
Lecture 2 

Realizations of genons 
and twist defects 



A sketch of the first lecture 

× × 

Particle-hole pair 

exciton (q,-q) 

braiding 

1 2 3 4 

genons as the end 
of branchcut line 

Parafermion zero modes and 

𝑚 − 𝑙 quantum dimension 

Non-
Abelian 
statistics 



• Bilayer FQH states with top and bottom gates 

• Inter-layer edge state tunneling 

• Side view 

 

 

• 3D view 

Realization 1: Bilayer FQH states 
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Barkeshli & XLQ, ‘13 



• With proper distance between two layers, it is possible 
to induce relevant inter-edge tunneling over the bridge, 
so that the two layers are connected by a “staircases”. 

• Staircases are different from branch-cut lines, but good 
enough for changing topology. Adding a staircase (one 
pair of gates) adds genus by 1.One staircase = 2 
genons 

• Uncoupled edges do not destroy topological protection. 

Realization 1: Bilayer FQH states 

𝐿1 

𝐿2 

𝐿2 𝐿1 



• Conditions/Requirements: 
⋆ Separate depletion of top and bottom layers 
⋆ Strong inter-edge interaction making the inter-
edge tunneling relevant 

Dimensionless interaction strength 1 > 𝜆 >
𝑚2−4

𝑚2+4
 

⋆ Inter-layer tunneling 𝑡 large enough to gap the 
edge states, but much smaller than the bulk gap 

• Separate depletion of two  
layers by top and bottom  
gates, and tunned tunneling  
in bilayer system has been  
demonstrated 

Realization 1: Bilayer FQH states 

(Goldhaber-Gordon group, ’10,’11) 



• Tunnelling current in the inter-layer channel 

• Tunnelling of (𝑞, −𝑞) type quasi-particles 

• Edge plays the role of an  
“STM tip” 

• Only when the tip position 
is at the end of the staircase, 
a zero bias peak appears. 

• Each end of the staircase is a 
local “parafermion” zeromode. 

• The zero mode is exponentially  
localized, even if there are gapless edges 

 

Experimental consequences (1): Zero bias 

peak 

𝐼, 𝑉 𝐼, 𝑉 

× × 

𝑥 



• Finite size effect leads to an exponential splitting 
between the topological ground states 

• Multiple peaks in the tunneling conductance 

• An experimental probe of topological ground state 
degeneracy 

Experimental consequences (1): Zero bias 

peak 
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• Tunneling conductance can be calculated from a 
master equation approach for the three-state rotor 
model (for bilayer Laughlin 1/3 state)  

 

 

 

• Three peaks exist in general at 
energies 𝐸2 − 𝐸1, 𝐸3 − 𝐸2,  
𝐸1 − 𝐸3.  (Barkeshli&Oreg&Qi in  

preparation) 

Experimental consequences (1): Zero bias 

peak 



• Two staircases. Four QPC’s. Two non-commuting 
interference loops 𝐿1, 𝐿2 

 

 

 

 

 

 

 

• Quasi-particle tunneling at Γ1  changes the topological 
charge in Γ1Γ2 loop.  

Experimental consequences (2): Quantum 

interference 
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• Current noise cross correlation 

𝑆12 𝑡 =
1

2
𝐼1 𝑡 , 𝐼2 0 − 𝐼1 𝑡 𝐼2 0   

• A quasi-particle tunneling in loop 1 changes the charge 
in loop 2 permanently 

• Long time correlation 
even at finite  
temperature 
𝑆12 𝑡 ≠ 0 for 𝑡 ≫ 1/𝑇  
(but 𝑡 ≪ 𝜏 the exponentially long life time of the 
topological states.) The nonlocal contribution is 
proportional to Γ1Γ2Γ1 Γ2 . 

