Lecture 2

Realizations of genons
and twist defects
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Realization 1: Bilayer FQH states

* Bilayer FQH states with top and bottom gates
* |Inter-layer edge state tunneling

* Side view
layer 1 — |

layer2 —— |

Barkeshli & XLQ, ‘13



Realization 1: Bilayer FQH states

* With proper distance between two layers, it is possible
to induce relevant inter-edge tunneling over the bridge,
so that the two layers are connected by a “staircases”.

» Staircases are different from branch-cut lines, but good
enough for changing topology. Adding a staircase (one
pair of gates) adds genus by 1.=»One staircase = 2
genons

 Uncoupled edges do not destroy topological protection.




Realization 1: Bilayer FQH states

* Conditions/Requirements:
*x Separate depletion of top and bottom layers
x Strong inter-edge interaction making the inter-

edge tunneling relevant

2—4
Dimensionless interaction strength 1 > 4 > nm12+4

x |[nter-layer tunneling t large enough to gap the
edge states, but much smaller than the bulk gap

e Separate depletion of two
layers by top and bottom
gates, and tunned tunneling
in bilayer system has been l
demonstrated (Goldhaber-Gordon group, '10,/11)




Experimental consequences (1): Zero bias
peak

 Tunnelling current in the inter-layer channel
* Tunnelling of (g, —q) type quasi-particles

* Edge plays the role of an ‘ [V
“STM tip”

* Only when the tip position W -
is at the end of the staircase,

a zero bias peak appears.

)

e Each end of the staircase is a
local “parafermion” zeromode.

* The zero mode is exponentially
localized, even if there are gapless edges



Experimental consequences (1): Zero bias
peak

* Finite size effect leads to an exponential splitting
between the topological ground states

 Multiple peaks in the tunneling conductance
* An experimental probe of topological ground state

degeneracy
energy




Experimental consequences (1): Zero bias
peak

* Tunneling conductance can be calculated from a

master equation approach for the three-state rotor
model (for bilayer Laughlin 1/3 state)

m—1

dpy,
= 'yt npne — I | = 0,
7t Z [ n+l,nPn+l n.n+1 ﬂ} - B
=1 Gt
 Three peaks exist in general at 3|
energies £, — £y, E5 — E5, ol :
El — E3. (Barkeshli&Oreg&Qi in :
preparation) . _-'
e




Experimental consequences (2): Quantum
Interference

e Two staircases. Four QPC’s. Two non-commuting
interference loops L4, L,

I + I

» Quasi-particle tunneling at I; changes the topological
charge in I'; 1 loop.



Experimental consequences (2): Quantum
Interference
e Current noise cross correlation

S12(t) = 5 ({1, (£), 1,(0)}) — (I, ()1, (0))

e A quasi-particle tunneling in loop 1 changes the charge
in loop 2 permanently

* =>Longtime correlatlon
even at finite
temperature
Si,(t) #0for|t| » 1/T
(but [t| < T the exponentially long life time of the
topological states.) The nonlocal contribution is
proportional to Iy I, [ I

— b
= 5.‘~. .~§' ‘ﬂ" -
T ~§ - '~



Realization 2: Fractional Chern Insulators

* Fractional Chern insulators (FCI) are lattice

FQH states with no magnetic field (sunetal,
Neupert, et al, Tang et al, PRL 2011)

* Fractional Chern insulators can be mapped

to fractional quantum Hall states (x.a 11,
see also Scaffidi&Moller, arxiv ‘12, Wu,Regnault&Bernevig, PRB 12, Liu&Bergholtz arxiv’
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FCI with higher Chern number

* FCl with a Chern number 2 band are mapped to bilayer
FQH states, with the two layers “nested” w/ each other

(Barkeshli&Qi ‘12, Wu,Regnault&Bernevig ‘13)

=

C =2

* Realizing bilayer FQH
states with an enhanced
translation symmetry.
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Topological nematic states

e Lattice translation exchanges the two layers
TTTITSTTTI YY" —

* =»Branch cut between the two layers can be created by
lattice dislocation! Rotation symmetry is broken
“topologically”. This state is called a topological nematic




Topological nematic states
* Dislocations become genons.

* Advantages of this realization: genons are point
defects with log interaction.

* Zy generalization can be done for Chern number N.
* Three types of topological nematic states
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Numerical probe of topological nematic states

* Ground state degeneracy depending on system size
and twisted boundary condition.

* For even by odd lattice (B), or lattice with a twist (A),
the ground state degeneracy is reduced from |m? — [?|
to |m + ll (Barkeshli&Qj PRX ‘12)

* Verified recently in exact diagonalization (wu&Jain&sun
1309.1698)

12 2n 12 2n+1



An “application” of genons: generalized
Kitaev model

* Twist defects carry parafermion zero modes, which are
generalizations of Majorana zero modes.

