
Quantitative Successes of the 
Composite Fermion Theory
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Fig. 5.5. The golden path from the IQHE to the FQHE. We begin with an
IQHE state (a); attach to each electron two magnetic flux quanta to convert
it into a composite fermion (b); and spread out the attached flux to obtain
electrons in a higher magnetic field, which is a FQHE state (c).

Fig. 5.6. Each electron captures two flux quanta to turn into a composite
fermion. Composite fermions sense the residual magnetic field, which is much
smaller than the applied magnetic field.

will undergo a complex evolution. Nonetheless, if our assumption is
correct, then Fig. (5.2) also represents, qualitatively, the spectrum at B.

The absence of a phase transition is an assumption that remains to
be verified, and will surely not be valid for all n and p. If it is valid for
some parameters, however, then the above construction gives a possible
way of seeing how a gap can result at the fractions of Eq. (5.20). Three
remarkable features already provide a strong hint that we are on the right
track. First, these fractions are precisely the observed fractions. Second,
they have odd-denominators. Third, we naturally obtain sequences of
fractions.

The three steps are depicted schematically in Fig. (5.5). The net
effect, in a manner of speaking, is that each electron has absorbed 2p flux
quanta from the external magnetic field to transform into a composite
fermion. Composite fermions experience the residual magnetic field B∗.
This is shown in Fig. (5.6). See Fig. (5.7) for a humorous portrayal of
composite fermions.

Step IV: Quantitative theory. The CF physics described above
is sufficient for an explanation of much of the phenomenology of the

 = densityϕ0 = hc/e, ρ

BCF = B − 2mρϕ0 νCF = ν
1 − 2mν

ν = νCF

2mνCF ± 1
CF filling factorνCF = ρϕ0/ |BCF | =

B BCF

• Postulate: Strongly interacting electrons at  transform into weakly 
interacting composite fermions at . The CFs form their own 
Landau-like levels called “  levels,” and have a filling factor .

B
BCF

Λ νCF

The composite fermion: pictorial view

In particular:  νCF = p ⇔ ν = p
2mp ± 1



wave function of 
noninteracting 
electrons 

projects into 
the lowest 
Landau level

wave function 
of interacting 
electrons in the 
lowest Landau 
level

the Laughlin-
Jastrow factor 
attaches 2m 
quantized vortices 
to each electron 

Ψα
ν= νCF

2mνCF ± 1
= 𝒫LLLΦα

±νCF({zCF
i , zi})∏j<k

(zj − zk)2m

Φ−ν* = [Φν*]*

zj = xj − iyj

= +

Microscopic theory: composite-fermionization



B → ∞ no disorder

No parameters. No mass. No kinetic energy.

Hminimal = ∑
j<k

1
| ⃗rj − ⃗rk |

(lowest Landau level)

H = ∑
j

1
2m

( ⃗pj + e ⃗A ( ⃗r ))2 + ∑
j<k

e2

| ⃗rj − ⃗rk |
+ EZeeman + ∑

j
Vdisorder( ⃗rj)

HΨ = EΨ

The minimal model: 
2D electrons in the lowest Landau level

Objec&ve:  
• solve this problem as a func&on of the filling factor 
• iden&fy the underlying physics 
• predict, calculate



Balram, Wójs, Jain 2013

Almost exact agreement with 
no parameters!

Ψ3/7 = PLLLΦ3

∏

j<k

(zj − zk)2 Ψex

3/7
= PLLLΦex

3

∏

j<k

(zj − zk)2

ν = 3/7

: ground state + neutral excitationsν = 3/7

        Ajit Balram
     IMSc, Chennai



Balram, Wójs, Jain 2013

ν = 3/7

– Successively higher energy spectrum can be 
obtained in a systematic manner. 

– The energies can be obtained to whatever accuracy 
we wish or need. 

: ground state + higher energy excitationsν = 3/7



Similar agreement at other fractions
Balram, Wójs, Jain 2013

ν = 1/3



Balram, Wójs, Jain 2013

ν = 2/5

Similar agreement at other fractions
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4 quasiparticles 
of ν = 1/3

Many quasiparticles / quasiholes

1/3 < ν < 2/5

6 quasiparticles 
of ν = 1/3



• The CF theory provides an excellent account of the phenomenology 
without any calculations, and computer studies demonstrate the CF 
theory to be extremely accurate. 

• Comparison with experiments has been complicated by the fact that 
the experimental results are modified by finite thickness, Landau 
level mixing and disorder. which were set to zero in computer 
studies. (Ironically, we understand the FQHE more accurately than 
these extraneous effects.) We need to take those into account. 

• We have spent a significant amount of effort and resources in 
pushing theory to its limits to perform detailed quantitative 
comparisons with experiments. 

• It can sometimes also reveal new qualitative physics.

Quantitative comparisons with experiments



• Abelian and non-Abelian anyons

• Spin / valley polarization transitions

• CF crystal: re-entrant transitions; crystal 
phase diagram with LL mixing; competing 
phases at low fillings

• CF pairing: second mechanism of FQHE

• Scaling in FQHE

Plan



Anyons



The CF theory gives an account of the FQHE without 
appealing to fractional charge and fractional statistics.

What about anyons?



An exchange of two anyons  produces a phase factor of . eiπθ*

They are generalizations of  bosons ( ) and fermions ( ).θ* = 0 θ* = 1

The quasiparticles of the FQHE are fractionally charged 
anyons (Laughlin 83, Halperin 84). 
This follows from general topological arguments and has 
experimental support. 

Anyons



quasiparticle 
   = isolated CF

quasihole
   = missing CF

neutral excitation
    = CF exciton

Quasiparticle = an isolated CF in a  levelΛ

Unified description of all excitations



Quasihole/quasiparticle 
of 1/3

• There are  electrons in a disk of radius .∼ 6 6

N = 12 N = 12
Quasihole Quasiparticle

ν = 1/3 ν = 1/3

Gattu, Sreejith, JKJ, 2023

Mytraya Gattu
Penn State

G. J. Sreejith 
IISER Pune



Quasihole/quasiparticle 
of 2/5

• The radius is  magnetic lengths.  A single quasiparticle of 
 spreads over approximately  electrons.

∼ 7 − 8
2/5 7 − 9

N = 13 N = 13
Quasihole Quasiparticle

ν = 2/5 ν = 2/5

Gattu, Sreejith, JKJ, 2023



• Even a single quasiparticle / quasihole is a very complex 
collective state. For , it has a radius  and spreads over 
a region containing  electrons. 

3/7 ∼ 8ℓ
13 − 14

N = 14 N = 16
Quasihole Quasiparticle

ν = 3/7 ν = 3/7

Quasihole/quasiparticle 
of 3/7

Gattu, Sreejith, JKJ, 2023



Quasiparticle = an excited CF

Is it a charge-one fermion or a fractionally 
charged anyon?

A paradox?

No paradox really. It’s a question of what’s the 
reference state — the state with no particles, or 
the background FQH state — and what’s the 
measurement.

The fractional charge and braid statistics can be 
derived straightforwardly with the CF theory.



Fractional charge

q* = − 1 + 2mν = − 1 + 2m
p

2mp ± 1 = ∓ 1
2mp ± 1

Charge of  vortices2mCharge of an electron

+=

 can also be obtained by integrating the density. q*

• When we add an electron to a uniform density FQH system, 
we add a unit charge overall. 

• However, as it gets dressed by vortices to become a CF, the unit 
charge is screened into a fractional charge, with the remainder 
leaking out to the edge.



Fractional statistics

• Berry phase for a closed loop of a CF:  , 
where  is the number of enclosed particles. For uniform density 

 gives 
.

• The change when another quasiparticle is inserted inside the loop: 

.                  

This is precisely what interference experiments measure.

• It may be also interpreted in terms of fractional statistics . 

Φ* = − 2π (BA /ϕ0 − 2mNe)
Ne

Φ* = − 2π (BA /ϕ0 − 2mρA) ≡ − 2πBCFA /ϕ0
BCF = B − 2mρϕ0

ΔΦ* = 2π × 2m × ΔNe = 2π × 2m × q* = 2π
2m

2mp ± 1

ΔΦ* ≡ 2πθ*
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The extension to the general filling $=n / "2pn+1# is again
straightforward. For reference, we give an explicit expres-
sion of the two-CFQP wave function at $=2/5:
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The statistics parameter (̃* for $=1/3 and $=2/5 was
shown in Ref. 20, reproduced in Fig. 6 for completeness. (̃*

takes a well-defined value for large separations. At $=1/3 it
approaches the asymptotic value of (̃*=−2/3, which is con-
sistent with that obtained in Ref. 19 without lowest LL pro-
jection. The calculation at $=1/3 explicitly demonstrates
that (̃* is independent of whether the projected or the un-
projected wave function is used. Assuming the same is true
for other fractions, we have performed the calculation at $
=2/5 without the projection. (The calculation of the statis-

tics, a small difference between two large quantities, requires
much greater accuracy than the calculation of B* considered
in the previous section. The use of projected wave functions
is in principle possible, but very costly in terms of computa-
tion time.) At $=2/5 the system size is smaller and the sta-
tistical uncertainty bigger, but the asymptotic value is clearly
seen to be (̃*=−2/5. At short separations there are substan-
tial deviations in (̃*; it reaches the asymptotic value only
after the two CFQP’s are separated by more than *10 mag-
netic lengths. Such deviations are presumably due to a sig-
nificant overlap between CFQP’s when they are close. (In
contrast, the effective magnetic field is well defined for arbi-
trarily small closed loops.)

A. Sign puzzle

The microscopic value (̃* obtained above has the same
magnitude as (* in Eq. (35) but the opposite sign. The sign
discrepancy, if real, cannot be reconciled with Eq. (6) and
would cast doubt on the fundamental interpretation of the CF
physics in terms of an effective magnetic field.

To gain insight into the issue, consider two composite
fermions in the otherwise empty lowest LL, for which vari-
ous quantities can be obtained analytically. When there is
only one composite fermion at "=Re−i(, it is the same as an
electron, with the wave function given by

FIG. 6. The statistical angle (̃* for the CFQP’s at $=1/3 (upper
panel) and $=2/5 (lower panel) as a function of d+&"−"!&. Here
N is the total number of composite fermions, and l is the magnetic
length. The error bar from Monte Carlo sampling is not shown
explicitly when it is smaller than the symbol size. The deviation at
the largest d / l for each N is due to proximity to the edge. This
figure was shown earlier in Ref. 20 and is reproduced here for
completeness.
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Fractional Statistics in the Fractional Quantum Hall Effect

Gun Sang Jeon, Kenneth L. Graham, and Jainendra K. Jain
Physics Department, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 14 March 2003; published 15 July 2003)

A microscopic confirmation of the fractional statistics of the quasiparticles in the fractional quantum
Hall effect has so far been lacking.We calculate the statistics of the composite-fermion quasiparticles at
! ! 1=3 and ! ! 2=5 by evaluating the Berry phase for a closed loop encircling another composite-
fermion quasiparticle. A careful consideration of subtle perturbations in the trajectory due to the
presence of an additional quasiparticle is crucial for obtaining the correct value of the statistics. The
conditions for the applicability of the fractional statistics concept are discussed.

DOI: 10.1103/PhysRevLett.91.036801 PACS numbers: 73.43.–f, 71.10.Pm

The fractional statistics concept of Leinaas and
Myrheim [1] relies on the property that when particles
with infinitely strong short range repulsion are confined
in two dimensions, paths with different winding numbers
are topologically distinct and cannot be deformed into
one another. The particles are said to have statistics " if a
path independent phase 2#" results when one particle
goes around another in a complete loop. A half loop is
equivalent to an exchange of particles, assuming trans-
lational invariance, which produces a phase factor ei#" !
"#1$". Nonintegral values of " imply fractional statistics.
There are no fundamental particles in nature that obey
fractional statistics. Any fractional statistics objects will
have to be emergent collective particles of a nontrivial
condensed matter state. Furthermore, they will be neces-
sarily confined to two dimensions: in higher dimensions
the notion of a particle going around another is topologi-
cally ill defined because any loop can be shrunk to zero
without ever crossing another particle.

Even though the explanation of the fractional quantum
Hall effect [2] (FQHE) and numerous other remarkable
phenomena follows from the composite-fermion (CF)
theory with no mention of fractional statistics [3], frac-
tional statistics is believed to be one of the consequences
of incompressibility at a fractional filling [4–6], and may
possibly be observable in an experiment specifically de-
signed for this purpose. For Laughlin’s quasiholes [7] at
! ! 1=m, m odd, the statistics was derived explicitly by
Arovas, Schrieffer, and Wilczek [4] in a Berry phase
calculation, but a similar demonstration of fractional
statistics has been lacking at other fractions, or even for
the quasiparticles at ! ! 1=m. The need for a micro-
scopic confirmation was underscored by Kjønsberg and
Myrheim [8] who showed that, with Laughlin’s wave
function, the quasiparticles at ! ! 1=m do not possess
well-defined statistics. The reason for the discrepancy
remains unclear, but it illustrates that the fractional sta-
tistics is rather fragile and cannot be taken for granted.

The objective of this article is to revisit the issue armed
with the microscopic composite-fermion theory of the
FQHE [9]. A step in that direction has been taken by

Kjønsberg and Leinaas [10], whose calculation of the
statistics of the ‘‘unprojected’’ CF quasiparticle of ! !
1=m, the wave function for which is different from that of
Laughlin’s, produced a definite value, the sign of which,
however, was inconsistent with general considerations.We
confirm below that the statistics is robust to projection
into the lowest Landau level (LL), and provide a non-
trivial resolution to the sign enigma, which has its origin
in very small perturbations in the trajectory due to the
insertion of an additional CF quasiparticle. The calcula-
tion is extended to ! ! 2=5 for further verification of the
generality of the concept.

Because the CF theory provides an accurate account of
the low energy physics, including incompressibility at
certain fractional fillings, it must also contain the physics
of fractional statistics, which indeed is the case. The
fractional statistics can be derived heuristically in the
CF theory as follows [11]. Composite fermions are bound
states of electrons and an even number (2p) of vortices.
When a composite fermion goes around a closed path
encircling an area A, the total phase associated with
this path is given by

!% ! #2#"BA=$0 # 2pNenc$; (1)

where Nenc is the number of composite fermions inside the
loop and $0 ! hc=e is called the flux quantum. The first
term on the right-hand side is the usual Aharonov-Bohm
phase for a particle of charge #e going around in a
counterclockwise loop. The second term is the contribu-
tion from the vortices bound to composite fermions, in-
dicating that each enclosed composite fermion effectively
reduces the flux by 2p flux quanta. (A note on convention:
We will take the magnetic field in the &z direction, the
electron charge to be #e, and consider the counterclock-
wise direction for the traversal of trajectories.)

Equation (1) summarizes the origin of the FQHE. The
phase in Eq. (1) is interpreted as the Aharonov-Bohm
phase from an effective magnetic field: !% ' #2#B%A=
$0. Replacing Nenc by its expectation value hNenci ! %A,
where % is the two-dimensional density of electrons, we
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The fractional statistics is well 
defined only when CFs are  
or more away.

CFs are always well defined.

15ℓ



Finite width and LL 
mixing



• Finite width is relatively straightforward to incorporate. It effectively 
modifies the interaction, weakening the short range part of it.

• We obtain the transverse wave function within a local density 
approximation to determine the effective interaction.