Experimental consequences (2): Quantum 

interference 



• Fractional Chern insulators (FCI) are lattice  
FQH states with no magnetic field (Sun et al,  

Neupert, et al, Tang et al, PRL 2011) 

• Fractional Chern insulators can be mapped  
to fractional quantum Hall states (XLQ ’11,  

see also Scaffidi&Moller, arxiv ‘12, Wu,Regnault&Bernevig, PRB ’12, Liu&Bergholtz arxiv’ 
12) 

𝑡𝑒𝑖𝜙 

𝑡′ 

𝑡′′ 

Realization 2: Fractional Chern Insulators 

𝐵 
2𝜋 

𝐶 = 1 



• FCI with a Chern number 2 band are mapped to bilayer 
FQH states, with the two layers “nested” w/ each other 
(Barkeshli&Qi ‘12, Wu,Regnault&Bernevig ‘13) 

 

 

 

 

 

 

 

 

 

 

• Realizing bilayer FQH  
states with an enhanced 
 translation symmetry. 

 

𝐵 

FCI with higher Chern number 

𝐵 
𝜋 

𝐶 = 2 

𝜋 



• Lattice translation exchanges the two layers 

 

 

 

 

• Branch cut between the two layers can be created by 
lattice dislocation! Rotation symmetry is broken 
“topologically”. This state is called a topological nematic 
state 

Topological nematic states 



• Dislocations become genons. 

• Advantages of this realization: genons are point 
defects with log interaction. 

•  𝑍𝑁 generalization can be done for Chern number 𝑁. 

• Three types of topological nematic states 

 

Topological nematic states 



1 2 2𝑛 … 1 2 2𝑛 + 1 … 

A B 

• Ground state degeneracy depending on system size 
and twisted boundary condition. 

• For even by odd lattice (B), or lattice with a twist (A), 
the ground state degeneracy is reduced from |𝑚2 − 𝑙2| 
to |𝑚 + 𝑙|. (Barkeshli&Qi PRX ‘12) 

• Verified recently in exact diagonalization (Wu&Jain&Sun 

1309.1698) 

 

Numerical probe of topological nematic states 



• Twist defects carry parafermion zero modes, which are 
generalizations of Majorana zero modes. 

• Twist defects can be used as “slave particles” which 
are useful for solving certain spin models.  

• Goal: obtain spin models 
with non-Abelian  
topologically ordered phases.  

An “application” of genons: generalized 

Kitaev model 

Hong-Chen Jiang,  Maissam Barkeshli,  
Ronny Thomale&XLQ, in preparation. 



 

• An exact solvable spin 
model. (Kitaev ‘06) 

• Conserved quantities on  
each plaquette 
𝑂𝐼 =  𝐻𝑖𝑗𝑖𝑗 ∈𝐼   

= 𝜎1𝑧𝜎2𝑦𝜎3𝑥𝜎4𝑧𝜎56𝜎6𝑥   

• 𝐻,𝑂𝐼 = 0  

• For fixed value of 𝑂𝐼, 2  
residual states per unit cell 

Kitaev’s honeycomb model 

𝐻 = − 𝐽𝑥𝜎𝑖
𝑥𝜎𝑗

𝑥
𝑥−𝑙𝑖𝑛𝑘 −  𝐽𝑦𝜎𝑖

𝑦
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𝑦

𝑦−𝑙𝑖𝑛𝑘 -  𝐽𝑧𝜎𝑖
𝑧𝜎𝑗

𝑧
𝑧−𝑙𝑖𝑛𝑘  
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• Majorana representation 

• The spins can be written as 
bilinear form of the Majorana 
fermions: 

 

• A local constraint 𝛾𝑖
𝑥𝛾𝑖

𝑦
𝛾𝑖
𝑧𝜂𝑖 = 1 

projects the Majorana fermion 
Hilbert space back to the spin 
Hilbert space. 