* Twist defects can be used as “slave particles” which
are useful for solving certain spin models.

e Goal: obtain spin models b
with non-Abelian \
topologically ordered phases.
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Hong-Chen Jiang, Maissam Barkeshli, FEX L x"x X x X8 x\x,
Ronny Thomale&XLQ, in preparation. ; _ |



Kitaev’'s honeycomb model

_ X __X y_ .y Z~5Z
H = =Y tinkJx0i 0 — Ly—tinkJy0; 9j " Lz-link J200 ]

* An exact solvable spin
model. («itaev 06)

* Conserved quantities on
each plaquette

Or = ijyer Hij
= 01202y03x04705606x
¢ [H, 01] = (

* For fixed value of 0y, 2 5 3
residual states per unit cell ; l\




Kitaev’'s honeycomb model

* Majorana representation

* The spins can be written as
bilinear form of the Majorana

fermions:
Z . I 2
O-;U,y, —_— z,yz 7y7 ,r]Z

* Alocal constraint yyy7n; = 1

projects the Majorana fermion
Hilbert space back to the spin
Hilbert space.

* In Majorana fermions, the

conserved quantity is O; =
. Qij o Aij

H(U)EI Yi )/

| T—— < [1,1)——
| |)—— <+ |0,0)——
|0, 1)—
|1, 0)0—
Physical Enlarged
Hilbert Hilbert
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Kitaev’'s honeycomb model

* In the enlarged Hilbert space, the Majorana fermions
iy Uy " = . is classical, and n; fermi f
ly; °¥; © = wj is classical, and 7; fermions are free

(with a quadratic Hamiltonian)

* H =Y uj)ijinin;

* More generic models can be defined by adding terms
of the form H;;H;j, or similar terms along longer

chains, which translates to n;n,u;;ui.
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Kitaev’'s honeycomb model

* Phase diagram

Jz

Jan =0 Jun >0

* Non-Abelian Ising anyon phase
appears with finite J,,,,

e Chiral Majorana edge states

* Plaquette operator Oy is the
Z, 1 flux.




Genon realization of the Kitaev model

 Genons/twist defects can be used to realize the
Majorana representation of the Z, Kitaev model.

14 L— L > 0
X
:U |O, O)— ...... > | \L>
x)(/x\x 0, 1)
Y 144 |1, 0)—— Constraint
4 Majorana zero modes y*¥Yy?n =1 |spin Hilbert space
genon realization l
in (220) Constraint
total charge -
v=1/2 —> X QL = ";\\{,
/X\ ’ ~
U >
v=1/2 e X’



Genon realization of the Kitaev model

-——
- ~

* Spin operators = Wilson /70y NNy
\
loop operators around 2 genons i ; \
. . I z'x“x
* Interaction terms in the D
Hamiltonian =» Wilson loop Ty 0y,

—————

operators around 4 genons

* All terms commute §
with the constraints 0y L
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Build the Z,, Kitaev model with genons

* Once the Majorana zero modes are represented by
genons, the model can be easily generalized to
parafermionic genons

* Example: 4 genons in (330) state (Laughlin 1/3 in each
layer).

» Degeneracy 3% = Adding constraint that the particle

type at loop L to be trivial=®» 3 states, equivalent to 1/3
Laughlin state on a torus
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Build the Z,, Kitaev model with genons

* The spin operators T; , 3 can be realized by Wilson
loops. Each pair of Wilson loops have one crossing,
leading to the algebra

i2m

LT, = wliT, i <j,w=en
A
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Build the Z,, Kitaev model with genons

* Each site of the spin modelis a Z,, rotor.

e Forn = 3, the explicit form is (w = e'2™/3)

1 0 O 0 1 0 0 0 w?
T1=<0 w? 0>,T2=<0 0 1>,T3= 1 0 0
0 0 w 1 0 0 0 w O

* Hamiltonian has the same form as Z, case
H=- Zx—link]xTille _ Zy—link]yTizrrjz' Zz—ll'nk]zTiBTj3 +h.c

e Hamiltonian can be N
. . //T x \\L
realized by Wilson loop = ! }
| /’—-\\

operators ) X"X\x b N

\ / / ; \

* Related to the anyon \7:1_ 3 & X\xxx }

- /1 : I

lattice models (Ludwig et al)




Emergent Z,, gauge field

* If we temporarily release the constraint at each site,
conserved quantities U;; can be defined on the links,

which are Z,, gauge fields
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Emergent Z,, gauge field

* The Z,, Kitaev model describes parafermion hopping on

a honeycomb lattice, coupled with the emergent Z,,
gauge field.

* On-site constraint=2 Projection to gauge invariant states
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Properties of the Z,, Kitaev model

Plaquette conserved quantities: T I TZT
Each plaquette has a conserved Z4 T

. 3 I3
flux O; = [l<;j>e; Uij- Returning to T
the spin model, Oy is a product of - 7
Hamiltonian terms. 2T T 1

Large loop operators
on a torus:

L3 — T3T3+T3T3+
Ll —_ T1T1+T1T1+
[L1,3, H] — O,
L1L3 —_ L3L1(l)2,




Large loop operators as Wilson loops

* The large loop operators can be understood as Wilson
loops.