Finite width effects
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Fig. 2.2. The band diagrams of (undoped) structures containingAlAs and GaAs. The growth direction
is the horizontal direction on the page. A heterostructure (left) contains a single, sharp interface with
AlAs and GaAs on the two sides. A quantum well (right) contains two nearby interfaces, producing a
square well potential in both the conduction and the valence bands. Upon doping the AlAs region with
n-type impurities, electrons fall into the GaAs region and form a two-dimensional electron system,
as explained in the text.

confinement, subbands, and the effective interaction (below) can be achieved by determining
self-consistent solutions. References to relevant literature can be found in Ref. [10].

Given that the electron wave function in the third direction is not a delta function, one
may ask: “When and in what sense is the system two dimensional?” The system is two
dimensional when only the lowest band of the confinement potential is occupied. Because
no degree of freedom is associated with the third dimension, the dynamics of electrons is
formally equivalent to that of electrons confined strictly in two dimensions.

The nonzero transverse extent of the electron wave function does have a quantitative
effect. The effective two-dimensional interaction is given by

V eff (r) = e2

σ

∫
dz1

∫
dz2

|ρ(z1)|2|ρ(z2)|2
[r2 + (z1 × z2)2]1/2 , (2.10)

where z1 and z2 denote the coordinates normal to the plane containing the electrons, r2 =
(x1×x2)

2 + (y1×y2)
2, and ρ(z) is the wave function in the transverse direction. The effective

interaction, V eff (r), is indistinguishable from e2/σr at large distances (r ≡ w, w being the
“width” of the wave function), but is less repulsive than Coulomb at short distances. Very
roughly, electrons can be viewed as disks rather than point particles. Using the relation

∫
d2r

1′
r2 + d2

e×ik·r = 2γ
∫ −

0
dr

r′
r2 + d2

J0(qr)

= 2γ
q

e×qd , (2.11)

the Fourier transform of the effective interaction is seen to be

V eff (q) = f (q)
2γe2

σq
, (2.12)



• Typically   for n-doped GaAs systems, and  
for p-doped GaAs,  ZnO, or AlAs quantum wells.  

• We will employ the non-perturbative method of “fixed phase diffusion 
Monte Carlo” to treat LL mixing. (Ortiz, Ceperley, Martin, 1993; 
Melik-Alaverdian, Bonesteel, Ortiz, 1997; Guclu, Umrigar, 2005)

κ ∼ 0.5 − 2.5 κ ∼ 2 − 20

Landau level mixing

κ = e2/ϵℓ
ℏωc



– Consider a wave function that is everywhere real and non-
negative. For imaginary time, the Schrodinger equation turns into a 
diffusion equation, where the wave function corresponds to the 
density of the diffusing particles. DMC is a stochastic projector 
method for solving this equation.  

– Expand in a complete set of eigenfunctions φi 

– The evolution operator thus projects the initial trial wave function 
into the ground state provided the two have non-zero overlap.

Reynolds, Ceperley, Alder, and Lester Jr., J. Chem. Phys. 77, 5593 (1982).

Ψ Ψ

Ψ

Diffusion Monte Carlo (DMC)



Ortiz, Ceperley, and Martin, Phys. Rev. Lett. 71, 2777 (1993). 

Chosen phase 
sector

• DMC on this wave function produces the lowest energy in the 
chosen phase sector. The result depends on the choice of the phase. 

• The energies are obtained as a function of . The 
method is non-perturbative.

κ = (e2/ϵℓ)/(ℏωc)

H = ∑
j

[ ⃗pj + ⃗A ( ⃗rj)]2 + VintHΨ = EΨ

Substitute: ; 
take the phase  to be fixed; and write

Ψ({ ⃗rj}) = ΦT({ ⃗rj}) eiϕT({ ⃗rj}), ΦT({ ⃗rj}) = |ΨT({ ⃗rj}) |
ϕT({ ⃗rj})

Fixed phase DMC

H′ Φ = EΦ H′ = ∑
j

[ ⃗pj + ⃗A ( ⃗rj) + ⃗∇ jϕ({ ⃗rk})]2 + Vint

 is complex.Ψ



We will use the accurate lowest Landau level wave 
functions to fix the phase sector in our DMC. There is 
evidence that the phase of the many-body wave function is 
not affected much by Landau level mixing (Guclu and 
Umrigar, 2005).

What’s a good choice for the phase?



Spin / Valley polarization 
phase transitions



• Transitions between them occur as a function of the Zeeman 
energy — the critical Zeeman energies can be predicted in a 
model of non-interacting CFs with a single parameter (CF mass).

• For small Zeeman energies, spin can play a role. The CF theory 
makes definite predictions for the possible spin polarizations at 
any given filling. 

• The valley degree of freedom in graphene is analogous 
(although the Zeeman energy now can be negative).

νCF = 4

Unpolarized
     (2,2)

Partially 
polarized
   (3,1)

Fully-spin
polarized
   (4,0)

Example

[ν = 4/9, 4/7;
ν = 2 − 4/9 = 14/9;
ν = 2 − 4/7 = 10/9]

CFs with spin / valley degree of freedom



*Slide from Jun Zhu

• All predicted states 
seen.

• Excellent account 
of the phase 
diagram with a 
single fitting 
parameter: CF 
mass.

• Mass off by a 
factor of 4 from its 
zeroth order value.

Valley polarization in bilayer graphene*



VOLUME 80, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 11 MAY 1998

Phase Diagram of the Spin Polarization of Composite Fermions and a New Effective Mass

K. Park and J. K. Jain
Department of Physics and Astronomy, State University of New York at Stony Brook,

Stony Brook, New York 11794-3800
(Received 6 November 1997)

The phase diagram of composite fermion states with different spin polarizations is computed
and found to be in good quantitative agreement with experiment. It is shown that the effective
mass describing the spin polarization physics is different from and possibly much larger than the
effective mass defined by the activation energies. Experimental implications will be mentioned.
[S0031-9007(98)06097-9]

PACS numbers: 71.10.Pm, 73.40.Hm

The complex, strongly correlated liquid of interact-
ing electrons in the lowest Landau level (LL) resembles
a weakly interacting gas of composite fermions [1–4].
Composite fermions have the same charge, spin, and sta-
tistics as electrons, but differ from electrons in that they
experience a reduced effective magnetic field Bp ≠ B 2
2rf0, where B is the external magnetic field, r is the
electron density, and f0 ≠ hcye. Despite their inherently
quantum mechanical nature, composite fermions behave
quite surprisingly like ordinary, weakly interacting fermi-
ons: They form Landau levels, fill a Fermi sea, execute
semiclassical cyclotron orbits, and show Shubnikov–de
Haas oscillations [5]. The dramatic experimental prop-
erties of the lowest LL (LLL) liquid can be understood
straightforwardly in terms of nearly independent compos-
ite fermions.

This article discusses the issue of the effective mass of
composite fermions. The definition of the effective mass
of the quasiparticles of a many-body system is, in general,
context dependent, as a result of different kinds of renor-
malizations of the “bare” mass, and even in a given context
its value depends on various parameters. In the case of
composite fermions, the meaning of their effective mass is
not completely clear conceptually, since the defining LLL
Hamiltonian does not contain any mass or kinetic energy
whatsoever (the cyclotron energy is an irrelevant constant),
and consequently all measurable quantities can, in prin-
ciple, and often even in practice, be computed without rais-
ing the issue of any kind of effective mass. The usefulness
of the notion of the effective mass comes from the empiri-
cal observation that it appears to provide a meaningful
parametrization of the results so obtained. We stress that
the composite-fermion (CF) effective mass should not be
thought of as a renormalized (electron) mass, even though
we will find it convenient to express it in units of the elec-
tron mass in vacuum, me.

An effective mass of composite fermions has been de-
fined phenomenologically [4,6] by interpreting the acti-
vation energy Eg of the fractional-quantum-Hall effect
(FQHE) states at filling factor n ≠ nys2n 1 1d as an
effective cyclotron energy of composite fermions (the

quantities for composite fermions will be marked by an
asterisk):

Eg ≠ h̄vp ; h̄
eBp

mp
ac

≠
me

mp
a

h̄v

s2n 1 1d
.

where mp
a is the effective mass of the composite fermi-

ons, and h̄v ≠ h̄eBymec ¯ 1.34BfTg K is the cyclotron
energy of an electron in vacuum (the last term gives the en-
ergy in kelvin, with BfTg in tesla). Since the only energy
scale in the problem is the Coulomb energy, the gaps must
be proportional to VC ; e2yel ¯ 51

p
BfTg K, where l ≠p

h̄cyeB is the magnetic length [7]. Theoretically, it is
convenient to begin with a simplified model of a disorder-
free, zero thickness electron system confined to the lowest
LL. It leaves out sample specific effects of disorder, fi-
nite thickness and LL mixing, but ought to be sufficient
to establish the basic physics issues, and at the same time,
should also give a semiquantitative account of the actual
experiments. For this model, it has been found that the
gaps for n ≠ 1y3, 2y5, . . . , 5y11 are well approximated by
Eg ≠ VCyfas2n 1 1dg, where a ¯ 3.0 [4,8], which gives

mp
a

me
≠ a

h̄v

VC
¯ 0.079

q
BfTg . (1)

The experimental value of mp
a is approximately a factor of

2 larger, as the experimental gaps are reduced by effects
not included in theory, but the scaling factor of s2n 1 1d21

is in agreement with theory [6].
Let us discuss the meaning of the mass defined above.

The activation energy is the energy required to create a
far separated CF-particle-hole pair and has three different
contributions: It is equal to the sum of the (unknown) bare
effective cyclotron energy of composite fermions, the self-
interaction energy of the excited CF particle, and the self-
interaction energy of the CF hole. Rough estimates show
that the self-energies constitute a large fraction of the gap.
[A qualitatively analogous physics clearly applies even to
the integer-quantum-Hall effect (IQHE), where equating
the activation gap to an effective cyclotron energy will
produce a smaller effective mass than the band mass of
the electron at zero magnetic field, reflecting the fact that

0031-9007y98y80(19)y4237(4)$15.00 © 1998 The American Physical Society 4237

VOLUME 80, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 11 MAY 1998

between the two. (We note here that the CF wave func-
tions contain no adjustable parameters.) A recently devel-
oped method accomplishes the LLL projection slightly
differently, which amounts to replacing the single elec-
tron basis states in Fyn",n#s with the corresponding “single
composite-fermion basis states,” the form of which can
be found in the literature [8]. This allows a Monte Carlo
study of fairly large CF systems, thereby opening up the
possibility of obtaining a quantitative understanding of the
“spin phase diagram” of the FQHE. We have carried out
a systematic computation of the interaction energy of the
incompressible CF states of all possible spin polarizations
at n ≠ 2d5, 3d7, 4d9, and 5d11. All calculations are per-
formed in the spherical geometry, where N electrons move
on the two-dimensional surface of a sphere in the pres-
ence of a radial magnetic field. The ground state ener-
gies per particle are typically 0.4e2del, but the differences
range from 5.5 3 1023e2del at 2d5 to 1.0 3 1023e2del
at 5d11. To get reasonable estimates for the energy dif-
ferences, the ground state energies are computed very ac-
curately, requiring for each energy point typically 1 to
10 million Monte Carlo steps, taking up to 200 hours of
CPU time on a Digital workstation (Model 250d4, CPU
21064A, Mhz 266). The N21 ! 0 limit of the energy has
been obtained in each case by a careful extrapolation, as
shown in Fig. 1 for n ≠ 4d9.

The ordering of the actual Coulomb energies of various
CF states at a given filling factor is consistent with the
NICFM, in that they increase with polarization (e.g.,
Fig. 1). We next ask if a semiquantitative description of
the results can be obtained in terms of a single empirical
parameter, an effective mass. For this purpose, it is useful
to consider the spin phase diagram of the FQHE states.
If the Coulomb energy difference between two successive
CF states at n ≠ ndy2n 1 1s is denoted by DVC , then

FIG. 1. The energy per electron as a function of 1dN for the
three possible incompressible CF states, (4,0), (3,1), and (2,2)
at n ≠ 4d9. The Monte Carlo uncertainty is small compared
to the size of the symbols.

equating it to the Zeeman energy difference EZdn gives the
Zeeman energy at the transition point to be EZdVC ≠ nD
(here EZ ; 2gmeBS ¯ h̄vd5 is the energy required to
flip the spin of an electron [7]), shown in Fig. 2 (solid
circles). An effective mass can be deduced from the
results in two different ways. For a noninteracting fermion
system, a completely polarized Fermi sea is obtained
for EZ $ EF , where EF is the Fermi energy of a fully
polarized Fermi sea. From the intercept in Fig. 2, we
get Ep

F ≠ 0.022VC . Noting that kF ≠ 1dl at n ≠ 1d2
(for a fully polarized Fermi sea), we can write Ep

F ;
h̄2k2

Fd2mp
p ≠ ymedmp

psh̄vd2, which gives
mp

p

me
≠ 23

h̄v

VC
≠ 0.60

q
BfTg . (2)

Alternatively, mp
p can be determined by equating the

Coulomb energy difference between two FQHE states at
the same filling factor to the appropriate CF cyclotron en-
ergy difference. We instead use the mass obtained above
to compute the NICFM values of EZdVC at the transitions,
marked in Fig. 2 by open circles. Clearly, the NICFM
with mp

p given by Eq. (2) provides a reasonable descrip-
tion in the whole regime. These results also demonstrate
that the effective cyclotron energy used to determine the
spin polarization is parametrized by an effective mass that
is different from the activation mass; for the model under
consideration, mp

p ¯ 7.5mp
a. The factor 7.5 should clearly

FIG. 2. The spin phase diagram of the FQHE states at
n ≠ ndy2n 1 1s. The x axis is proportional to the effective
magnetic field Bp, and the filling factor is shown on the top
axis. The filled circles show the calculated positions where the
transitions between differently polarized FQHE states occur as
a function of the Zeeman energy, with the top (bottom) region
being maximally (minimally) polarized. The open circles show
the corresponding positions obtained in a noninteracting-CF
model, assuming the effective mass given in Eq. (2). Stars
are the results from the tilted field experiments of Du et al.
(Note that the experimental data are for n ≠ 8d5, 11d7, . . ., but
these are the equivalent n ≠ 2d5, 3d7, . . . of holes in the lowest
Landau level.) The lower transition at 4d9 is presumably
outside the parameter range accessible in the experiment.
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The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy
differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the
quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of
Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of
this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase
diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman
energies and the experimentally measured values. In particular, we find, as also do experiments, that the
critical Zeeman energies for fractional quantum Hall states at filling factors ν ¼ 2 − n=ð2n# 1Þ are
significantly higher than those for ν ¼ n=ð2n# 1Þ, a quantitative signature of the lifting of particle-hole
symmetry due to Landau-level mixing.

DOI: 10.1103/PhysRevLett.117.116803

The role of particle-hole symmetry in the lowest Landau
level (LLL) as well as its breaking due to Landau-level (LL)
mixing has come into renewed focus in the contexts of the
competition between the Pfaffian and the anti-Pfaffian
wave functions for the ν ¼ 5=2 fractional quantum Hall
(FQH) effect [1–9] and of the nature of the composite-
fermion (CF) Fermi sea at ν ¼ 1=2 [10–24]. LL mixing
also affects various observable quantities in the FQH effect,
and a lack of its quantitative understanding has been one of
the major impediments to the goal of an accurate com-
parison between theory and experiment. The effect of LL
mixing has been treated in a perturbative approach [4–9],
but the extent of its validity for typical experiments has
remained unclear because the relevant parameter control-
ling the strength of LL mixing, namely, the ratio
of the Coulomb interaction to the cyclotron energy
κ ¼ ðe2=ϵlÞ=ℏωc, is typically ∼1 and sometimes as high
as ∼2. (Here, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length, ϵ is

the dielectric constant of the background material, and
ωc ¼ eB=mbc is the cyclotron frequency).