• In Majorana fermions, the 
conserved quantity is 𝑂𝐼 =

 𝑖𝛾
𝑖

𝛼𝑖𝑗𝛾
𝑗

𝛼𝑖𝑗

𝑖𝑗 ∈𝐼  

Kitaev’s honeycomb model 

Physical 
Hilbert 
space 

Enlarged 
Hilbert 
space 
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• In the enlarged Hilbert space, the Majorana fermions 

𝑖𝛾
𝑖

𝛼𝑖𝑗𝛾
𝑗

𝛼𝑖𝑗 = 𝑢𝑖𝑗  is classical, and 𝜂𝑖 fermions are free 

(with a quadratic Hamiltonian) 

• 𝐻 =  𝑢𝑖𝑗𝐽𝑖𝑗𝑖𝜂𝑖𝜂𝑗𝑖𝑗  

• More generic models can be defined by adding terms 
of the form 𝐻𝑖𝑗𝐻𝑗𝑘 or similar terms along longer 

chains, which translates to 𝜂𝑖𝜂𝑘𝑢𝑖𝑗𝑢𝑗𝑘. 

Kitaev’s honeycomb model 
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• Phase diagram 

 

 

 

 

 

• Non-Abelian Ising anyon phase  
appears with finite 𝐽𝑛𝑛 

• Chiral Majorana edge states 

• Plaquette operator 𝑂𝐼 is the 
𝑍2 𝜋 flux. 

Kitaev’s honeycomb model 

𝐽𝑥 

𝐽𝑦 

𝐽𝑧 

𝐽𝑥 + 𝐽𝑦 + 𝐽𝑧 = 1 

𝐽𝑛𝑛 = 0 𝐽𝑛𝑛 > 0 

𝑍2 𝑍2 

𝑍2 𝑍2 𝑍2 𝑍2 

gapless Ising 



• Genons/twist defects can be used to realize the 
Majorana representation of the 𝑍2 Kitaev model.  

Genon realization of the Kitaev model 

spin Hilbert space 4 Majorana zero modes 

Constraint 
𝛾𝑥𝛾𝑦𝛾𝑧𝜂 = 1  

genon realization 
in (220) 

× 

× 
× × 

𝛾𝑥 𝛾𝑦 

𝛾𝑧 

𝜂 

× 
× × × 

× 
× × × 

𝐿 

Constraint 
total charge 
𝑄𝐿 = 0  𝜈 = 1/2 

𝜈 = 1/2 



• Spin operators  Wilson 
loop operators around 2 genons 

• Interaction terms in the  
Hamiltonian  Wilson loop 
operators around 4 genons 

• All terms commute 
with the constraints 

Genon realization of the Kitaev model 

× 

× 
× × 

𝐿 

𝜎𝑥 𝜎𝑦 

𝜎𝑧 

𝐿 × 
× 

× × 
𝜎𝑥 

𝜎𝑦𝑖𝜎𝑦𝑗  

𝜎𝑧 

× 
× 

× × 



• Once the Majorana zero modes are represented by 
genons, the model can be easily generalized to 
parafermionic genons 

• Example: 4 genons in (330) state (Laughlin 1/3 in each 
layer).  

• Degeneracy 32  Adding constraint that the particle 
type at loop 𝐿 to be trivial 3 states, equivalent to 1/3 
Laughlin state on a torus 

Build the 𝑍𝑛 Kitaev model with genons 

× 

× 
× × 

𝐿 |0〉 

|1〉 

|2〉 



• The spin operators 𝑇1,2,3 can be realized by Wilson 
loops. Each pair of Wilson loops have one crossing, 
leading to the algebra  

𝑇𝑖𝑇𝑗 = 𝜔𝑇𝑗𝑇𝑖 , 𝑖 < 𝑗, 𝜔 = 𝑒
𝑖2𝜋
𝑛  

 

Build the 𝑍𝑛 Kitaev model with genons 

× 

× 
× × 

𝐿 

𝑇1 𝑇2 

𝑇3 



• Each site of the spin model is a 𝑍𝑛 rotor. 

