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Overview

Quantum entanglement as an “order parameter”

SPT phases (free systems)

(1+1)d CFTs

Perturbed CFTs

(24+1)d topologically ordered phases

Developing theoretical /computational tools:
e DMRG, MPS, PEPS, MERA, and other tensor networks

Other applications — ETH and many-body localization, thermalization and
chaos in dynamical systems, etc.

Applications to physics of spacetime



Phases of matter
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Entanglement and entropy of entanglement

o (0) States of your interest, e.g., prot = |¥)(¥|.

e (i) Bipartition Hilbert space H = Ha Q HB.

o (ii) Partial trace:

pa =Trp|VU)(¥| = ZPJW)J (¥j]a ij =1)
e (iii) von Neumann Entanglement entropy:

Sa=—Tralpalnpal == p;lnp,

e (iv) Entanglement spectrum pa x exp(—H.)/Z:

{&} where p; =:exp(—&)/Z



e Mutual information:
Ia.p =S4+ S — Saun
e Rényi entropy:

1
R = 4= (T o).

Note that S4 = limg—1 Rff). {Rff)}q = entanglement spectrum.

e The Rényi mutual information:
K= R + RY - R

e Other entanglement measures, e.g., entanglement negativity.



Some key properties

If peot is @ pure state and B = A, S4 = Sp.
If prot is @ mixed state (e.g., piot = e ?), S4 # Sp even when B = A4,
If B=10, Sa = Sthermal.
Subadditivity:
Sa+p < Sa+ SB. (7)

i.e., the positivity of the mutual information:
Iap =84+ S —SayB > 0.

Strong subadditivity
Sp + Sapc < Sap + See (8)

By setting C' = (), we obtain the subadditivity relation.



ES in non-interacting systems

Consider the ground states |GS) of free (non-interacting) systems, and
bipartitioning H = Hr @ Hr.
When pior = |GS)(GS| is a Gaussian state, H. is quadratic [Pesche (02)].

He = Z w}KIJ,lpJ? I:I',O',i,... (9)

I,JeL

H. can be reconstructed from 2pt functions: Cr; := (GS|¢i,|GS).

_ Cr  Cir _ it
C = ( oo ) Crp = Cl . (10)

Correlation matrix is a projector:
C’=C, Q=1 (Qrj:=1-2C). (11)
Entanglement Hamiltonian:

H. = Z YIK 0y, K =In[(1-CL)/CL]. (12)

I,JeL



E.g. the integer quantum Hall effect

A prototype of topological phases

Characterized by quantized Hall conductance 0., = (e?/h) x (integer).

Gapped bulk, gapless edge

Robust against disorder and interactions
Chiral edge states in ES

n 2n

Figure: Physical v.s. entanglement spectra of a Chern insulator [SR-Hatsugai (06)]



E.g. the SSH model

e 1d lattice fermion model:

H= tz (ajbi +he)+t Z (bzaiﬂ + h.c.) (13)

(3

t

e Phase diagram:

* t/t’

SPT Trivial

o Physical spectrum, entanglement spectrum, entanglement entropy.
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Figure: [SR-Hatsugai (06)]



Symmetry-protected degeneracy in ES

e Robust zero mode in ES; 2-fold degeneracy for each level.
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e S4=Alog&/ao + log2

e Degeneracy is symmetry-protected; Symmetry: a; — al, b; — sz. (Class
D or Alll/BDI topological insulator)

e Symmetry-protected degeneracy is an indicator of symmetry-protected
topological (SPT) phases. [Pollmann-Berg-Turner-Oshikawa (10)]



Symmetry-protected topological phases (SPT phases)
"Deformable" to a trivial phase (state w/o entanglement) in the absence
of symmetries.

(Unique ground state on any spatial manifold — "invertible")

But sharply distinct from trivial state, once symmetries are enforced.

phase transition

|9y) l_ih/‘l’ﬁ \*

single phase two distinct phases

Trivial 9

Example: SSH model, time-reversal symmetric topological insulators, the
Haldane phase

Symmetry-breaking paradigm does not apply: no local order parameter

-1 N
(M)y#0 (M)=0




Entanglement spec. and non-spatial symmetry

e How about symmetry ?
e Corr. matrix inherits symmetries of the Hamiltonian

Y1 = Urss,  Hpnys = UTHppysU = Hphys,
Q-UQU=Q (14)
e Non-spatial symmetry, the sub block of corr. matrix inherits symmetries:
QL —U'QLU =Q; (15)

So does the entanglement Hamiltonian. This may result in degeneracy in
the ES.