We study in this work the effect of LL mixing through
the nonperturbative method of fixed-phase diffusion
Monte Carlo calculations [25–27]. We focus here on the
phase transitions between differently spin-polarized FQH
states as a function of the Zeeman energy, which are an
ideal testing ground for the role of LL mixing, both because
a wealth of experimental information exists for the critical
energies where such transitions occur [28–40] and because
they depend sensitively on LL mixing [40,41]. The critical
Zeeman energy Ecrit

Z quoted below in terms of the dimen-
sionless ratio αcritZ ¼ Ecrit

Z =ðe2=ϵlÞ is a direct measure of the
tiny energy differences between differently spin-polarized

states and, thus, serves as an extremely sensitive test of the
quantitative accuracy of the theory. In particular, a long-
standing puzzle has been that the observed values of αcritZ for
spin transitions at the filling factor ν ¼ 2 − n=ð2n# 1Þ are
significantly higher than those at ν ¼ n=ð2n# 1Þ. Because
particle-hole symmetry in a system confined to the LLL
guarantees that the transitions at ν and 2 − ν occur at the
same αcritZ , it is clear that LL mixing, which breaks particle-
hole symmetry, is responsible for the effect. Surprisingly,
for heterojunction samples, αcritZ for spin transitions at the
filling factor ν ¼ 2 − n=ð2n# 1Þ are higher even than the
theoretical values for systems with zero width and zero LL
mixing, which is counterintuitive because the corrections
due to finite width and finite LL mixing are both expected
to weaken the interaction and, thus, reduce αcritZ .
If the fixed-phase diffusion Monte Carlo (DMC) method

can be demonstrated to provide a quantitative account of
these experiments, it will not only reveal the role of
Landau-level mixing in a quantitative fashion but, in
principle, also enable an investigation of the effect of LL
mixing on various other issues, including the 5=2 Pfaffian
or anti-Pfaffian state and the 1=2 CF Fermi sea, in a
nonperturbative approach.
The DMC method [42,43] solves the many-body

Schrödinger equation by noting that its imaginary time
(t → it) version can be interpreted as a diffusion equation.
The wave functionΦ of interest plays the role of the density
of diffusing particles, which is valid when Φ is always real
and non-negative, such as for Bose systems in their ground
states. In order to treat Fermi statistics, a fixed-node
approximation is used which does not allow diffusion
through the nodal surface. The fixed-node DMC method,
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Fractional Quantum Hall Effect around v = &. Composite Fermions with a Spin

R. R. Du, ' A. S. Yeh, ' H. L. Stormer, D. C. Tsui, ' L. N. Pfeiffer, and K.W. West
'Princeton University, Princeton, New Jersey 08540

ATckT Bell Laboratories, Murray Hill, New Jersey 07974
University of Utah, Salt Lake City, Utah 84112

(Received 21 June 1995)
Angular dependent magnetotransport measurements on the fractional quantum Hall (FQHE) states

around Landau level filling factor p = — are explained very effectively in terms of composite fermions2
(CFs) with a spin. The disappearance and reappearance of FQHE states as well as their spin polarization
is deduced from a simple "Landau level" fan diagram for CFs. While the "Landau splitting" scales with
effective magnetic field, with its origin at v = —,the spin-splitting scales with total external magnetic
field having its origin at B = 0. The g factor of a CF is largely the g factor of the electron.

PACS numbers: 73.40.Hm

The composite fermion model [1—4] for the fractional
quantum Hall effect (FQHE) [5] has provided us with an
intuitive picture of the origin of higher order fractions
in the FQHE. In this model, the dominant Coulomb in-
teraction between carriers in two-dimensional (2D) elec-
tron systems in high magnetic fields is incorporated by
the adiabatic attachment of an even number of magnetic
fIux quanta to each electron. This gives rise to new parti-
cles, termed composite fermions (CFs). At even denom-
inator, rational Landau level filling factor v, the so-called
Chem-Simons Aux of the CFs exactly cancels the applied
magnetic field leading to an apparently field free situation-
of CFs not experiencing the external magnetic field [4].
As the magnetic field deviates from these particular filling
factors, the particles are subjected to the residual magnetic
field B,fq and are quantized into "Landau levels" of CFs,
which give rise to the characteristic transport features of
the FQHE. In this way, an analogy can be drawn between
the integral quantum Hall effect (IQHE) of regular elec-
trons around B = 0 and the FQHE of electrons around an
even-denominator filling factor, the latter being equivalent
to the IQHE of novel CFs.

The CF model has been very successful in interpreting
the series of FQHE states at v = p/(2p ~ 1) around
the simplest of even-denominator fractions v = z. Quite
remarkably, activation-energy measurements [6—8] and
Shubnikov —de Haas (SdH) data [7—10] in this filling
factor regime can be interpreted largely as resulting from
Landau quantization of a new particle with a mass I*
about 10 times the electron mass mb in GaAs. In the
vicinity of half filling, several experiments have now
demonstrated the existence of a well-defined Fermi wave
vector [11]and, more surprisingly yet, the particles follow
semiclassical trajectories [12,13].

In trying to elucidate the properties of these new parti-
cles, there arises the question as to the spin and g factor
of CFs and how such a spin affects the CF level scheme.
While there are theoretical considerations treating com-
posite fermions with a spin but with negligible g factor

[14,15], the interplay between nonzero Zeeman energy
and composite fermions remains unclear.

In order to address these questions, we have performed
3transport measurements around v = 2. At this filling fac-

tor, the lower spin state of the lowest electron Landau
level is totally occupied, whereas its upper spin state is

3half filled. Naively, one may regard v =
2 as a refIec-

tion of the well-understood v =
2 state. Our activation

energy and SdH experiments did not conform to such a
simple scheme. In fact, earlier measurements published
prior to the CF model clearly indicated the impact of the
electron spin on some of these states [16,17]. The v =—8

4 5
state and v =

3 had been identified as undergoing a tran-
sition from a spin-unpolarized state to a spin-polarized
state as the magnetic field was tilted away from normal.
Traditional FQHE models could, in isolated cases, qualita-
tively account for a transition of this kind, although there
never emerged a coherent picture [18].

As we will show with the angular dependent transport
measurements in this paper, the FQHE states around
v =

2 find a beautifully simple interpretation in terms of
CFs carrying a spin and the ensuing crossings of spin split
CF levels from different CF Landau levels.

Our sample is a high-mobility GaAs-A1GaAs
hetero structure. The specimen has an electron
density n = 1.13 X 10"/cm, and a mobility
p, = 6.8 X 10 cm /Vs. It consists of a 5 X 5 mm
square with eight indium contacts placed symmetrically
around the edges. Magnetotran sport experiments are
performed in a top-loading 3He- He dilution refrigerator
in a 20 T superconducting magnet with an in situ sample
rotation stage. Both the sample and a calibrated Ru02
resistor thermometer are immersed in the liquid of the
mixture. A standard low-frequency (3—7 Hz) lock-in
technique is employed for resistance measurements.

Magnetoresistance data are recorded at a base tempera-
ture of 50 mK from filling factor v = 2 to v = 1 for a
total of 51 different tilt angles from 0 = 0 to 0 = 77.5 .
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Evidence for a Phase Transition in the Fractional Quantum Hall Effect

3. P. Eisenstein, H. L. Stormer, L. Pfeiff'er, and K. W. West
ATd'c T Bell Laboratories, Murray Hill, New Jersey 07974

(Received 22 December 1988)

We observe a novel transition between distinct fractional quantum Hall states sharing the same filling
fraction v= —,'. The transition is driven by tilting the two-dimensional electron-gas sample relative to the
external magnetic field and is manifested by a sharp change in the dependence of the measured activa-
tion energy on tilt angle. After an initial decline, the activation energy abruptly begins to increase as the
tilt angle exceeds about 30'. A plausible model for these results implies a transition from a spin-
unpolarized quantum fluid at small angles to a polarized one at higher angles.

PACS numbers: 73.40.Kp, 73.20.Dx, 73.50.Jt

The earliest ideas concerning the fractional quantum
Hall eft'ect (FQHE) in two-dimensional electron systems
(2D ES) held the spin Zeeman energy to be so large that
all fractional states could be safely assumed to be fully
spin polarized. It was also generally thought that only
one incompressible quantum liquid existed at any given
filling fraction that displayed the FQHE. Halperin' was
the first to point out that the small g factor (g-0.5) in
GaAs made the usual assumption of full spin polariza-
tion worth reexamining. He proposed various candidate
ground states containing reversed spins. In particular,
the unpolarized ground-state wave function he suggested
for the v= —,

' FQHE was later shown to have a lower
energy, in the absence of the Zeeman term, than the usu-
al polarized state thought to be a "daughter" of the
primitive v= —, fluid. While at high magnetic fields the
Zeeman energy will stabilize the polarized state, the pos-
sibility remains for a transition to an unpolarized fluid at
lower fields. The purpose of this Letter is to present evi-
dence consistent with just such a spin transition in the
FQHE ground state at v= —, .

It is becoming apparent that the spin degree of free-
dom may in fact play an important role in forming both
the condensed ground state' and its quasiparticle exci-
tations, ' at least at su%ciently low magnetic field B.
The energy gap for creating spin-reversed quasiparticles
above the v =

3 state has been found ' to be less than
that for polarized quasiparticles, at sufticiently low mag-
netic field. This has been suggested as a way to explain
the magnetic field dependence of the observed energy
gaps'' in the FQHE. Recent tilted-field studies' ' on
the FQHE have also been cited as suggestive of the
influence of spin.

The recent discovery' of a Hall plateau in the FQHE
at the even-denominator filling fraction v= 2 has gen-
erated renewed interest in the possibility of spin-
unpolarized ground states. A plausible way to overcome
the odd-denominator restriction inherent in Laughlin s
many-body wave function ' describing the primitive
FQHE ground states at v= —,', —,', etc. , is to form pairs
of eIectrons with opposing spins. This was made con-

crete by Haldane and Rezayi who proposed an unpolar-
ized spin-singlet wave function for the v= —', FQHE.
Eisenstein et al. ' have presented experimental evidence
that the underlying ground state at v= —', may, in fact,
be unpolarized. Their data showed a rapid collapse of
the 2 state as the magnetic field was tilted away from
the normal to the 2D plane, while nearby odd-
denominator states remained largely unaffected. Since
the predominant eA'ect of the tilt is the enhancement of
the spin-flip energy, ' the collapse of the —', state with in-
creasing tilt angle was cited as evidence for a
significantly reduced spin polarization.

In the present paper we describe a transition between
two distinct FQHE states at the same odd-denominator
filling factor v= —, . The transition is driven by tilting
the magnetic field and the data are consistent with a
change from a spin-unpolarized fluid to a polarized one.
We have so far found no similar transition in the FQHE
states at v = 3, 3, 5, or '7' .

The sample employed in this study is a GaAs/A16aAs
heterostructure grown by molecular-beam epitaxy. With
a 2D carrier concentration N, =2.3 x 10 ' ' cm and mo-
bility of about 7X10 cm /Vs, both established by brief
low-temperature illumination with a red light-emitting
diode, this sample is of extremely high quality. This is
evidenced by the substantially enhanced strength of the
delicate v= —', FQHE in comparison to earlier observa-
tions. ' ' ' The sample has allowed for a quantitative
study of the even-denominator state, the results of which
will be published separately.

The sample is mounted upon an in situ rotation device
attached to the mixing chamber of a dilution refrigera-
tor. Magnetotransport measurements are typically per-
formed using 10-nA, 5-Hz excitation. We have reliably
obtained electron temperatures as low as 16 mK with
this arrangement. As in our earlier work, ' the tilt angle
is determined by observing the orderly cosO shift of
strong features in the diagonal resistivity p . Details of
our techniques have been published earlier. ' ' ' The
use of in situ rotation at low temperatures (( 100 mK)
is a prerequisite for obtaining reproducibility of delicate
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FIG. 3. Top: Maxima and shoulders of Fig. 2 (and of
similar data) plotted in a B„,B,ff plane. -Full (open) circles
represent strong (weak) features. Inclined dash-dotted lines at
0 = 0' and 0 = 73 indicate the motion of traces through the
graph taken at these particular angles. Vertical heavy (dotted)
[thin] lines indicate regions of fully spin-polarized (fully spin-
unpolarized) [partially spin-polarized] CF states, respectively.
The ratios along some of these lines indicate the ratios of
up spins to down spins that can be readily generalized. The
level schemes and arrows serve as an illustration of the CF
level structure and Fermi level, respectively, in these particular
regions. Bottom: Slope jB,r&/B„, of data from the top of
the figure. In a simple picture of the level scheme, this ratio
represents g*m* of the CFs. The line through the data is a
simple, linear fit. The inset shows another diagram to facilitate
the description of the origin of the fan diagram in the top of the
figure.

With the electron filling factor at v = 2 —p/(2p ~
1) = (3p ~ 2)/(2p ~ 1) being equivalent to a CF filling
factor of p, one can readily identify the level scheme at
crossover. Strong peaks (full circles) represent a level
coincidence at the Fermi energy, which suddenly falls

inside a doublet of degenerate levels with a concomitant
strong response in transport. The origin of the weak
and broad peaks (open circles) is less clear at this point.
They may represent coincidences away from the Fermi
level that are still seen in transport. We neglect these
weak features for our analysis, although they merit future
studies.

We have incorporated into Fig. 3 several level schemes
indicating the conditions at specific filling factors in
several ranges of Bt,& and B,ff. The Fermi energy of
the CFs is shown by arrows. With the help of these
schematics, the origin of the features in Fig. 2 is readily

5accessible. For example, at v =
3 only one level is

occupied (p = 1) and there can be no coincidence,
explaining the absence of any peak in Fig. 2 (see also
inset bottom Fig. 3). More importantly, these schematics
tell us the spin polarization of the CF system at any filling
fraction and Zeeman energy. One only needs to count
the number of "down-going" arms (spin-down) versus the
number of "up-going" arms (spin-up) below the Fermi
energy in the level schemes. In this way, the composite
fermion model combined with nonzero g factor allows a
unique identification of the spin polarization of all FQHE

3states around v =
2 and by inference of other, equivalent

FQHE states.
Having discussed the qualitative merits of Fig. 3, we

now determine the slopes of the fan, which should re-
veal the value of g'I*. The lower part of Fig. 3 shows
this quantity as derived from all well-defined data points
(closed circles) using jB,rr/B«t = g*m"'/2mo plotted
versus B,rr [= 3(Bi —Bs/z~)]. A linear fit generates
g*m'"/2mo = 0.132 + 0.025(T ')B,rr. In order to sep-
arate g' and I*, we have performed temperature depen-
dent SdH measurements at a very high tilt angle of 73 .
At this tilt the energy gaps of the fractional states at 3

8and 5 are solely determined by the CF cyclotron gap and
unaffected by spin splitting (see dash-dotted line in top
of Fig. 3 in relation to level schemes). Our analysis (not

8shown here) is best performed on the v =
s state and

yields m8~5 = 0.42mo.
We may linearize the ~B dependence of the

mass around v =
z and arrive at m'/mo =

0.433 + 0 0722B,rr /B3/. z, which leaves us with
g g3/ +2nB,rr = 0 61 + 0 083(T ')B,rr. By ex-
trapolation we determine g,=2 = 0.42 and g, =~ = 1.0.
The extrapolated g factor at v = 2 is very close to the
g factor of electrons in GaAs, go, A, = 0.44 [21]. At
v = 2 the spin system of the electrons is unpolarized
and transport measurements are expected to yield the
bare g factor, whereas the so-determined g factor is
maximally enhanced at v = 1 [19,20]. We therefore
deduce that the g factor of the CFs is largely the g factor
of the electron component of the particle. It is go = 0.42
with an enhancement factor of I = 1.5 in a traditional
expression of g* = gII[1 + I(n$ —nt')/(n$ +nt)], where
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The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy
differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the
quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of
Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of
this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase
diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman
energies and the experimentally measured values. In particular, we find, as also do experiments, that the
critical Zeeman energies for fractional quantum Hall states at filling factors ν ¼ 2 − n=ð2n# 1Þ are
significantly higher than those for ν ¼ n=ð2n# 1Þ, a quantitative signature of the lifting of particle-hole
symmetry due to Landau-level mixing.