• For 𝑛 = 3, the explicit form is (𝜔 = 𝑒𝑖2𝜋/3) 

𝑇1 =
1 0 0
0 𝜔2 0
0 0 𝜔

, 𝑇2 =
0 1 0
0 0 1
1 0 0

, 𝑇3 =
0 0 𝜔2

1 0 0
0 𝜔 0

 

• Hamiltonian has the same form as 𝑍2 case  

 

• Hamiltonian can be 
realized by Wilson loop 
operators 

• Related to the anyon  
lattice models (Ludwig et al) 

 

Build the 𝑍𝑛 Kitaev model with genons 

𝐻 = − 𝐽𝑥𝑇𝑖
1𝑇𝑗

1
𝑥−𝑙𝑖𝑛𝑘 − 𝐽𝑦𝑇𝑖

2𝑇𝑗
2

𝑦−𝑙𝑖𝑛𝑘 -  𝐽𝑧𝑇𝑖
3𝑇𝑗

3
𝑧−𝑙𝑖𝑛𝑘 + h. c. 

𝐿 × 
× 

× × 
𝑇1 

𝑇2𝑖𝑇2𝑗 

𝑇3 

× 
× 

× × 



• If we temporarily release the constraint at each site, 
conserved quantities 𝑈𝑖𝑗 can be defined on the links, 

which are 𝑍𝑛 gauge fields 

 

 

 

 

 

 

• 𝐻 = − 𝐽𝑖𝑗 𝑈𝑖𝑗𝑊𝑖𝑗 + ℎ. 𝑐.𝑖𝑗  

Emergent 𝑍𝑛 gauge field 

𝐿 × 
× × × 

𝑇1 

𝑇2𝑖𝑇2𝑗 

𝑇3 

× 
× × × 

𝐿 × 
× × × 

𝑇1 

𝑈𝑖𝑗 

𝑇3 
× 
× × × = 

𝑊𝑖𝑗  



• The 𝑍𝑛 Kitaev model describes parafermion hopping on 
a honeycomb lattice, coupled with the emergent 𝑍𝑛 
gauge field. 

• On-site constraintProjection to gauge invariant states 
𝑈𝑖𝑗 ∈ 𝑍3 

𝑊𝑖𝑗 Wilson 

loop operator 

Emergent 𝑍𝑛 gauge field 



• Plaquette conserved quantities: 
Each plaquette has a conserved 𝑍3 
flux 𝑂𝐼 =  𝑈𝑖𝑗<𝑖𝑗>∈𝐼 . Returning to 

the spin model, 𝑂𝐼 is a product of 
Hamiltonian terms. 

• Large loop operators 
on a torus:  

• 𝐿3 = 𝑇3𝑇3
+𝑇3𝑇3

+… 

• 𝐿1 = 𝑇1𝑇1
+𝑇1𝑇1

+… 

• 𝐿1,3, 𝐻 = 0, 

𝐿1𝐿3 = 𝐿3𝐿1𝜔
2, 

Properties of the 𝑍𝑛 Kitaev model 
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𝑇3 

𝑇3
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𝑇1 
𝑇1
+ 

𝑇1 
𝑇1
+ 

𝑇1 
𝑇1
+ 



Large loop operators as Wilson loops 
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× 

× × 
• The large loop operators can be understood as Wilson 

loops.  

• Non-commuting 
 large loops lead 
 to exact ground  
state degeneracy 3. 



• The 𝑍𝑛 model is not solvable. 

• In the an-isotropic limit, one can obtain  
a 𝑍𝑛 toric code (lattice gauge theory)  
phase. (Kitaev ’03) 

• 𝐽𝑧 ≫ 𝐽𝑥 , 𝐽𝑦 limit 

• Strong coupling along  
red bonds 𝐽𝑧𝑇3𝑖𝑇3𝑗 

• The low energy state of each 
bond is a 𝑛-state rotor 

• The rotors form a square lattice 
with the dynamics of 𝑍𝑛 gauge theory. 

• 𝐻eff = −𝐽eff  𝐿1𝐿2𝐿1
+𝐿2

+
𝐼  an exact solvable model. 

Abelian phase: 𝑍𝑛 toric code 

? 