Another example

e Spin-1 Antiferromagnetic spin chain
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Figure: [Pollmann-Berg-Turner-Oshikawa (10)]



View from Matrix product states

e Matrix product state representation:

U(si,s0,-) = > AL AP AR o s =-1,0,1

1112 * Tigizt Ti3ig
{in=1,---}

i1 12 13 14 15

—A—AA—
| | |

S1 S92 S3 S4

e Symmetry action: for g, h € Symmetry group, we have U(g) acting on
physical Hilbert space:

U(g)U(h) = U(gh)
U(g): A° = V™ () A"V (g)e”” (17)
e Symmetry acts on the “internal” space projectively:

V(9)V(h) =@MV (gh) (18)
[Chen et al (11), Pollmann et al (10-12), Schuch et al (11)]



(Entanglement spec)? and SUSY QM

e From C? = C:

Ci — Cp = —CLrChri,
QrCLr = —CLrQ@R,
CrrQr = —QRCReL,

Ch —Cr=—Cr.CLr

e Introduce:
(@ o (0 20cr i (0
S - 1 ( 0 Q%{ bl Q — O O 5 Q = QORL

e SUSY algebra

[87 Q] = [87 QJT] =0,
{0.Q'}=58, {9,0}={0" 0} =0

(19)

(21)



Entanglement spec. and spatial symmetries
e L/R = “fermionic”/"bosonic” sector; C' r intertwines the two sectors:
°LR
(_
Hr, —— Hr
CRrRL

e Spatial symmetry O: choose bipartitioning s.t.
O:Hp +— Hr

ORL 0
e Symmetry of entanglement Hamiltonian:
QLCLrO} = CLrO} £Q1

[Turner-Zhang-Vishwanath (10), Hughes-Prodan-Bernevig (11),
Fang-Gilbert-Bernevig (12-13), Chang-Mudry-Ryu (14)]

0 O
0= ( LR ) , OLrOl,=O0r 0L, =1

(22)

(23)

(24)

(25)



Graphene with Kekule order

o Kekule distortion in graphene
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e Entanglement spec. is more useful than physical spec.



Short notes: Conformal field theory in (1+1)d

Scale invariance in (1+1)d — conformal symmetry (Polchinski)

Conformal symmetry is infinite dimensional. Holomorphi-anti-holomorphic
factorization

Infinite symmetry generated by stress energy tensor
+o0 B +oo _
T(z)= Y Lnz "% T(z)= Y L.z "% (26)

Virasoro algebra

(Lo, Ln] = (m — 1) Lingn + 1%(m3 — M) —n (27)

Characterized by a number ¢ “central charge” (among others)



Short notes: CFT in (1+1)d

e Structure of the spectrum: “tower of states™
|h, N3 j) ® |h, N3 ),
Lo|h, N;j) = (h + N)|h, N j).
Lolh, N3 j) = (h+ N)|h, N3 ). (28)

e In other words: -
H = n,iVn @ Vs, (29)
h,h
ny, ;i the number of distinct primary fields with conformal weight (h, h).
(For simplicity, we only consider the diagonal CFTs with n, 5 = 6, 7.)



Central charge

¢ = Weyl anomaly; at critical points, there are emergent scale invariance,
but this emergent symmetry is broken by an anomaly.

¢ ~ (number of degrees of freedom)

c shows up in free energy and specific heat, etc:

e
= 30
V=308 (30)
Note: v is non-universal.
Can be extracted from the entanglement entropy scaling:
SA=ElogR+-~ (31)

3

RG monotone. (Zamolodchikov c-function; entropic c-function)



Radial and angular quantization

w=u -+ v

w(z) =log z

3 u

e CFT on a plane ++ CFT on a cylinder
e Radial evolution <+ Hamiltonian

o Angular evolution (Entanglement or Rindler Hamiltonian) <+ Hamiltonian
with boundary



Radial flow — Finite size scaling

e CFT on a cylinder of circumference L

1 [E
H = %/0 dv Tyu (uo,v)
1

=5- dw T'(w) + (anti-hol) (32)

o Conformal map: cylinder — plane w = = log 2

dw T(w ?{ dz < >2 [#7(:) - o]
- ?i dz (%) [zT(z) - Q—Zﬂ (33)

e CFT Hamiltonian on a cylinder can be written in terms of dilatation
operator Lo + Lo on a plane:

HI%(Lo-i-Lo—i) (34)



Gives relation between stress tensor (on z-plane) to a “physical”
Hamiltonian on a finite cylinder.