DOI: 10.1103/PhysRevLett.117.116803

The role of particle-hole symmetry in the lowest Landau
level (LLL) as well as its breaking due to Landau-level (LL)
mixing has come into renewed focus in the contexts of the
competition between the Pfaffian and the anti-Pfaffian
wave functions for the ν ¼ 5=2 fractional quantum Hall
(FQH) effect [1–9] and of the nature of the composite-
fermion (CF) Fermi sea at ν ¼ 1=2 [10–24]. LL mixing
also affects various observable quantities in the FQH effect,
and a lack of its quantitative understanding has been one of
the major impediments to the goal of an accurate com-
parison between theory and experiment. The effect of LL
mixing has been treated in a perturbative approach [4–9],
but the extent of its validity for typical experiments has
remained unclear because the relevant parameter control-
ling the strength of LL mixing, namely, the ratio
of the Coulomb interaction to the cyclotron energy
κ ¼ ðe2=ϵlÞ=ℏωc, is typically ∼1 and sometimes as high
as ∼2. (Here, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length, ϵ is

the dielectric constant of the background material, and
ωc ¼ eB=mbc is the cyclotron frequency).

We study in this work the effect of LL mixing through
the nonperturbative method of fixed-phase diffusion
Monte Carlo calculations [25–27]. We focus here on the
phase transitions between differently spin-polarized FQH
states as a function of the Zeeman energy, which are an
ideal testing ground for the role of LL mixing, both because
a wealth of experimental information exists for the critical
energies where such transitions occur [28–40] and because
they depend sensitively on LL mixing [40,41]. The critical
Zeeman energy Ecrit

Z quoted below in terms of the dimen-
sionless ratio αcritZ ¼ Ecrit

Z =ðe2=ϵlÞ is a direct measure of the
tiny energy differences between differently spin-polarized

states and, thus, serves as an extremely sensitive test of the
quantitative accuracy of the theory. In particular, a long-
standing puzzle has been that the observed values of αcritZ for
spin transitions at the filling factor ν ¼ 2 − n=ð2n# 1Þ are
significantly higher than those at ν ¼ n=ð2n# 1Þ. Because
particle-hole symmetry in a system confined to the LLL
guarantees that the transitions at ν and 2 − ν occur at the
same αcritZ , it is clear that LL mixing, which breaks particle-
hole symmetry, is responsible for the effect. Surprisingly,
for heterojunction samples, αcritZ for spin transitions at the
filling factor ν ¼ 2 − n=ð2n# 1Þ are higher even than the
theoretical values for systems with zero width and zero LL
mixing, which is counterintuitive because the corrections
due to finite width and finite LL mixing are both expected
to weaken the interaction and, thus, reduce αcritZ .
If the fixed-phase diffusion Monte Carlo (DMC) method

can be demonstrated to provide a quantitative account of
these experiments, it will not only reveal the role of
Landau-level mixing in a quantitative fashion but, in
principle, also enable an investigation of the effect of LL
mixing on various other issues, including the 5=2 Pfaffian
or anti-Pfaffian state and the 1=2 CF Fermi sea, in a
nonperturbative approach.
The DMC method [42,43] solves the many-body

Schrödinger equation by noting that its imaginary time
(t → it) version can be interpreted as a diffusion equation.
The wave functionΦ of interest plays the role of the density
of diffusing particles, which is valid when Φ is always real
and non-negative, such as for Bose systems in their ground
states. In order to treat Fermi statistics, a fixed-node
approximation is used which does not allow diffusion
through the nodal surface. The fixed-node DMC method,

PRL 117, 116803 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 SEPTEMBER 2016

0031-9007=16=117(11)=116803(6) 116803-1 © 2016 American Physical Society

With Landau level mixing, the critical Zeeman energies are much higher 
for the   states than for . ν = 2 − p/(2mp ± 1) ν = p/(2mp ± 1)

Coulomb wave functions for the SS states at 2=3 and 4=3,
Eq. (2) for the 2=3 FP state, and Φ1↑Ψ1=3↓ for the 4=3 PP
state. For the SS states, we can only calculate for small
systems, as the exact states contain a large number of Slater
determinants. Figure 3 shows the αcritZ for ν ¼ 4=3 (green
circle) and ν ¼ 2=3 (blue square) obtained from the
extrapolation method II. The value of αcritZ at κ ¼ 0 is
approximately consistent with the exact value 0.0175 [41],
giving us confidence in our calculated αcritZ with relatively
small system sizes. The main message of Fig. 3 is that the
αcritZ at 4=3 is substantially higher than that at 2=3 for the
typical experimental value of κ ≈ 1–2. Note that we only
show the zero-width results because the extrapolation of
finite-width results to thermodynamic limit has a poor
statistics for such small systems [47]. We also show in
Fig. 3 the experimental data from GaAs-AlxGa1−xAs
heterojunction samples because these have the smallest
effective width, with solid symbols for ν ¼ 2=3 (light blue)
and ν ¼ 4=3 (green). The agreement with the w ¼ 0 results
is very good, which is not surprising because we know from
Fig. 1 that at relatively large κ (≳2), αcritZ is not very
sensitive to the width w.
It is natural to ask how well our results agree with those

obtained from the perturbative approach in which the effect
of LL mixing is incorporated within the LLL theory

through an effective interaction, which contains perturba-
tive corrections to the two-body interaction and, minimally,
also a three-body interaction (because the two-body
interaction does not break particle-hole symmetry). We
discuss this issue for w ¼ 0. As seen in Fig. 3, the
perturbation theory is, in principle, valid for up to κ ≈ 1
for the states n=ð2n# 1Þ and up to κ ≈ 0.5 for the states at
2 − n=ð2n# 1Þ. In practice, one cannot keep all two-body,
three-body, and n-body terms in the calculation. We have
evaluated αcritZ [47] using the interaction given by Peterson
and Nayak [8], including corrections to the two-body
pseudopotentials Vð2Þ

m for m ≤ 5 and three-body pseudo-
potentials Vð3Þ

m form ≤ 3. Table I compares the perturbative
dðαcritZ Þ=dκ with that deduced from Fig. 3 at small κ. The
two results are substantially different. For example, if the
perturbative result is applied to κ ¼ 1.5, it would produce
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FIG. 2. Comparison between experimental values (stars) and
theoretical DMC values (empty circles) of αcritZ ¼ Ecrit

Z =ðe2=ϵlÞ
for a w ¼ 65 nm quantum well (blue) from Liu et al. [40], and
heterojunctions (red) from Engel et al. [30] and Kang et al. [32].
(For the experiment of Kang et al., we estimate the value of the
Landé factor g0 by assuming that it changes linearly and passes
through zero at a pressure of roughly 18 Kbar [62].) The filling
factors ν ¼ n=ð2nþ 1Þ are shown on top and 1=n at the bottom.
The black circles show the results obtained from ED without
including any LL mixing or finite-width corrections [41] (these
do not involve the DMC calculation). The results for the 65 nm
quantum well are shifted down by 0.005 for ease of depiction.
The dashed lines are a guide to the eye. For the heterojunction,
some other experimental values (theoretical predictions) of αcritZ
are 0.0109 [0.0076(4)] [29] and 0.0078 [0.0065(4)] [30] at
ν ¼ 2=3, and 0.0081[0.0080(20)] [30] at ν ¼ 3=5; these are
not shown on the figure to avoid clutter.
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FIG. 3. Theoretical critical Zeeman energies for the w ¼ 0
model as a function of the LL mixing parameter κ obtained from
the DMC method for ν ¼ 4=3 (green circle), 2=3 (blue square),
4=9 (magenta downward triangle), 3=7 (black upward triangle),
and 2=5 (red diamond). For the fractions n=ð2nþ 1Þ, the wave
functions of Eq. (2) are used to fix the phase. For ν ¼ 2=3 and
ν ¼ 4=3, the exact Coulomb state in the LLL is used to fix the
phase of the wave function. The solid lines are an approximate
guide to the eye. The filled symbols indicate the experimental
data from heterojunction samples at ν ¼ 2=3 (light blue) and 4=3
(green) taken from Eisenstein et al. [29] (circle), Engel et al. [30]
(diamond), and Du et al. [31] (rightward triangle).

TABLE I. This table compares the values of dðαcritZ Þ=dκ at
κ ¼ 0 obtained from the perturbative and the nonperturbative
DMC calculations.

ν

Perturbative Nonperturbative (DMC)

dðαcritZ Þ=dκ
2=5 −0.0023 −0.0043
3=7 −0.0025 −0.0050
2=3 −0.0135 −0.0057
4=3 0.0339 0.0184
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Quantum Liquid versus Electron Solid around v =
5 Landau-Level Filling
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t" Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Princeton University, Princeton, Ne~ Jersey 08544
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(Received 15 February 1990)

In the high-magnetic-field low-disorder limit the ground state at v 5 Landau-level filling is an in-
compressible quantum limit. This is determined by observing vanishing resistivity p, as the temperature
T 0. At filling factors below v 5 as well as in a narro~ region above v 5, p„diverges exponen-
tially as T 0. This contrasts the T dependence at any higher v. We conclude that the quantum limit
at v 5 is surrounded by a different phase. In as much as the exponential divergencies are indicative of
an electron solid this solid phase is reentrant in a narrow region above v

PACS numbers: 73.20.Dx, 73.40.Kp, 73.50.Jt

In the absence of strong disorder the ground state of a
two-dimensional (2D) electron system in a high magnet-
ic field (8) can assume a sequence of quantum liquids'
at fractional Landau-level filling factors v p/q. These
condensed states manifest themselves in magnetotrans-
port experiments as the fractional quantum Hall effect
(FQHE). In the dilute electron limit (v 0) the same
system is expected to form an electron solid, possibly
distorted to an electron glass in the presence of small
amounts of disorder. Therefore, there must exist some
critical filling factor v, at which the electron system un-
dergoes a phase transition from one of the quantum
liquids to the solid. The postulated solid phase has not
yet been positively identified and consequently there ex-
ists considerable uncertainty as to the value of the criti-
cal filling factor.

The difficulty in predicting v, theoretically, even for
an ideal system free of any disorder, is that the total en-
ergies of the liquids and the solid differ only slightly over
large ranges of the filling factor. ' Slight uncertainties
in the ground-state energy of either phase can vastly
change their intercept, leading to a large uncertainty for
v, . The best theoretical estimate presently available is
v, =-1/6. 5. Experimentally, local minima in the diagonal
resistivity p„„have been observed ' for v 5 and also
for v= —,', and a developing plateau has been seen in the
Hall resistance p„y for v= —,

' . These experimental obser-
vations, though suggestive of the possible existence of a
quantum liquid at v= —,

' and —,', do not rule out the pos-
sibility of a solidlike ground state in this small v regime.
The difficulty with identifying the solid arises largely
from not knowing the exact signature such a phase
would exhibit in conventional high-field experiments, al-
though it is expected that, in the presence of a finite
amount of disorder, the electron solid is pinned to poten-
tial fluctuations and the system becomes insulating as
T 0.

Recently, a transition towards an insulating phase has
been observed in the T dependence of electron transport

around v-0.25 and its possible indication for the forma-
tion of an electron solid has been discussed. The onset of
the transport anomalies is found to depend monotonical-
ly on electron density n and, since v nh/eB, it can be
extrapolated in a crude fashion to v =0.19 in the
infinite-8 limit.

There have also been independent experiments in the
radio-frequency domain, ' intended to detect a gapless
excitation of the electron solid. The result of these stud-
ies has become the subject of some controversy" and "it
is now less clear that the resonance observed in the new
domain is the lower hybrid magneto-phonon mode. "'
In any case, a positive experimental identification of the
low-filling-factor phase as an electron solid is still lack-
ing. However, such an interpretation of the dc-transport
data appears likely in view of the theortically estimated
critical filling factor for the transition to such a solid
phase.

An important aspect of the theoretically proposed
values for v, is their proximity to v 5 . Although local
minima in p„„and associated plateau development in
p„~, features characteristic of the FQHE, have been ob-
served in the past, in the previous experiments p„„did
not approach the expected zero-resistance state as
T 0. Instead, the minimum disappeared as T was
lowered. This poses the question as to whether the
FQHE is the true ground state at v = —,

' .
In this Letter we show unambiguously that in the

low-disorder, high-field limit the ground state at v= —,
' is

indeed a Laughlin liquid. Furthermore, at filling factors
below v 5 as well as in a narrow region above it, p„
diverges exponentially as T 0, in clear contrast to the
T dependence at any higher v. This exponential diver-
gence of p„ for v belo~ and above the 5 quantum
liquid state is suggestive that this reentrant behavior is a
consequence of a phase transition in the underlying
many-particle state. It is unlikely to be the result of in-
creasing single-electron localization with increasing 8
field. We have considered the energetics of the electron
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solid and the Laughlin liquid in the vicinity of v= —, and
found that an electron solid existing both below and
above the 5 quantum liquid is a distinct possibility for
the ideal 2D system. Rather than a single v, there could
exist several critical filling factors at which quantum
liquids and solids trade place as v 0. We attribute the
experimental observations to the existence of such a
reentrant solidlike phase around the —, liquid in the
liquid-solid phase diagram.

We used a high-mobility (p =7.5 x 10 cm /V sec),
low-density (n =1.0X 10" cm ), modulation-doped
GaAs-(AlGa)As heterostructure in our experiments.
These sample parameters were determined after stan-
dard low-temperature illumination with visible light. All
experiinents were performed in a dilution refrigerator
placed in a 23-T Bitter magnet. Standard low-frequency
lock-in techniques were used to measure longitudinal
resistance (R„„)and Hall resistance (R„~) of the square

sample. Depending on the exact cooldown and illumina-
tion procedure, the data vary slightly from run to run.
This has, however, no impact on our conclusions.