𝐽𝑧 ≫ 𝐽𝑥, 𝐽𝑦  

𝐿1 

𝐿1
+ 

𝐿2 𝐿2
+ 



• A single chain of this 𝑍𝑛 Kitaev model is mapped to a 
parafermion chain (Fradkin-Kadanoff ’80, P. Fendley ‘12) 

 

 

• Genons carrying a parafermion zero mode at each site. 

• For 𝑛 = 3 case, the coupled genons are equivalent to a 
3-state Potts model. 

Attacking the isotropic limit: starting 
from single chain 

× × × × × × × × 

Two genons define 
a new spin 𝐿𝑖1 

Spin coupling term 
𝐿𝑖3𝐿𝑖+1,3 

𝐽𝑥 𝐽𝑦 



• For 𝐽𝑥 = 𝐽𝑦, the model is critical (P. Fendley ‘12) 

• 3-state Potts model CFT 𝑐 =
4

5
 

• Verified by entanglement entropy from DMRG 

Single chain: 𝑍3 Potts model CFT 



• Genon arrays can be understood as FQH edges with 
alternating mass terms. 

 

 

 

 

 

• Chiral Luttinger liquid theory description (Wen) 
𝜙− = 𝜙1 − 𝜙2 sector: 

ℒ = 𝜕𝜇𝜙−
2
+ 𝑉1(𝑥) cos𝑚𝜙− + 𝑉2(𝑥) cos𝑚𝜃− 

• Critical point described by parafermion CFT when the 
two regions have the same length. (c.f. Lecheminant et al ‘02) 

Single chain: FQH edge state picture 

× × × × × × × × 

𝜙1𝑅 
𝜙2𝑅 

𝜙1𝐿 
𝜙2𝐿 



• The 2D Hamiltonian breaks time-reversal. (Different 
from 𝑍2 case)  

• If the chains are coupled chirally, we can obtain a 2D 
chiral topological phase. (R. Mong et al ‘13) 

 

Coupled chains: towards a non-Abelian 
phase 

× × × × × × 

× × × × × × 

× × × × × × 

𝐽𝑧 

× × × × × × 

𝑡 𝑡′ 



• Cylinder with isotropic  
coupling 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 > 0 

• DMRG calculation finds  
a gapped phase. 

• Indication of phase  
transition when 𝐽𝑥/𝐽𝑧 is 
tuned.  

On-going numerical results: Gapped 
isotropic phase 

3 chains 

4 chains 
En
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o

p
y 
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o
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y 
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• Indication of phase 
transition when 
anisotropy is introduced. 
(Calculation for 3 chains) 

Phase boundary 

𝐽𝑧 

𝐽𝑥 𝐽𝑦 



• Topological entanglement 
entropy 𝑆 = 𝛼𝐿 − 𝛾 

• We obtain a topological  
entropy 𝛾 = 1.69 ± 0.18 

• The topological entropy of 
 the 𝑍3 parafermion TQFT  

is 𝐷 = 3 1 + 𝜙2 ,  

𝜙 = ( 5 + 1)/2,  
𝛾 = log𝐷 ≃ 1.19, 

• Probably there is a large finite size effect. Possible 
solution by optimizing the model. 

Topological entropy 



• Genons can be realized in experimentally accessible 
bilayer FQH states 

• Tunneling and quantum interference measurements 
can probe the parafermion zero modes and non-
Abelian qubits of genons. 

• Genons can be realized in topological nematic states 
by lattice dislocation. 

• Genons can be used as “slave particles” to construct 
semi-solvable 𝑍𝑛 generalizations of Kitaev model, with 
possibly a non-Abelian topological phase. More 
numerical works are required for understanding this 
model. 

Summary of the second lecture 



• Twist defects can be defined in topologically ordered 
states with topological symmetry. 

• Genons as branchcut defects, which are also genus 
generators 

• Non-Abelian genons can be defined even in an 
Abelian theory. Genons in Halperin states can have 
Majorana statistics and it’s generalization. 

• Genons can be realized in a wide range of systems, 
such as bilayer FQH, FCI, graphene pentagon defect. 

• In Abelian states, all point and line defects can be 
classified and their topological properties can be 
calculated. 

Summary 

Supported by 