Level spacing scales as 1/L.
Levels are equally spaced (within a tower)

The ¢/24 x 1/L part allows us to determine ¢ (numerically). (the
extensive part A X L has to be subtracted.)

Degeneracy — full identification of the theory



Radial flow — Numerics

o XX model: H =73 (575541 +5757,,)

]
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e For a given tower, all levels are equally spaced.

e Level spacing scales as 1/L.



Angular flow

z = (x+ iy) = exp(w) = exp(u + iv)

Q.

X

uy = In{Ry /a)
L=uy—u
uy = In(R, fa) =

:

B



Angular flow — Corner transfer matrix

e Corner transfer matrix A, |, and partition function Z = Tr A*

:
1
ane
_H:HH%HH
1
[
:

[Baxter (80's); Figures:Wikipedia]




Angular flow = Entanglement (Rindler) Hamiltonian

In Euclidean signature, z = x + iy = ¥ = "™

maps the complex z-plane to a cylinder.

. .o . u = const.
In Minkowski signature: (t,z) — (u,v) (Rindler

coordinate):

v = const.
z = e" coshw,

t = e“sinhw.

In the Rindler coord., the half of the 2d spacetime
is inaccessible (“traced out”).

Radial evolution in the complex z-plane
— wu~evolution in the cylinder

Angular evolution in the complex z-plane
— wv-evolution in the cylinder [Figures: Wikipedia]
= entanglement (or Rindler) Hamiltonian



Rindler Hamiltonian

Constant u trajectories = World-lines of observer with constant
acceleration a where a = 1 in our case.
Accelerated observer in Minkowski space = Static observer in Rindler space

Unruh effect: Vacuum is observer dependent. Observer in an accelerated
frame (Rindler observer) sees the vacuum of the Minkowski vacuum as a
thermal bath with Unruh temperature

a 1

This is due to a “Rindler horizon” and inability to access the other part of
spacetime. Rinder coordinates covers with metric

ds® = 2™ (—dv® + du?) (36)
only covers z > |t| (the right Rindler wedge).
Left Rindler wedge is defined by

x = e cosh v,

t = —e" sinhwv.



Entanglement Hamiltonian for finite interval

e Entanglement hamiltonian on finite interval [— R, +R] — Hamiltonian

with boundaries
e Transforming from strip to plane:
+R (xZ o RQ)

H= / du Tyologen = / de T (37)

—R

o Entanglement spec: 1/log(R) scaling
E.g., Casini-Huerta-Myers (11), Cardy-Tonni (16)



SSH chain

e Entanglement spectrum of CFT GS: H” = const.log(LTQ/a)

H= t; (albs +nc) +¢ ; (blaiss +he.) (38)

with ¢t = ¢/

Entanglement spectrum

0.2
1/log(Na/ag)

Figure: [Cho-Ludwig-Ryu (16)]



degeneracy

Numerics

(a) DMRG TFLobe (b)) My e =1/2CFT  (¢) DMRG TFI pbe

am A NN W oW

primary fields
l/ln(L) +descendants 1/ hl<L)

Figure: [Lauchli (13)]



Remarks:

What is an analogue of the radial direction?

It is related to the so-called sine-square deformation (SSD).
[Gendiar-Krcmar-Nishino (09), Hikihara-Nishino (11), ...]

Evolution operator:

T 27
H:/ dv Tuu (0, v) :,«g/ d(;wm(w)
0 0 sinh ug

In the limit R — 0,

L
L 2ms
o [Cassint (B2) 1, (L2
/0 s sin 17 9 I

[Ishibashi-Tada (15-16); Okunishi (16); Wen-Ryu-Ludwig (16)]

(39)

(40)



Perturbed CFT

e Add a relevant perturbation
S =5, +g/d22 o(z,2) (41)

and go into a massive phase; Consider the entanglement Hamiltonian for
half space.

e The above conformal map leads to an exponentially growing potential
ug 27
Sy + g/ du/ dv e’ ®(w,w) (42)
uy 0

with length scale log(¢/a).