_ X

* Non-commuting 4.
large loops lead X
to exact ground

state degeneracy 3.

X




Abelian phase: Z,, toric code

The Z,, model is not solvable.

In the an-isotropic limit, one can obtain
a Z,, toric code (lattice gauge theory)
phase. (Kitaev'03)

Jz > Jx, ]y limit
Strong coupling along I
red bonds J,T5;T3; 7

The low energy state of each
bond is a n-state rotor

The rotors form a square lattice
with the dynamics of Z,, gauge theory.

Hote = —Jote 2o L1 L, LT LY an exact solvable model.



Attacking the isotropic limit: starting

from single chain
* Asingle chain of this Z,, Kitaev model is mapped to a

parafermion chain (rradkin-kadanoff ‘80, P. Fendley 12)
X

X % A i S,
X ES X x .

* Genons carrying a parafermion zero mode at each site.
* Forn = 3 case, the coupled genons are equivalent to a

3-state Potts model. ] Iy
a B 4 ™) X 4 ™)
x--T——x YA p— e X 4-—FX YA p——
Two genons define Spin coupling term

a new spin L4 LizLitq3




Single chain: Z5 Potts model CFT

* ForJ, = ]y, the model is critical (p. rendley ‘12)

e 3-state Potts model CFT ¢ = g

* Verified by entanglement entropy from DMRG

0.90

—m— N=72 (c=0.84)
—e— N=96 (c=0.83)
—a—N=192 (c=0.81)

0.85 +

0.80 +

0.75 -

Entanglement entropy

0.70

22 24 28 28 3.0 3.2 3.4
CFT(x)



Single chain: FQH edge state picture

 Genon arrays can be understood as FQH edges with
alternating mass terms.

e Chiral Luttinger liquid tﬁeory descrlntlon (Wen)

O_ =, — gbz sector; \
L = ( - ) + Vi (x) cosmeo_ + Vz(x) cosmb_

* Critical point described by parafermion CFT when the
two regions have the same length. (cf Lecheminant et al ‘02)

®b1r
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Coupled chains: towards a non-Abelian
phase

 The 2D Hamiltonian breaks time-reversal. (Different
from Z, case)

* If the chains are coupled chirally, we can obtain a 2D
chiral topological phase. (r. Mong et al ‘13)




On-going numerical results: Gapped

isotropic phase

* Cylinder with isotropic
couplingJ, =/, =], >0
* DMRG calculation finds
a gapped phase.

* Indication of phase
transition when J,. /], is
tuned.

1.49

Entropy

Isotropic limit: Jx=Jy=Jz=1

I |

3 chains

| L | L | L |
10 20 30 40




Phase boundary

L4

5.
. o I e
. . - [ i -a-N=48
* Indication of phase ‘ nooT oS
transition when = et -*j}\\
. . . i : “ Yo7 7 78 4
anisotropy is introduced. % : o[
. : g "E,
(Calculation for 3 chains) [, .sss®™ h‘"‘*--.. o0
| (a) J,=J =(3-J )12 AN
R
3.0
| (b) J,=J /2=(3-) )/3 - NegO
25 . —a— N=72
‘ —h— N=84
- i —v— N=96
sol '“I; Ale —e— N=108
S ' . *l-.__._.' l:;
° Y Y
E15 .._l.l:l I:';
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1.0 : 8
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Topological entropy

e Topological entanglement
entropy S = alL —vy 3

4
L (a) Isotropic (Jx=Jy=Jz)

* We obtain a topological
entropy y = 1.69 + 0.18

* The topological entropy of
the Z3 parafermion TQFT &' ~ -+ |

isD =+/3(1+¢?), B T B R
¢ =(V5+1)/2,
y =logD = 1.19,

* Probably there is a large finite size effect. Possible
solution by optimizing the model.

Use Ly=3~5
TF  v=1.69(18)

Entanglement entropy S(Ly)




Summary of the second lecture

Genons can be realized in experimentally accessible
bilayer FQH states

Tunneling and quantum interference measurements
can probe the parafermion zero modes and non-
Abelian qubits of genons.

Genons can be realized in topological nematic states
by lattice dislocation.

Genons can be used as “slave particles” to construct
semi-solvable Z,, generalizations of Kitaev model, with
possibly a non-Abelian topological phase. More
numerical works are required for understanding this
model.



Summary

Twist defects can be defined in topologically ordered
states with topological symmetry.

Genons as branchcut defects, which are also genus
generators

Non-Abelian genons can be defined even in an
Abelian theory. Genons in Halperin states can have
Majorana statistics and it’s generalization.

Genons can be realized in a wide range of systems,
such as bilayer FQH, FCI, graphene pentagon defect.

In Abelian states, all point and line defects can be
classified and their topological properties can be

calculated.
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