Figure 1 shows R„„versus magnetic field 8 at our
lowest, unstabilized temperature of T =90 mK. The
most striking feature of these data is the sharp resistance
spike at B= 20 T (v =0.21). Its strength vastly exceeds
the strength of any feature at lower fields. The peak
reaches a value of -4x10 0 exceeding typical resis-
tances of the maxima between FQHE states by more
than 2 orders of magnitude. Although this sample shows
well developed FQHE features with fractions up to
v —,', , most of these structures are invisible on this
scale. At fields slightly above the position of the spike
R„„drops precipitously, vanishes around v = 5, and
diverges again at still higher fields. The approach of a
zero-resistance state at v =

5 shows unambiguously that
in samples with suSciently low disorder the Laughlin
quantum liquid forms the ground state at v = —,

' .
With such a well resolved minimum in R„„,we can (in

a separate run) for the first time determine the quasipar-
ticle activation energy from a standard Arrhenius plot
(Fig. 2) and obtain 6 =1.1 K. Numerical few-particle
calculations' give 6 0.0244e /alo, where lo=a'h/eB
and e 12.8 is the dielectric constant of GaAs. At
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FIG. 1. Diagonal resistance R vs magnetic field at T=90
mK. Data are taken on a square sample so that p, aR,
with a—1. At v ~ 5, p„„~0 indicating that the v ~

5 quan-
tum liquid forms the ground state. The resistivity p in the
sharp spike at v—0.21 and for all v~

& is rising exponentially
on lowering the temperature. All FQHE features at lower
magnetic field are well developed but practica11y invisible on
this scale. Inset: Result of a calculation for the total energy
per flux quantum of the solid (Ewc) and interpolated 1/m
quantum liquids (EL) as a function of filling factor (Ref. 4). A
classical energy (E,~„, —0.782133v '~ ) is subtracted for
clarity. The dashed lines represent the cusp in the total energy
(Ref. 13) of the liquid at v —,'. Its extrapolation intersects
the solid at v-0.21 and 0.19 suggesting t~o phase transitions
from quantum liquid to solid around v
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FIG. 2. Temperature dependence of R „at v= —,'. R „ is
activated [R„„cx:exp(—A /2T)l over 2 orders of magnitude
with an energy gap of h, =1.1 K. Inset: Diagonal resistance
R „vs magnetic field 8 at T—250 rnK and at a slightly higher
density than in Fig. 1. The temperature for this trace is opti-
mized to show the features in R„associated with various
FQHE states.
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• 1/5 and 2/9 are strong FQH states, 
but an insulating state appears in-
between, and also below 1/5. 

• This insulating state has not gone 
away even when the mobility has 
gone up significantly.

• It is therefore likely a pinned crystal. 

Also Goldman, Santos, Shayegan, Cunningham, PRL 1990

Crystal at low filling factors
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at low temperatures. The Wigner crystal phase was observed by Grimes and Adams [216],
identified through its coupling with standing capillary waves on the helium surface, known
as “ripplons.” The electron density in these experiments was ∼5×108 cm−2 and the melting
temperature was around 0.5 K (much higher than the Fermi energy of ∼0.03 K). The phase
transition occurs at ! = 137 ± 15, where ! = √

πρe2/kBT is a measure of the ratio of
Coulomb energy to kinetic energy for a 2D system of charged classical particles governed
by Maxwell–Boltzmann statistics, as appropriate for electrons much above the degeneracy
temperature.

15.1.2 Lowest Landau level

Lozovik and Yudson [406] proposed that a Wigner crystal could be achieved by application
of a strong magnetic field perpendicular to a 2D system. Once all electrons are in the lowest
Landau level, their kinetic energy is quenched and their state is determined entirely by the
interaction energy. What else can electrons do but form a Wigner crystal?

As we have seen, in a range of filling factors, electrons capture vortices to turn into
composite fermions, which form a liquid state. This physics is unexpected, and, in all
likelihood, would not have been conceived but for the dramatic discovery of the FQHE.
From the perspective of the Wigner crystal, the lattice constant of a hypothetical crystal
is comparable to the size of the maximally localizable wave packet in the lowest Landau
level, and the resulting overlap between nearest neighbor electrons is so strong as to “melt”
the crystal.

This argument also indicates that at sufficiently small fillings, when electrons on
neighboring lattice sites are far removed, a crystal should be energetically favored. The
wave packet for an electron in the lowest Landau level localized at R = (X , Y ) is given by
[417] (Eq. E3.2)

φR(r) = 1√
2π

exp
(

−1
4
(r − R)2 + i

2
(xY − yX )

)
. (15.3)

The Maki–Zotos (also called Hartree–Fock) wave function for the uncorrelated Wigner
crystal in the lowest Landau level is constructed by placing electrons on a triangular lattice
Rj, the lowest energy solution for the classical problem, and then antisymmetrizing the
product [417]:

%WC = 1√
N !

∑

P

εP

N∏

j=1

φRj (rPj), (15.4)

where the sum is over all permutations P and εP is +1 for even permutations and −1 for odd
permutations. With the lattice constant a = (4π/

√
3ν)1/2l0, the overlap integral between

nearest neighbor electron wave functions [417], exp(−a2/2l20) = exp(−3.627/ν), decays
rapidly with decreasing ν.

A principal reason why 2D semiconductor heterostructures are more promising for the
formation of a Wigner crystal is the extremely high quality of the electron system, madeJAIN: “CHAP15” — 2006/12/28 — 17:00 — PAGE 444 — #3
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• It would seem natural for nature to take advantage of 
both the CF and crystalline correlations to find the 
minimum energy. 

• In this wave function, due to the Jastrow factor, the 
zero point fluctuations at nearby sites are correlated.

• Now  is a variational parameter. 2p

ΨCFC =
∏

j<k

(zj − zk)2pΨMZHF
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Narevich, Murthy, Fertig, PRB 64, 245326 (2001)
Chang, Jeon, Jain, PRL 94, 016809 (2005)
Archer, Park, Jain, PRL 111, 146804 (2013)

The CF crystal
2p



ν=0.394 ν=0.351
crystal of CFs in the second Λ level 

FQH stateInsulator

When all CFs form a crystal, its pinning produces an insulator.

When only the CFs in the partially filled -level form a crystal, its 
pinning produces a FQHE state.

Λ

Type I and type II crystals
On a sphere, we approximate the crystal by the Thompson crystal. 
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FIG. 2. Upper panels: Energy per particle as a function

of filling factor for various type-1 and type-2 CFC states.

The latter are labeled FQHE. All energies are quoted relative

to a reference energy Efit = p0.782133⌫1/2
+ 0.2623⌫3/2

+

0.18⌫5/2 p 15.1e�2.07/⌫
, which has a form similar to that in

Ref. [14] but with coe↵cients modified to display the energy

di�erences between the competing states more clearly. Lower

panels: Shear modulii of type-1 crystals of composite fermions

with 2p vortices. The shear modulus of the MZ crystal, given

by the solid black line, is shown for reference. The shear mod-

ulus of the
2p
CFC is indicated by a solid line in the regime

where it is the ground state, and by a dashed line otherwise.

The regions 0 < ⌫ < 1/6 and 1/6 < ⌫ < 4/17 are shown in

separate panels because di�erent filling factor scales are used

for them.

e
2
/⌫✓ per particle than the energy of the type-1 CFC at

� ⇡ 1/5. The energy of the LG crystal is 0.00214 e
2
/⌫✓

above the 1/5 FQHE state and 0.00305 e
2
/⌫✓ above the

2/9 FQHE state (using the thermodynamic limits from
Refs. [14, 28].), and will also not capture the insulating
crystal phase between 1/5 and 2/9. The understanding
of the insulating phase between 1/5 and 2/9 as the 2CF
crystal leads to the intuitively pleasing picture in which
the 4CFs of the nearby liquid states shed two of their
vortices to establish a crystal, while retaining energet-

ically favorable correlations through the remaining two
vortices.
It has recently been demonstrated [7] that the den-

sity distribution of the electrons can be accessed through
NMR measurements, because the Knight shift is propor-
tional to the local electron density. As shown in the
Supplemental Materials (SM) [37], the type-1 and type-
2 CFCs have remarkably di↵erent density distributions,
which may allow NMR to identify the phase boundaries
in the region 1/5 < � < 2/9.
We have also studied the competition between the liq-

uid and the crystal phases at lower fillings, where we con-
sider type-1 2pCFCs with di↵erent choices of 2p to deter-
mine which produces the lowest energy. As � is lowered
below 1/5, a series of type-1 2pCFCs with increasing vor-
ticity occurs. No FQHE state supporting a type-2 CFC
appears for � < 1/6. (We cannot rule out FQHE states
with fillings n

6n�1
in the range 1/5 > � > 1/6, not studied

here due to complications associated with reverse flux at-
tachment [39].) The phase boundaries practically remain
unchanged for N > 32 (see SM), and thus represent the
thermodynamic limit. We have also studied the e↵ect
of finite thickness, which does not change the phase dia-
gram appreciably. Using the model of Ref. [40], we have
considered quantum well structures with the well widths
ranging from 20 to 80 nm and the electron density rang-
ing from 1.0 ! 1010 to 1.5 ! 1011 cm�2, and found that
even though the energy per particle decreases by up to
10% for the largest densities and widths considered, the
phase boundaries are little changed.
To formulate the low-energy dynamics of type-1 CFCs,

we begin by modeling the CFC as a collection of charged
point particles that interact through an e↵ective interac-
tion V (Rjk) with Rjk = |Rj 1 Rk|, but are otherwise
classical. The dynamical matrix ���(k), where �,� de-
note spatial directions, is given by [13]:

���(k) =
Y

j

[11 cos(k ·Rj)]
✏
2
V (Rj)

✏Rj,�✏Rj,�

�

Q
�

k
+ (CL

1 C
t)
�
k�k� + `��C

t
k
2 (4)

where Rj = |Rj |. In the above, the second line is ob-
tained in the k � 0 limit under the explicit assumption
of the C6 symmetry. Between the two elastic parame-
ters, CL and C

t, the shear modulus C
t is of special im-

portance because it determines the low-energy behavior
of the magnetophonon mode and its becoming negative
signals an instability of the crystal. As shown in the SM,
for the hexagonal lattice it can be obtained directly from
the energy per particle of the crystal by the following
equation:

C
t

CF
=

1

2
�
2
✏
2

✏�2
(ECF 1 EMZ) + C

t

MZ
(5)

where EMZ is defined as the energy of a hexagonal crystal
of classical particles interacting with the MZ interaction

The crystal between 1/5 and 2/5 is not the ordinary Wigner 
crystal of electrons, but a crystal of CFs carrying two vortices.

2

FIG. 1. Left panel shows the phase diagram of the electron
crystal and the FQH liquid in a filling factor range including
⌫ = 1/3 and ⌫ = 2/5 as a function of the LL mixing parameter
. While the 1/3 and 2/5 FQH states are very robust to LL
mixing, for intermediate fillings the crystal appears for  & 7.
The right panel displays the theoretical phase diagram of the
2CF crystal and FQH liquid in a range including ⌫ = 1/5 and
⌫ = 2/9. The electron crystal is not stabilized in this filling
factor region because it has substantially higher energy than
the 2CF crystal[43]. The uncertainty in the location of the
phase boundaries is �⌫ . 0.001 within our model defined in
the text.

is modeled as a pinned “type-I” crystal of electrons or
composite fermions in which all particles form a crystal.
Extremely accurate lowest LL (LLL) wave functions are
available for these states, which we use to fix the phase of
the wave function in the DMC method; this is important
because the accuracy of the results depends sensitively on
the choice of the phase. (We note that while we use the
terminology “electron crystal” or “electron liquid,” our
results below apply to both electron and hole systems.)

Following the usual convention, we quantify the
strength of LL mixing through the parameter  =
(e2/✏l)/(~eB/mbc), which is the ratio of the Coulomb en-
ergy to the cyclotron energy. (Here, l =

p
~c/eB is the

magnetic length, mb is the band mass, and  is related to
the standard parameter rs as  =

p
⌫/2 rs.) Our prin-

cipal result is the phase diagrams shown in Fig. 1. The
most striking feature they reveal is the strong ⌫ depen-
dence of the phase boundary separating the FQH and the
crystal phases. For example, the FQH e↵ect at ⌫ = 1/3
and 2/5 survives up to the largest value of  (= 18) we
have considered, but the electron crystal appears already
at  & 7 for certain ⌫ in between 1/3 and 2/5, and at even
lower values of  for ⌫ < 1/3. Another notable feature
is that in the vicinity of ⌫ = 1/5 and 2/9, LL mixing in-
duces a transition into the strongly correlated 2CF crys-
tal rather than an electron crystal. (If we only considered
the electron crystal, no transition into the crystal state
would occur at ⌫ = 1/5 and ⌫ = 2/9 for up to  = 18.)
In what follows, we give details of calculations leading
to these phase diagrams, and discuss their connection to
experiments.

Fixed phase DMC: The goal is to find the mini-
mum energy h (R)|H| (R)i| by varying over the en-
tire Hilbert space of states, where H is the Hamil-
tonian for interacting two-dimensional electrons in a
magnetic field and R represents the particle coordi-

FIG. 2. Density profiles of various crystals for N = 96 par-
ticles at severals fillings. Left shows a type-I electron crystal
for ⌫ = 0.394 (2Q = 240), and the middle shows a type-II
CF crystal for the same parameters, and right panel shows a
type-II CF crystal for ⌫ = 0.351 (2Q = 270). The density is
given in units of the average density. All results are for  = 0.

nates {rj}. Because this is not feasible for fermions,
we employ an approximate strategy called the fixed
phase DMC[40] wherein we search for the ground state
in a restricted subspace. (The fixed phase DMC is
closely related to the fixed node DMC.[44]) Follow-
ing OCM, we substitute  (R) = �(R)ei'(R) where
�(R) = | (R)| is real and non-negative. The
above energy is then given by h�(R)|HR|�(R)i| with

HR =
PN

j=1

⇥
p2
j + [~rj'(R) + (e/c)A(rj)]2

⇤
/2m +

VCoulomb(R). Now, keeping the phase '(R) fixed and
varying �(R) gives us the lowest energy within the sub-
space of wave functions defined by the phase sector '(R).
This minimization is most conveniently accomplished by
the DMC method[45, 46]. In this approach, one views
the imaginary time Schrödinger equation, �~ @

@t�(R, t) =
[HR(R)� ET )]�(R, t), as a di↵usion equation, where
�(R, t) is interpreted as the probability distribution of
the di↵using “walkers” and ET is an energy o↵set. Evolv-
ing this equation in imaginary time projects out the low-
est energy state, which is the ground state provided that
the initial trial wave function has a non-zero overlap with
the ground state. DMC is a method for implementing
this scheme through importance sampling, where “walk-
ers” in the 2N dimensional configuration space prolif-
erate (die) in regions of low (high) potential energy ac-
cording to certain standard rules, and converge into the
probability distribution of the ground state in the limit
t ! 1. The fixed phase DMC produces the lowest en-
ergy in the chosen phase sector, and hence a variational
upper bound for the exact ground state energy.

We perform our calculations in the spherical
geometry[47] in which electrons are confined on the sur-
face of a sphere, with a flux 2Q�0 passing radially
through it, where 2Q is an integer and �0 = hc/e is

the flux quantum. We use l as the unit of length and e2

✏l
as the unit of energy. The particle position is identified
through the “spinor” coordinates u = cos(✓/2)ei�/2 and
v = sin(✓/2)e�i�/2. Melik-Alaverdian, Bonesteel and Or-
tiz [48] have formulated the fixed phase DMC in the
spherical geometry through a stereographic projection,
and we will follow their method.

Trial wave functions: The accuracy of the energies ob-
tained from fixed phase DMC is critically dependent on
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AWigner crystal (WC) [1] is expected to form when the
interaction energy of electrons dominates their kinetic
energy. One way to accomplish this is to force all electrons
in two dimensions into the lowest Landau level (LL) by
applying a large magnetic field [2]. The insulating phase at
filling factors !< 1=6 has been interpreted in terms of such
a crystal [3–11], although a definitive observation of the
crystalline order is so far lacking. Remarkably, an insulat-
ing phase also appears between the fractional-quantum-
Hall-effect (FQHE) [12] liquids at ! ¼ 2=9 and 1=5
[3–5]. The facts that this insulator has persisted even as
the sample mobility has risen tenfold and that it is flanked
by two FQHE liquids suggest that the insulating behavior is
probably caused by pinning of a crystal rather than individ-
ual carrier freeze-out. While a qualitative scenario for the
reentrant behavior can be constructed in terms of cusps in
the energy of the liquid state [3], this behavior so far has not
been explained by a quantitative theoretical calculation.We
show in this Letter that this insulating state results from an
extremely subtle competition between the crystal and liquid
states. Our results support the interpretation of this insulator
as a pinned crystal, while also demonstrating its nontrivial
nature as a crystal of composite fermions (CFs). We also
consider the phase diagram of the crystal phase in a wider
range of filling factors, calculate the elastic constants, and
predict their nonmonotonic behavior as a function of !.