(= n(¢/a)

c

9 ¢ = In(¢/a)

Y
CFT SPT Phase




Entanglement Spectrum

e Entanglement spectrum for gapped phases is given by a CFT with
boundaries (Boundary CFT in short) of a nearby CFT

{=1n(¢/a)
u
0 0 =1n(¢/a)
L Y I Y J L .
VACUUM CFT SPT Phase
Partition function:
—H,
Zap =Trape (43)

Here, A = vacuum and B = SPT. ['RG domain wall” idea:]

e Spectrum is given by half of the full CFT:

L
H. = const. 0

log(&/a)



Numerics: SSH model

Spectrum depends on type of boundaries (type of SPTs): There is
symmetry-protected degeneracy in the topological phase.
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SPT Trivial
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BCFT and SPT

Entanglement spectrum for gapped phases is given by BCFT

When the gapped phase is an SPT, the topological invariant can also be
computed from BCFT. [Cho-Shiozaki-Ryu-Ludwig (16)]

Switching space and time,
Z = Tre P/tho — (A|e=*/F(LotLo)| gy (44)
we introduce boundary states |A) and |B):
(L, —L_,)|B)=0, VneZ (45)

From |B), the corresponding SPT phase can be identified by the phase
g|B)r =ep(glh)|B)r, g,h€G

where |B)}, is the boundary state in h-twisted sector. This phase is called the
discrete torsion phase c5(g|h) € H*(G,U(1)).



Boundary states as gapped states

e Conformally invariant boundary states, (L, — L_,)|B) = 0.
e Boundary states |B) do not have real-space correlations:
(Ble™ " Ox(21) - On(an)e™ " |B)/(Ble”*"|B)

where z1,-- -, x, refer n different spacial positions. In the limit ¢ — 0
with x; # x; the correlation function factorizes and does not depend on
Tiy — Tyj-

e Boundary states represent a highly excited state within the Hilbert space
of a gapless conformal field theory and can be viewed as gapped ground
states. [Miyaji-Ryu-Takayanagi-Wen (14), Cardy (17), Konechny (17)]



Free fermion example

e A massive free massive Dirac fermion in (141)d:
i = [ o [ivto.00 - mutors], v = (run)T
e The ground state of this Hamiltonian is given by
m 1 T
2 Gk (P vkt | 1620 816

where 1, gy is the Fourier component of ¢1, r(z), and |G r) is the
Fock vacuum of the left- and right-moving sector. In the limit m — oo
(m/(vrk) — 00), |GS) reduces to the boundary states of the free
massless fermion theory.

|GS) = exp |:



More details

SPT phases in (141)d are classified by group cohomology H?(G,U(1)).
[Chen-Gu-Liu-Wen (02)] Recall:

V(g)V () = ™"V (gh) (46)

CFT context: Discrete torsion phases in CFT [Vafa (86) ...] and in BCFT
[Douglas (98) ...].

Discrete torsion phases and entanglement spectrum (symmetry-protected
degeneracy):

Twisted partition function:

~ open
ZZB =Try,p |:h€ PHA }

vanishes when A # B. (symmetry-enforced vanishing of partition

function).
. _ £ gclosed
Exchange time and space, Z5 = n(Ale 2"

show

|B)n and insert g to

[es(glh) —ealglh)) Zis =0



RG and entanglement: entropic c-theorem
e Entropic c-function [Casini (04)] :
_ 2 pdS(R)
ce(R):=3R iR (47)
e At critical points, cg = ¢ (central charge).
e From strong subadditivity:
Sa+Sp > San + Saus (48)

can argue that S is concave w.r.t. log R:

AUB

ANB
25(VrR) > S(R) + S(r) (49)
Taking the limit:r — R:
e _ ¢/(py+ RS"(R) <0 (50)

3



Remark: F-theorem
e Is there an analogue of ¢ and c-theorem in (241)d? (No weyl anomaly in
(2+1)d)
e EE of a disc D of radius R [Ryu-Takayanagi (06), Myers-Sinha (10)]:
2R

€

SD(R) =«

— F(R) (51)

F at the critical point is a universal constant. C.f. topological
entanglement entropy.

e F is related to the partition functions on a sphere S*, F = —log Z(S?)
[Casini-Huerta-Myers (11)].
F-theorem: [Jafferis et al (11), Klebanov et al (11)]:

fyv > Fir

e Entropic F function: [Liu-Mezei (13)]

F(R) = (R% - 1) Sp(R) (52)

F(R)|crr = F and F'(R) <0 [Casini-Huerta (12)]
e Applications [Grover (12), ...] Stationarity ?



