spin systems display a multitude of quantum phenomena, providing an excellent forum for the exploration of unconventional ground states and their exotic excitations. The Kitaev model [1] has attracted a particular attention, both theoretically and experimentally, because it possesses an exactly solvable quantum spin-liquid (QSL) ground state and has possible realizations in a number of candidate materials. Thermal transport measurements combined with magnetic torque have been a powerful tool for elucidating the itinerant nature of QSLs as a result of their high sensitivity to the low-energy excitation spectrum, and in fact studies of low-dimensional insulating quantum magnets have revealed significant contributions to heat conduction from unconventional spin excitations.

Experimental

We have studied in-plane thermal conductivity and magnetic torque using capacitive cantilever for three different single crystalline insulating magnets, $RuCl_3$, $CrCl_3$ and Na_2IrO_3 . All three of them exhibit quasi 2-dimensional honeycomb lattice plane. Thermal conductivity ($CrCl_3$) and magnetic torque ($RuCl_3$) measurements as a function of applied field with *in-plane* rotation, were performed at SCM-2 and magnetic torque of Na_2IrO_3 measurement was done at Cell 9 resistive magnet in NHMFL at Tallahassee FL.

Results and Discussion

Our result on RuCl₃ and Na₂IrO₃ revealed a couple of common experimental ground of the QSL candidate materials and related physics. First, spin-liquid phase is likely to emerge in a system with a feeble long range order as shown in the phase of diagram of RuCl₃ (Fig 1). For instance, the observation of multiple Neel temperatures in RuCl₃ depending on c-axis stacking properties indicates the fragility of magnetic order. Second, field-induced spin-disordered state may host

Figure 1 Phase diagram of RuCl3 inferred from the magnitude of magnetic torque (color). White circles indicate the field at which κ (H) becomes the minimum (Adapted from [2])

the QSL phase, which has been relatively overlooked area of the phase diagram. It is encouraging to observe strongly non-linear torque in Na2IrO3 (Fig. 2), which is very similar to what was observed in RuCl₃ near the field-induced spin-disorder: It motivates us to investigate the magnetic torque and heat transport in the compounds that belong to the same family [e.g. Na₂RuO₃, and (Na_{1-x}Li_x)₂IrO₃]. Moreover, thermal conductivity also provides a unique window into the interactions between phonons and spin degrees of freedom to identify qualitative changes in spin-phonon interaction resulting from the presence (or lack of) strong SOC, via comparison among similar

Figure 2 Magnetic torque with in-plane rotation. Surface plot is a fit of the data (red circles) a non-linear magnetic susceptibility tensor.

magnetic insulators, where varying composition controls the SOC strength while maintaining a similar crystal structure $[RuCl_3 vs. CrCl_3 and Na_2IrO_3 vs. Na_2RuO_3]$. In such case, SOC is only one parameter that can be varied, and the effect on spin-phonon interaction of varying the type or geometry of magnetic interaction will be further explored.

Acknowledgements

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. This work was supported by the U.S. DOE, Basic Energy Sciences, under Award No. DE-SC0006888.

References

A. Kitaev, Ann. Phys. 321, 2 (2006).
I. A. Leahy et al., Phys. Rev. Lett. 118 187203 (2017).