Numerous theoretical studies have considered the
crystal phase [13–27]. Maki and Zotos (MZ) [13] consid-
ered an uncorrelated Hartree-Fock WC of electrons in the
lowest LL and evaluated its elastic properties. Lam and
Girvin (LG) [14] considered a correlated WC, the energy
of which has been compared [14,28] with those of 1=m
[29] and n=ð2pnþ 1Þ FQHE states [30] (m odd integer; n,
p integers), which shows a level crossing transition at
! & 1=6. Beginning with Yi and Fertig [18], a number
of studies considered crystals of composite fermions
[19,22–24,26,27]. In particular, Chang et al. [24] demon-
strated that the CF crystals (CFCs) accurately capture the
correlations in the crystal phase.

For the questions addressed in this work, we need
the energies of both the crystal and the FQHE states
as a continuous function of !. For this purpose, we will
consider two types of CFCs. Denoting composite fermions
carrying 2p vortices by 2pCFs, these are the following.
(i) ‘‘Type-1 2pCFC’’ refers to a state in which all 2pCFs
form a crystal. When pinned by disorder, this state will
exhibit insulating behavior with divergent longitudinal
resistance. (ii) The term ‘‘type-2 2pCFC’’ refers to a state
in which the excess CF particles or holes [31] relative to a
FQHE liquid form a crystal. A type-2 CFC rides on the
background of a FQHE liquid. In the presence of some
disorder that pins the type-2 CFC, this state exhibits quan-
tized Hall resistance and dissipationless transport. Type-2
CFCs, which can be likened to a pinned Abrikosov vortex
lattice in a type-2 superconductor, are unobservable in
transport experiments but can be detected in microwave
resonance experiments [32] or by direct measurement of
the spatial density profile (shown below for some cases).
We will consider N electrons on the surface of a sphere

exposed to a total flux 2Q in units of hc=e. This geometry
[33] is convenient for its lack of boundaries and obviates
the complications requiring the introduction of ‘‘ghost
charges’’ [18]. We will denote the electron coordinates on
the sphere as rj ¼ ð"j;#jÞ, j ¼ 1; . . . ; N, and the crystal
sites by Rl ¼ ð$l;%lÞ, with l ¼ 1; . . . ; Nc, where Nc is the
number of lattice sites. It is also convenient to define the
spinor variables ðu; vÞ ¼ ð cosð"=2Þei#=2; sinð"=2Þe!i#=2Þ
and ðU;VÞ ¼ ð cosð$=2Þei%=2; sinð$=2Þe!i%=2Þ. A problem
with this geometry is that it is not possible to tile the surface
of a sphere with a crystal without introducing defects. We
place the crystal wave packet centers at the locations that
minimize the energy of charged point particles on the
surface of a sphere. Finding these locations, widely known
as the Thomson problem [34], has been accomplished
previously by a number of researchers using powerful
numerical techniques [35]. The Thomson crystal is locally
a triangular WC, and the fraction of defects vanishes as
Nc ! 1.
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In the high-magnetic-field low-disorder limit the ground state at v 5 Landau-level filling is an in-
compressible quantum limit. This is determined by observing vanishing resistivity p, as the temperature
T 0. At filling factors below v 5 as well as in a narro~ region above v 5, p„diverges exponen-
tially as T 0. This contrasts the T dependence at any higher v. We conclude that the quantum limit
at v 5 is surrounded by a different phase. In as much as the exponential divergencies are indicative of
an electron solid this solid phase is reentrant in a narrow region above v

PACS numbers: 73.20.Dx, 73.40.Kp, 73.50.Jt

In the absence of strong disorder the ground state of a
two-dimensional (2D) electron system in a high magnet-
ic field (8) can assume a sequence of quantum liquids'
at fractional Landau-level filling factors v p/q. These
condensed states manifest themselves in magnetotrans-
port experiments as the fractional quantum Hall effect
(FQHE). In the dilute electron limit (v 0) the same
system is expected to form an electron solid, possibly
distorted to an electron glass in the presence of small
amounts of disorder. Therefore, there must exist some
critical filling factor v, at which the electron system un-
dergoes a phase transition from one of the quantum
liquids to the solid. The postulated solid phase has not
yet been positively identified and consequently there ex-
ists considerable uncertainty as to the value of the criti-
cal filling factor.

The difficulty in predicting v, theoretically, even for
an ideal system free of any disorder, is that the total en-
ergies of the liquids and the solid differ only slightly over
large ranges of the filling factor. ' Slight uncertainties
in the ground-state energy of either phase can vastly
change their intercept, leading to a large uncertainty for
v, . The best theoretical estimate presently available is
v, =-1/6. 5. Experimentally, local minima in the diagonal
resistivity p„„have been observed ' for v 5 and also
for v= —,', and a developing plateau has been seen in the
Hall resistance p„y for v= —,

' . These experimental obser-
vations, though suggestive of the possible existence of a
quantum liquid at v= —,

' and —,', do not rule out the pos-
sibility of a solidlike ground state in this small v regime.
The difficulty with identifying the solid arises largely
from not knowing the exact signature such a phase
would exhibit in conventional high-field experiments, al-
though it is expected that, in the presence of a finite
amount of disorder, the electron solid is pinned to poten-
tial fluctuations and the system becomes insulating as
T 0.

Recently, a transition towards an insulating phase has
been observed in the T dependence of electron transport

around v-0.25 and its possible indication for the forma-
tion of an electron solid has been discussed. The onset of
the transport anomalies is found to depend monotonical-
ly on electron density n and, since v nh/eB, it can be
extrapolated in a crude fashion to v =0.19 in the
infinite-8 limit.

There have also been independent experiments in the
radio-frequency domain, ' intended to detect a gapless
excitation of the electron solid. The result of these stud-
ies has become the subject of some controversy" and "it
is now less clear that the resonance observed in the new
domain is the lower hybrid magneto-phonon mode. "'
In any case, a positive experimental identification of the
low-filling-factor phase as an electron solid is still lack-
ing. However, such an interpretation of the dc-transport
data appears likely in view of the theortically estimated
critical filling factor for the transition to such a solid
phase.

An important aspect of the theoretically proposed
values for v, is their proximity to v 5 . Although local
minima in p„„and associated plateau development in
p„~, features characteristic of the FQHE, have been ob-
served in the past, in the previous experiments p„„did
not approach the expected zero-resistance state as
T 0. Instead, the minimum disappeared as T was
lowered. This poses the question as to whether the
FQHE is the true ground state at v = —,

' .
In this Letter we show unambiguously that in the

low-disorder, high-field limit the ground state at v= —,
' is

indeed a Laughlin liquid. Furthermore, at filling factors
below v 5 as well as in a narrow region above it, p„
diverges exponentially as T 0, in clear contrast to the
T dependence at any higher v. This exponential diver-
gence of p„ for v belo~ and above the 5 quantum
liquid state is suggestive that this reentrant behavior is a
consequence of a phase transition in the underlying
many-particle state. It is unlikely to be the result of in-
creasing single-electron localization with increasing 8
field. We have considered the energetics of the electron
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solid and the Laughlin liquid in the vicinity of v= —, and
found that an electron solid existing both below and
above the 5 quantum liquid is a distinct possibility for
the ideal 2D system. Rather than a single v, there could
exist several critical filling factors at which quantum
liquids and solids trade place as v 0. We attribute the
experimental observations to the existence of such a
reentrant solidlike phase around the —, liquid in the
liquid-solid phase diagram.

We used a high-mobility (p =7.5 x 10 cm /V sec),
low-density (n =1.0X 10" cm ), modulation-doped
GaAs-(AlGa)As heterostructure in our experiments.
These sample parameters were determined after stan-
dard low-temperature illumination with visible light. All
experiinents were performed in a dilution refrigerator
placed in a 23-T Bitter magnet. Standard low-frequency
lock-in techniques were used to measure longitudinal
resistance (R„„)and Hall resistance (R„~) of the square

sample. Depending on the exact cooldown and illumina-
tion procedure, the data vary slightly from run to run.
This has, however, no impact on our conclusions.

Figure 1 shows R„„versus magnetic field 8 at our
lowest, unstabilized temperature of T =90 mK. The
most striking feature of these data is the sharp resistance
spike at B= 20 T (v =0.21). Its strength vastly exceeds
the strength of any feature at lower fields. The peak
reaches a value of -4x10 0 exceeding typical resis-
tances of the maxima between FQHE states by more
than 2 orders of magnitude. Although this sample shows
well developed FQHE features with fractions up to
v —,', , most of these structures are invisible on this
scale. At fields slightly above the position of the spike
R„„drops precipitously, vanishes around v = 5, and
diverges again at still higher fields. The approach of a
zero-resistance state at v =

5 shows unambiguously that
in samples with suSciently low disorder the Laughlin
quantum liquid forms the ground state at v = —,

' .
With such a well resolved minimum in R„„,we can (in

a separate run) for the first time determine the quasipar-
ticle activation energy from a standard Arrhenius plot
(Fig. 2) and obtain 6 =1.1 K. Numerical few-particle
calculations' give 6 0.0244e /alo, where lo=a'h/eB
and e 12.8 is the dielectric constant of GaAs. At
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FIG. 1. Diagonal resistance R vs magnetic field at T=90
mK. Data are taken on a square sample so that p, aR,
with a—1. At v ~ 5, p„„~0 indicating that the v ~

5 quan-
tum liquid forms the ground state. The resistivity p in the
sharp spike at v—0.21 and for all v~

& is rising exponentially
on lowering the temperature. All FQHE features at lower
magnetic field are well developed but practica11y invisible on
this scale. Inset: Result of a calculation for the total energy
per flux quantum of the solid (Ewc) and interpolated 1/m
quantum liquids (EL) as a function of filling factor (Ref. 4). A
classical energy (E,~„, —0.782133v '~ ) is subtracted for
clarity. The dashed lines represent the cusp in the total energy
(Ref. 13) of the liquid at v —,'. Its extrapolation intersects
the solid at v-0.21 and 0.19 suggesting t~o phase transitions
from quantum liquid to solid around v
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FIG. 2. Temperature dependence of R „at v= —,'. R „ is
activated [R„„cx:exp(—A /2T)l over 2 orders of magnitude
with an energy gap of h, =1.1 K. Inset: Diagonal resistance
R „vs magnetic field 8 at T—250 rnK and at a slightly higher
density than in Fig. 1. The temperature for this trace is opti-
mized to show the features in R„associated with various
FQHE states.
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A: p=4.07x10 cm
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(b)- C p=655x10 cm10 -2

I I
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(0.30&x &0.35). Electrical contact was made by alloy-
ing In:Zn (95:5) in a hydrogen atmosphere. Magneto-
transport measurements on eight samples (labeled A H—)
cut from six different wafers were performed down to
T=20 mK in a dilution refrigerator with B up to = 15.5
T and, for some of these samples, from 1.3 to 0.35 K in a
He cryostat. After cooling in the dark to =20 mK, the

2DHS had 4.0X10' &p &12.5X10' cm . The mea-
sured mobilities of 3X105&p&8X10 cm~V —

& s
—

& j
creased monotonically with density and placed these
2DHS among the highest quality 2DHS ever reported. '
Well-developed high-order FQH states at v= —,'and —,

' in
our 2DHS with p as low as 6.55X10' cm further at-
test to their low disorder.

In Fig. 1 we show the strong p dependence of the diag-
onal resistance, R„„(v),at T=22 mK. Figure 1(a) shows
R vs v for sample A, a 2DHS with p=4. 07X10'
cm . The maximum of R,„(—,

' &v& —', ) exceeds 340 kQ,
a magnitude —100 times larger than R„maxima be-
tween any integer or FHQ states in this sample at higher
v. As reported earlier, ' R„„(v=0.37) and R„„(v&—,')
diverge while R„„(v=—,

' )~0 as T~O, indicating IP and

a FQH liquid, respectively. The observation of a v= —,
'

FQH liquid and, at the same time, an IP at v larger than
—, provides strong evidence that single-particle localiza-
tion is not responsible for the IP. We associate this corre-
Iated IP, which also has strong nonlinear I-V characteris-
tics, ' with a 2D hole WS. Similar behavior was seen
when p was lowered to 2.6X10' cm through a per-
sistent photoconductivity effect. In sample C [Fig. 1(b)],
a 2DHS with p=6. 55X10' cm, R„„(—,

' &v& —,') peaks
at only -20 kQ, an order of magnitude smaller than in
the lower density case yet still -20 times greater than
maxima at larger v. Measurements on sample G [Fig.
1(c)], a third 2DHS of similar quality but with
p=12.5X10' cm, reveal further evolution. Increas-
ing p from 4.07X10' cm to 12.5X10' cm has re-
sulted in a factor of —100 decrease in the R„„(—,

' & v & —,
' )

peak while the other peaks at larger v have remained —1

kQ. The peak in R„„(—,
' & v & —', ) is now similar in size to

those at higher v.
In Fig. 2 we show the T dependence of the peak in R,„

at v=0. 37 for samples A, B, C, E, and F. For sample A,
the peak increases by over two orders of magnitude as T
is decreased from 330 to 22 mK. In samples with in-
creasingly higher density, the T dependence of the peak
weakens, especially at low T. For the highest density
sample, F, R„„atv=0. 37 is practically independent of T
below 100 mK. Insulating behavior at —,

' (v& —', , seen
when p =4.07 X 10' cm, has disappeared with increas-
ing density. Meanwhile, we observe a steep increase in
the FQH state energy gap at v= —,', '~ b„, with higher den-
sity. Measured gap values for samples A (' b, =0.4 K),
C(' b, =l 5 K), and D(' b, =3 4 K, @=7 5X10'
cm ) reveal an almost order of magnitude increase in

5 with less than a doubling ofp.
The strong dependences of both ' 6 and the —', (v( —',

100 =

3.5
1 o -2 (c)

G: p=12.5x10 cm

2/3

V
2/5 1/3

FIG. 1. Diagonal resistance vs filling factor,
v=(mkle)(p/8 ), for 2DHS samples with different density.
Standard van der Pauw, low-frequency lock-in measurements
were taken passing -0.1 nA between contacts 1, 2 and measur-
ing the voltage between contacts 3,4 [as pictured in the inset of
(a)j while sweeping applied perpendicular magnetic field.

I I I I
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FIG. 2. Temperature dependence of R„„(v=0.37) for 2DHS

samples with different density.
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In a dilute, low-disorder, two-dimensional hole system at the GaAs/AIGaAs heterointerface, we ob-

serve a reentrant insulating behavior around the v= —, fractional quantum Hall liquid at B=5 T, strik-
ingly similar to recent observations in low-disorder 2D electron systems near v= —, . We interpret this
behavior as manifesting a weakly pinned hole Wigner crystal around v= —, , and suggest that its observa-
tion at such large v is a result of Landau-level mixing which, in the case of much heavier holes,
significantl modifies the ground-state energies of the fractional quantum Hall and Wigner crystal states
of the system.
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One ef the most exciting aspects of the physics of two-
dimensional electron systems (2DES) concerns the ter-
mination of the fractional quantum Hall (FQH) effect
[I] at low Landau-level fillings, v. It is intuitively clear
that strong disorder will terminate the FQH effect by
magnetic freeze-out. However, in a pure system, transi-
tion to a Wigner crystal (WC) is expected to occur at
su%ciently low v (=1/6.5) and low temperature [2-4].
Thanks to the availability of very low-disorder dilute
2DES, research on this subject has intensified in the last
three years and has been fueled by new experimental re-
sults as well as controversy [5-15]. Magnetotransport
experiments on 2DES in GaAs/A1GaAs heterostructures,
which have been the subject of most of these studies
[7-10,12-15], have established that at v= —,

' the ground
state is FQH liquid. This is evidenced by the vanishing of
the diagonal resistance R„„at v=

& and the quantization
of the Hall resistance R„, at Sh/e . At v slightly above
and below —,', however, R„„diverges as T 0, indicating
an insulating ground state with a strongly nonlinear I-V
characteristic. Although there is still no direct and con-
clusive evidence for the transition to a WC, the results
have been generally interpreted as consistent with the for-
rnation of a reentrant, weakly pinned electron WC near
V= c.