Topological phases of matter

e Topologically ordered phases: phases which support anyons (=~ support
topology dependent ground state degeneracy)

e E.g., fractional quantum Hall states,

A Ry

Z2 quantum spin liquid, etc.

e Quantum phases which are not described by the symmetry-breaking
paradigm. (l.e., Landau-Ginzburg type of theories)

e Instead, characterized by properties of anyons (fusion, braiding, etc.) (l.e.,
topological quantum field theories)



Algebraic theory of anyons

(Bosonic) topological orders are believed to be fully characterized by a
unitary modular tensor category (UMTC).

(i) Finite set of anyons {1, a,b,...} equipped with quantum dimensions
{1,dq,dp,...} (da > 1). Total quantum dimension D:

D= > a2 (53)

(i) Fusion a x b=73"_Ngec.

(iii) The modular T" matrix, T' = diag (1, 64, 6, . . .) where 0, = exp 2wih,
is the self-statistical angle of a with h, the topological spin of a.

(iv) The modular S matrix encodes the braiding between anyons, and
given by (“defined by")

1 e O
Sab - B ;Nabmdc. (54)



Chiral central charge

o There may be topologically ordered phases with the same braiding
properties, but different values of ¢, the chiral central charge of the edge
modes.

o Albeit the same braiding properties, they cannot be smoothly deformed to
each other without closing the energy gap.

e Topological order is conjectured to be fully characterized by (S, T, ¢)



Ground states and S and T

e Ground state degeneracy depending on the topology of the space
(topological ground state degeneracy), related to the presence of anyons
[Wen (90)]

e Ground state degeneracy on a spatial torus, {|W¥;)}.
e S and T are extracted from the transformation law of {|¥;)} [Wen (92)]

I+t
T
T 1+1 / |‘117> - Zz; 7;J‘\IJJ>
0 1
=ir
0 1



Topologically ordered phases and quantum entanglement

e Consider: the reduced density matrix pa obtained from a ground state
|GS) of a topologically-ordered phase by tracing out half-space.

pa < Trre “¥|B.S.)(B.S.|e”"
[Qi-Katsura-Ludwig (12), Fliss et al. (17), Wong (17)]

o Different (Ishibashi) boundary states correspond to different ground states

e With this explicit form of the reduced density matrix, various
entanglement measures can be computed: [Wen-Matsuura-SR]
o the entanglement entropy
e the mutual information
e the entanglement negativity



Bulk-boundary correspondence

e Bulk anyon <> twisted boundary conditions at edge:

quasiparticle (anyon)

Edge

e Bulk wfn |¥;) <> boundary partition function x;

e Bulk S and T matrices acting on |¥;) on spatial torus
“~
S and T matrices acting on boundary partition function ; on spacetime
torus [Cappelli (96), ...]

4an B ml

Xa (G_T) = Zsaa’Xa’ (6_7) (55)



Conformal BC: L,|b) = L_,|b) (Vn € Z)
Ishibashi boundary state:

oo dh,l (N)

ha) = > > |hay Nij) ® [ha, N5 )
N=0 j=1

Topological sector dependent normalization (regularization):

—eH

ba) = \/E|ha>) so that  ((Ba|by) = dab.

More generically, one can consider a superposition 1)) = > 1a|ha)

Reduced density matrix:

pr.a = Trn(lha) (ha)
3 e SN D) g, N3 ) (N
N,j Na

(56)

(57)

(58)



Some details

e Trance of the reduced density matrix:

87ne
L1 _ 8ane a(e7 T
Trr (pr.a)” = ,TnXa(e Bx ) = Xale” 7)) (59)

e Modular transformation

87r715
Xa ZSQG/X(Z € 2"5)
— Sa0 X eTine (/e = c0), (60)
i.e., only the identity field I, labeled by “0" here, survives the limit.
e Hence, in the thermodynamic limit {/e — oo:

wl
/Saa/ ol T 2ne mel (1 _
Trr (pr,a)” = 2o Xer (€ ) s eBse(mn) (Sa0)'™™,  (61)

[Eaf SaarXar (€7 5 )] !




e Final result:

(m _ L4n me | L omdt
Sy = - 8 - lnD+1,nlnd“
w_ e b
it =7, - —WD+Ind, (62)
where
Sa0 = do /D (63)

is the quantum dimension.



Lessons

Entanglement cut may be more useful than physical cut.
Entanglement and universal information of many-body systems.
Entanglement can tell the direction of the RG flow.
Entanglement and spacetime physics

Entanglement has a topological interpretation in particular in topological
field theories.