In this Letter we report magnetotransport data for a
low-disorder 2D hole system (2DHS) at the GaAs/AlGa-
As heterointerface. The areal density in this sample,
p—=4X10' cm, is comparable to the density of some
of the 2DES in which the formation of an electron WC
near v= —,

' has been widely discussed [9,13-15]. The
magnetotransport data for this 2DHS are strikingly simi-
lar to those for the 2DES, with the notable exception that
the reentrant insulating phase is observed around v= —,

'

rather than v=
& . The observation of such similar be-

havior at a markedly higher filling factor is most surpris-
ing and unexpected. We attribute this difference to the
profound effect of Landau-level (LL) mixing on the
ground-state energies of the FQH liquids and the WC
[16],and interpret the results as further evidence that the
reentrant insulating phase is a weakly pinned WC. Such

LL mixing is expected to be much more substantial for
holes, whose heavier mass reduces the LL separation by a
factor of 5 compared to the separation for electrons [17].
We conclude that LL mixing in our 2DHS reduces the
difference between the ground-state energies of the WC
and the liquid state at v=

& to the point that, in the im-
mediate vicinity of v = &, the ground-state energies cross
and the WC becomes the ground state.

Measurements were made on high-quality 2DHS at the
GaAs/AlGaAs interface. The samples were grown by
molecular-beam epitaxy on an undoped GaAs (311)A
substrate and modulation doped with Si, which is incor-
porated as an acceptor on the (311)A surface [18,19].
The structural details and growth technique are similar to
those of Ref. [19] and will be discussed elsewhere. Elec-
trical contact was made at the corners of a 2x2-mm
sample by alloying In:Zn (95:5) in a hydrogen atmo-
sphere. Magnetotransport measurements were carried
out in a dilution refrigerator with a base temperature of
=20 mK. The measured hole density and mobility in
this structure, when cooled in the dark, are p =4.0 x 10'
cm and p=3.5X10' cm /Vs, respectively. All of the
three samples studied so far have exhibited the phenome-
na we report here.

Figure 1 shows R„, versus the applied magnetic field B
for our 2DHS with p=4. 1X10' cm at T=22 mK.
The data are striking in that there is a sharp resistance
spike at & & v & & whose magnitude exceeds 340 k A.
This is about 100 times larger than the R„values at
maxima between any integer or FQH states at lower 8 in
this sample. The R„spike is strongly T dependent and
diverges as T 0 indicating an insulating phase. By
contrast, at v= &, R„O as T 0, evincing the for-
mation of the FQH state. The inset to Fig. I shows that
the & fractional state is also well developed. The obser-
vation of a v= —,

' FQH liquid and, at the same time, an
insulating phase at v larger than —,

' provides clear evi-
dence that single-particle localization is not responsible
for the insulating phase. The data in Fig. 1 have a
surprising resemblance to observations in low-disorder
2DES, except that the resistance spike for the 2DES is
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observed at a markedly diA'erent filling factor between
and —, [9,10,12-15].

In Fig. 2 we show more details of the magnetotransport
properties of this system at a slightly lower density
(p =4.0x 10' cm ). Figure 2(a) shows the Hall resis-
tance R„,, at T =24 mK. The data show the quantization
of R„,. at integer v and at v=

& . In the region of the R„„
spike ( —,

' & v & =, ) and for v & —', , R„,, shows anomalous
behavior, but in a small field range very near v= 3 whereI

R„„O,R„,, is quantized at 3h/e . Similar observations
have been made of R„,. in 2DES near v=

& [14]. Figure
2(b), an expansion of the low-field data, shows well-
resolved integer and fractional states.

Figure 2(c) shows that as T is raised, R„„ in the re-
gions & & v( & and v& & strongly decreases. At T
=86 rnK a R„„minimum at v=

& is observed while at
yet higher T (=137 mK), there is an indication of a de-
veloping v= —,

' FQH state. The structure near —,
' is ob-

served at temperatures at least as high as 0.5 K and is ac-
companied by a weak feature in R„, These observations
are qualitatively similar to those for 2DES in the v& &

range where, as T is raised, first the —,'[ state appears at
T = 100 mK and then the —,

' state at =220 mK [9,20].
In Fig. 3 we show the T dependence of the R„„spike at

v=0.37 (B=4.6 T in Fig. 1) and the R„minimum at
v= —', . From the activated behavior of the —,

' data, we
determine A=—400 mK for the gap of the —,

' FQH state
[using R,, ec exp( —4/2T)]. The data at v=0.37 show a
strong T dependence; R„decreases by more than 2 or-
ders of magnitude as T is raised from -20 to 300 rnK.
This T dependence of R„„,including its not being simply
activated, is strikingly similar to our data for a low-
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density (=5x 10' cm ) 2DES at v =0.21 in the same
range of T [21]. For comparison with 2DES results, it is
worth noting that the activation energy we obtain by
fitting R„„by the expression R„,ecexp(Eg/T) in the
high-T range (T& 100 mK) is Es ——300 mK. This is
comparable to Eg for the R„„peak at v=0.21 obtained in
a similar T range: Ex=600 mK at B=20 T [10] and
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FIG. 1. Left panel shows the phase diagram of the electron
crystal and the FQH liquid in a filling factor range including
⌫ = 1/3 and ⌫ = 2/5 as a function of the LL mixing parameter
. While the 1/3 and 2/5 FQH states are very robust to LL
mixing, for intermediate fillings the crystal appears for  & 7.
The right panel displays the theoretical phase diagram of the
2CF crystal and FQH liquid in a range including ⌫ = 1/5 and
⌫ = 2/9. The electron crystal is not stabilized in this filling
factor region because it has substantially higher energy than
the 2CF crystal[43]. The uncertainty in the location of the
phase boundaries is �⌫ . 0.001 within our model defined in
the text.

is modeled as a pinned “type-I” crystal of electrons or
composite fermions in which all particles form a crystal.
Extremely accurate lowest LL (LLL) wave functions are
available for these states, which we use to fix the phase of
the wave function in the DMC method; this is important
because the accuracy of the results depends sensitively on
the choice of the phase. (We note that while we use the
terminology “electron crystal” or “electron liquid,” our
results below apply to both electron and hole systems.)

Following the usual convention, we quantify the
strength of LL mixing through the parameter  =
(e2/✏l)/(~eB/mbc), which is the ratio of the Coulomb en-
ergy to the cyclotron energy. (Here, l =

p
~c/eB is the

magnetic length, mb is the band mass, and  is related to
the standard parameter rs as  =

p
⌫/2 rs.) Our prin-

cipal result is the phase diagrams shown in Fig. 1. The
most striking feature they reveal is the strong ⌫ depen-
dence of the phase boundary separating the FQH and the
crystal phases. For example, the FQH e↵ect at ⌫ = 1/3
and 2/5 survives up to the largest value of  (= 18) we
have considered, but the electron crystal appears already
at  & 7 for certain ⌫ in between 1/3 and 2/5, and at even
lower values of  for ⌫ < 1/3. Another notable feature
is that in the vicinity of ⌫ = 1/5 and 2/9, LL mixing in-
duces a transition into the strongly correlated 2CF crys-
tal rather than an electron crystal. (If we only considered
the electron crystal, no transition into the crystal state
would occur at ⌫ = 1/5 and ⌫ = 2/9 for up to  = 18.)
In what follows, we give details of calculations leading
to these phase diagrams, and discuss their connection to
experiments.

Fixed phase DMC: The goal is to find the mini-
mum energy h (R)|H| (R)i| by varying over the en-
tire Hilbert space of states, where H is the Hamil-
tonian for interacting two-dimensional electrons in a
magnetic field and R represents the particle coordi-

FIG. 2. Density profiles of various crystals for N = 96 par-
ticles at severals fillings. Left shows a type-I electron crystal
for ⌫ = 0.394 (2Q = 240), and the middle shows a type-II
CF crystal for the same parameters, and right panel shows a
type-II CF crystal for ⌫ = 0.351 (2Q = 270). The density is
given in units of the average density. All results are for  = 0.

nates {rj}. Because this is not feasible for fermions,
we employ an approximate strategy called the fixed
phase DMC[40] wherein we search for the ground state
in a restricted subspace. (The fixed phase DMC is
closely related to the fixed node DMC.[44]) Follow-
ing OCM, we substitute  (R) = �(R)ei'(R) where
�(R) = | (R)| is real and non-negative. The
above energy is then given by h�(R)|HR|�(R)i| with

HR =
PN

j=1

⇥
p2
j + [~rj'(R) + (e/c)A(rj)]2

⇤
/2m +

VCoulomb(R). Now, keeping the phase '(R) fixed and
varying �(R) gives us the lowest energy within the sub-
space of wave functions defined by the phase sector '(R).
This minimization is most conveniently accomplished by
the DMC method[45, 46]. In this approach, one views
the imaginary time Schrödinger equation, �~ @

@t�(R, t) =
[HR(R)� ET )]�(R, t), as a di↵usion equation, where
�(R, t) is interpreted as the probability distribution of
the di↵using “walkers” and ET is an energy o↵set. Evolv-
ing this equation in imaginary time projects out the low-
est energy state, which is the ground state provided that
the initial trial wave function has a non-zero overlap with
the ground state. DMC is a method for implementing
this scheme through importance sampling, where “walk-
ers” in the 2N dimensional configuration space prolif-
erate (die) in regions of low (high) potential energy ac-
cording to certain standard rules, and converge into the
probability distribution of the ground state in the limit
t ! 1. The fixed phase DMC produces the lowest en-
ergy in the chosen phase sector, and hence a variational
upper bound for the exact ground state energy.

We perform our calculations in the spherical
geometry[47] in which electrons are confined on the sur-
face of a sphere, with a flux 2Q�0 passing radially
through it, where 2Q is an integer and �0 = hc/e is

the flux quantum. We use l as the unit of length and e2

✏l
as the unit of energy. The particle position is identified
through the “spinor” coordinates u = cos(✓/2)ei�/2 and
v = sin(✓/2)e�i�/2. Melik-Alaverdian, Bonesteel and Or-
tiz [48] have formulated the fixed phase DMC in the
spherical geometry through a stereographic projection,
and we will follow their method.

Trial wave functions: The accuracy of the energies ob-
tained from fixed phase DMC is critically dependent on
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The search for a two-dimensional Wigner crystal [1] in
high magnetic fields has led to profound discoveries. The
original idea [2] was to induce a crystal state of electrons in
two dimensions by effectively quenching their kinetic
energy with the application of a strong transverse magnetic
field, which drives them into the lowest Landau level (LL).
While searching for the Wigner crystal, Tsui et al. discov-
ered [3] the ν ¼ 1=3 Laughlin liquid [4]. As we now know,
over a range of filling factors, the crystal phase is superseded
by the formation of a topological quantum liquid of
composite fermions [5–8], manifested through the fractional
quantum Hall (FQH) effect at ν ¼ n=ð2n% 1Þ and ν ¼
n=ð4n% 1Þ and Fermi seas at ν ¼ 1=2 and ν ¼ 1=4. Theory
suggests that the crystal should occur at sufficiently low
filling factors [9,10], and extensive experimental work has
been performed toward determining the phase boundary
between the crystal and the liquid [11–24]. For n-doped
gallium arsenide (GaAs) samples, in the limit of zero
temperature, an insulating phase is seen for ν < 1=5 and
also for a narrow range of fillings between 1=5 and 2=9.
These features have persisted as the sample quality has
significantly improved, indicating that the insulator is a
pinned crystal rather than an Anderson-type single particle
localized state.Direct evidence for a periodic lattice has been
seen through commensurability oscillations [25]. These
observations are largely understood. Interestingly, theory
suggests that at low ν nature exploits both the composite
fermion (CF) and the crystalline correlations to form a CF
crystal [26–29] (see Ref. [28] for a quantitative comparison
with the Coulomb ground state) rather than an electron
crystal [9,10,30]. There is growing experimental support for
the CF nature of the crystal [31–33].

A striking puzzle has, however, persisted since the early
1990s, namely, a qualitative difference between the n- and
p-doped GaAs systems [34–36]. In low-density p-doped
GaAs systems, while the FQH states at 1=3 and 2=5 are
robust, an insulating phase is observed for filling factors
below 1=3, and even between 1=3 and 2=5. In contrast,
there is no sign of crystal in this range of ν in the n-doped
samples with the same or even smaller densities. Several
early authors [37–40] attributed this difference to the
stronger LL mixing in p-doped GaAs quantum wells
due to the larger effective mass of holes and showed that
LL mixing generally favors the crystal phase by studying
the competition between the Laughlin liquid and the crystal
state at fractions ν ¼ 1=3, 1=5, and 1=7 through variational
[37–39], diffusion [40], and path integral Monte Carlo [41]
methods. More recent experiments in ZnO quantum wells
[42], where LL mixing is comparable to that in p-doped
GaAs systems, also show insulating phases intermingled
with the ν ¼ n=ð2nþ 1Þ FQH liquids.
We investigate in this Letter the competition between

liquid and crystal states treatingLLmixing nonperturbatively
using the fixed-phase diffusion Monte Carlo (DMC) method
of Ortiz, Ceperley and Martin (OCM) [40]. Two important
aspects of ourLetter are thatwe address the issue as a function
of continuous filling ν, which is necessary for understanding
the observed reentrant phase transitions, and we use accurate
crystal and liquid wave functions as the guiding trial wave
functions. The FQH state at ν ¼ ν&=ð2ν& þ 1Þ maps into a
state of 2CFs at filling ν&, which is, in general, not an integer.
(The symbol 2CF refers to a composite fermion carrying two
quantized vortices.) We assume a model [29] in which the
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1990s, namely, a qualitative difference between the n- and
p-doped GaAs systems [34–36]. In low-density p-doped
GaAs systems, while the FQH states at 1=3 and 2=5 are
robust, an insulating phase is observed for filling factors
below 1=3, and even between 1=3 and 2=5. In contrast,
there is no sign of crystal in this range of ν in the n-doped
samples with the same or even smaller densities. Several
early authors [37–40] attributed this difference to the
stronger LL mixing in p-doped GaAs quantum wells
due to the larger effective mass of holes and showed that
LL mixing generally favors the crystal phase by studying
the competition between the Laughlin liquid and the crystal
state at fractions ν ¼ 1=3, 1=5, and 1=7 through variational
[37–39], diffusion [40], and path integral Monte Carlo [41]
methods. More recent experiments in ZnO quantum wells
[42], where LL mixing is comparable to that in p-doped
GaAs systems, also show insulating phases intermingled
with the ν ¼ n=ð2nþ 1Þ FQH liquids.
We investigate in this Letter the competition between

liquid and crystal states treatingLLmixing nonperturbatively
using the fixed-phase diffusion Monte Carlo (DMC) method
of Ortiz, Ceperley and Martin (OCM) [40]. Two important
aspects of ourLetter are thatwe address the issue as a function
of continuous filling ν, which is necessary for understanding
the observed reentrant phase transitions, and we use accurate
crystal and liquid wave functions as the guiding trial wave
functions. The FQH state at ν ¼ ν&=ð2ν& þ 1Þ maps into a
state of 2CFs at filling ν&, which is, in general, not an integer.
(The symbol 2CF refers to a composite fermion carrying two
quantized vortices.) We assume a model [29] in which the
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and having, therefore, lower screening efficiency. IP at ν ¼
0.37 shows a “shoulder” at this density, but develops into a
well-defined local maximum at lower densities [47]. At very
highB, beyond≃8 T, the 2DHS becomes strongly insulating
and IP approaches the samevalue it has at the strongestQHSs,
consistent with the screening efficiency being minimal.
The right inset in Fig. 2 shows the temperature depend-

ence of IP at different ν. At ν ¼ 0.120, IP starts with a high
value at the lowest temperature, consistent with an insulat-
ing WS. At the highest temperatures, where we expect the
WS to have melted, IP saturates at a value which is lower
than its maximum value. This is consistent with a com-
pressible liquid phase which has a higher screening
efficiency than the WS. However, as the temperature is
raised, instead of decreasing monotonically from its low-
temperature value and saturating at the high-temperature
limit, IP shows a well-defined minimum at a critical
temperature TC. This temperature dependence is generic
for all the traces shown in the Fig. 1 inset except for
ν ¼ 0.370 and ν ¼ 0.270, where IP at the lowest temper-
ature is lower than its high-temperature limit. This is
because the lowest temperature achieved in our measure-
ments (T ≃ 40 mK) is close to TC for these two fillings; we
expect IP to increase if lower temperatures were accessible.
The data shown in the Fig. 2 inset suggest that the 2DHS

becomes particularly efficient at screening near TC. A
qualitatively similar behavior was recently seen in low-
density GaAs 2D electron systems [24]. Associating TC
with the melting temperature of the WS, Ref. [24] found the
measured dependence of TC on ν to be consistent with
the WS melting phase diagrams reported previously for the
magnetic-field-induced WS in GaAs 2DESs. It is not clear
why a WS should become particularly efficient at screening
as it melts. It is possible that the minimum in IP signals
the presence of an intermediate phase near the melting
temperature, as has been suggested in a recent report [37].
Alternatively, very recent calculations [57] suggest that
dissipation from mobile dislocations and uncondensed
charge carriers become especially important near the
melting of the WS phase. It is possible that they contribute
to the extra screening at the melting.
Associating TC with the melting temperature of the WS,

a plot of our measured TC vs ν, as shown in Fig. 3, provides
the WS thermal melting phase diagram of a 2DHS at
p ¼ 3.8. As ν increases from small values, TC decreases
until the WS phase is “interrupted” by the well-developed
ν ¼ 1=3 FQHS. When ν is higher than 1=3, there is a
reentrant WS phase between the 1=3 and 2=5 FQHSs,
around ν ≃ 0.37. We note that our TC ≃ 50 mK at ν ¼ 0.37
is consistent with the WS melting temperature reported in
Ref. [37] for a 2DHS with a similar density at ν ¼ 0.375.
The competition between theWS and FQHS liquid phases

depends on the mixing between the LLs [28–37,39–45].
This is often quantified in terms of the LLM parameter κ,
defined as the ratio between the Coulomb energy and the

LL separation: κ ¼ ðe2=4πϵ0ϵlBÞ=ðℏeB=m$Þ, where lB ¼ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
is the magnetic length. Note that κ ∝ m$. When κ is

large, the mixing with the higher LLs reduces the FQHS
energy gaps and favors the formation of a WS at filling
factors higher than 1=5 [28–37,39–45]. Recent theoretical
work by Zhao et al. [45] directly mapped out a zero-
temperature phase diagram for the quantum melting of
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the predicted WS and liquid phases. The color-coded circles
represent experimental data points deduced from measurements
at six different densities, as listed in the inset box. The closed and
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half-filled circles are used to imply a close competition between
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FIG. 2. Liquid-Wigner solid quantum melting phase diagrams
around (a) ν = 1/3 and (b) ν = 1/5; κ is the Landau level mix-
ing parameter. The gray solid lines represent zero-layer-thickness
calculations by Zhao et al. [31] for the boundary between the WS
and the liquid phases. The closed and open circles indicate the
experimentally deduced WS and liquid phases, respectively. The
half-filled circles are used to imply a close competition between WS
and liquid phases. The filling factors at which the experimental data
are presented are 2/5, 0.363, 1/3, 0.300, 2/9, 0.206, 1/5, and 0.196.
In (a), the dotted-dashed and dashed lines represent the theoretical
boundaries between the liquid and WS states for w = 2lB and w =
4lB, respectively [31]. The table shows the density, QW width, and
w/lB (at ν = 1/3) for the different samples that we studied.

and yellow and white regions are from theoretical calculations
[31]. The experimental data are shown by symbols. The open,
closed, and semiopen symbols represent a liquid, a disorder-
pinned WS, and a close competition between liquid-solid,
respectively. Data for n = 6.0 are shown in Fig. 2 by red
symbols. Around ν = 1/5, in Fig. 2(b), there is overall agree-
ment with the theoretical calculations except for ν = 2/9. At
ν = 2/9, as the temperature decreases, ρxx increases, yet it re-
mains a local minimum [see Fig. 1(a)]. This behavior suggests
a competition between the FQH liquid and a disorder-pinned
WS. It is likely that disorder is partly responsible for the
competition. It is worth remembering that early GaAs 2DESs,
which had lower quality, showed a competition between a
FQHS and an insulating behavior at ν = 1/5 [52]. When sam-
ples of much better quality became available, ρxx at ν = 1/5
displayed a clear FQHS with a vanishing resistance at the
lowest temperatures [4]. Also, previous experimental studies
in samples with a controlled (minute) amount of alloy disorder
report an insulating behavior at and around ν = 1/5 [53,54].
Local compressibility measurements in a GaAs 2DES showed
that disorder creates puddles of slightly different densities,
and as a result of different filling factors with a typical varia-
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tion $ν [55,56]. In the theoretical phase diagram reproduced
in Fig. 2, at large κ , variations in ν would make the WS
(yellow region) overcome the 2/9 FQH liquid (narrow white
region), preventing its percolation. For a detailed discussion
of the role of disorder in the competition between FQHSs and
solids, see Ref. [32].

The red symbols in Fig. 2(a) show our experimental results
for n = 6.0 near ν # 1/3. The ρxx trace [see Fig. 1(a)] ex-
hibits fully developed ν = 1/3 and 2/5 FQHSs, which agree
with the prediction of liquid phases [open red symbols in
Fig. 2(a)]. As seen in Fig. 1(a), ρxx maxima on the flanks
of ν = 1/3 (at ν = 0.363 and 0.300) are several times larger
than the low-field resistance, but do not show strong insulating
behavior. This behavior appears to be at odds with the calcu-
lations. However, the calculations that delimit the yellow and
white regions in Fig. 2 are for a 2DES with zero thickness,
but our 2DES is confined to a finite-width QW. Zhao et al.
[31] reported that for a 2DES with finite layer thickness, the
WS-liquid boundary moves to larger values of κ (see SM
of Ref. [31]). In Fig. 2(a), we also include the results of
finite-thickness calculations from Ref. [31], for w = 2lB and
4lB. As seen in the table shown in the lower part of Fig. 2,
our AlAs 2DES with n = 6.0 has w/lB # 5.3 at ν = 1/3.
Comparing the experimental data with the theoretical w = 4lB
liquid-solid boundary, we find agreement with the liquid states
predicted in the calculations.

In order to explore larger values of κ , we studied samples
with densities n = 4.1 and 3.3 (light-blue and yellow symbols
in Fig. 2, respectively). Figure 3(a) shows ρxx vs B at T # 35
and 60 mK for n = 3.3 (ρxx for n = 4.1 has similar character-
istics; see SM). On the flanks of the ν = 1/3 FQHS, ρxx has
very large values and exhibits a strong insulating behavior,
which we interpret as a signature of a disorder-pinned WS.
The samples with n = 3.3 and 4.1 have w/lB # 2.8 and 1.8,
respectively. When compared to the solid-liquid calculated
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Competition between fractional quantum Hall liquid and Wigner solid at small fillings:
Role of layer thickness and Landau level mixing

K. A. Villegas Rosales, S. K. Singh, Meng K. Ma, Md. Shafayat Hossain , Y. J. Chung, L. N. Pfeiffer,
K. W. West, K. W. Baldwin, and M. Shayegan

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 26 October 2020; accepted 6 January 2021; published 25 February 2021)

What is the fate of the ground state of a two-dimensional electron system at very low Landau level filling
factors (ν) where interaction reigns supreme? An ordered array of electrons, the so-called Wigner crystal, has
long been believed to be the answer. It was in fact the search for the elusive Wigner crystal that led to the
discovery of an unexpected, incompressible liquid state, namely the fractional quantum Hall state at ν = 1/3.
Understanding the competition between the liquid and solid ground states has since remained an active field of
fundamental research. Here we report experimental data for a new two-dimensional system where the electrons
are confined to an AlAs quantum well. The exceptionally high quality of the samples and the large electron
effective mass allow us to determine the liquid-solid phase diagram for the two-dimensional electrons in a large
range of filling factors near !1/3 and !1/5. The data and their comparison with an available theoretical phase
diagram reveal the crucial role of Landau level mixing and finite electron layer thickness in determining the
prevailing ground states.

DOI: 10.1103/PhysRevResearch.3.013181

The ground state of an interacting, low-disorder two-
dimensional electron system (2DES) in a large perpendicular
magnetic field (B) has been of continued interest for decades.
This is a regime where the kinetic (Fermi) energy of the
electrons is quenched as they all occupy the highly degener-
ate, lowest Landau level (LL), and the interaction (Coulomb)
energy dominates. As the 2DES enters deep into this extreme
quantum limit, the LL filling factor (ν = nh/eB) becomes
very small; n is the 2DES density. At sufficiently small fillings
ν " 1, the ground state should be a magnetic-field-induced
Wigner solid (WS), where the electrons arrange themselves
in an ordered (triangular) array to minimize their mutual
Coulomb potential energy [1,2]. Experiments on a relatively
low disorder GaAs 2DES, however, revealed a new phase
of matter at ν = 1/3, namely the fractional quantum Hall
state (FQHS), an incompressible liquid state with a vanishing
longitudinal resistance and a quantized Hall resistance [3].
The search for the WS then moved to even lower fillings, and
culminated in the observation of insulating phases flanking a
well-developed FQHS at ν = 1/5 in very high quality 2DESs
[4,5]. The nonlinear I-V characteristics of these insulating
phases [5], as well as resonances in their microwave spectrum
[6], were interpreted as evidence for the formation of a WS,
which is pinned by the ubiquitous disorder that is present
in all real samples. This interpretation has been corroborated

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

by numerous theoretical calculations [7–10] and a variety of
experiments [11–21].

Shortly after the observation of insulating phases near
ν = 1/5 in GaAs 2DESs [4,5], Santos et al. reported similar
insulating phases in a dilute GaAs 2D hole system (2DHS)
but there they flanked the ν = 1/3 FQHS [22,23]. Another
system, where insulating phases next to the ν = 1/3 FQHS
have been reported, is the ZnO 2DES [21]. These reports
provided experimental evidence for the importance of LL
mixing (LLM) in favoring the WS states over the FQH liquid
states, and moving the stability of the WS to fillings as large
as !1/3. Note that the 2D holes in GaAs and 2D electrons
in ZnO have an effective mass (m∗) which is larger than m∗

of GaAs 2D electrons by a factor of ∼ 6 [24], leading to a
larger LLM parameter κ , defined as the ratio of the Coulomb
energy and the LL separation: κ = (e2/4πε0εlB)/(h̄eB/m∗),
where lB =

√
h̄/eB is the magnetic length, and ε is the di-

electric constant. The importance of LLM in the competition
between the liquid and solid states at low ν has indeed been
highlighted by a number of theoretical [25–32] and additional
experimental studies [33–40].

Here we report the observation of FQH and WS phases
in 2DESs confined to AlAs quantum wells (QWs). These
samples, which have exceptionally high quality, provide an
ideal platform to explore the liquid-solid transitions for a large
range of κ and ν. Electrons in AlAs QWs have larger m∗

(!0.46 in units of free electron mass) and smaller ε (!10)
compared to GaAs 2DESs (m∗ ! 0.067 and ε ! 13). As a
result, the κ parameter for AlAs 2DESs, for a given density
and filling factor, is !9 times larger than in GaAs 2DESs. Fur-
thermore, the LLs are simple and their energies vary linearly
with B, making the interpretation of κ straightforward. This
is in contrast to the much more complex LLs in the 2DHS

2643-1564/2021/3(1)/013181(7) 013181-1 Published by the American Physical Society
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Recent variational studies have demonstrated that the strongly correlated ground states of the
fractional quantum Hall (FQH) e!ect can be captured using machine learning approaches starting
from no prior knowledge of the underlying physics. We introduce a complementary framework that
instead starts from Jain’s composite-fermion (CF) wavefunctions, which accurately describe FQH
states as weakly interacting states of CFs at fillings ω = n/(2pn + 1) in an idealized limit. As
we move away from this idealized limit to one more in line with experimental reality, we expect
CFs to become dressed much like the electrons of a noninteracting system, which are dressed by
neutral excitations as interaction is turned on adiabatically, as in Landau’s Fermi-liquid theory.
We model this dressing using a Feynman-Cohen-style backflow approach, implemented through
symmetry-preserving neural networks—a framework we refer to as CF-Flow. CF-Flow achieves
competitive accuracy with substantially greater computational e”ciency and scales to systems of
↭ 26 electrons. At fillings ω = 1/3 and 2/5, as a function of Landau-level mixing strength, CF-
Flow produces ground-state energies with low local-energy variance that are nearly indistinguishable
from those obtained using the fixed-phase di!usion Monte Carlo (fp-DMC) method, even though
the latter constrains the wavefunction phase to that of the lowest Landau level—thereby providing
insight into why fp-DMC has been successful in giving an accurate quantitative account of several
experiments. Finally, the symmetry-preserving architecture of CF-Flow enables access to excited
states and computation of the transport gap at ω = 1/3, where we find, unexpectedly, that it decays
exponentially toward a finite value in the limit of large Landau-level mixing, suggesting a first-order
transition from the FQH liquid to a non-FQH state.

I. INTRODUCTION

That any progress has been achieved in understanding
the behavior of interacting systems of quantum mechan-
ical particles—the subject of much of modern condensed
matter physics—is extremely remarkable. At the out-
set, the problem seems impossible: given that even the
problem of three interacting electrons eludes an exact
solution, how are we to understand the behavior of 1021

electrons?
For metals, Landau’s Fermi-liquid theory o!ers valu-

able insight [1]. The theory begins with noninteracting
electrons, for which we know the full solution: the ground
state is a Fermi sea, and the excitations are electron-hole
pairs. One then assumes that as the interaction is slowly
turned on, no phase transition occurs, and the electrons
of the noninteracting system evolve into Landau quasi-
particles—entities that retain the same quantum num-
bers as electrons but are “dressed” by a screening cloud
of particle-hole excitations emerging from the Fermi sea.
The properties of these quasiparticles near the Fermi en-
ergy can then be estimated through perturbative tech-
niques.
In this paper we consider a strongly interacting sys-

tem, namely electrons in two dimensions exposed to a
strong perpendicular magnetic field-the setup of the frac-
tional quantum Hall e!ect (FQHE) [2]. This is actually
a much more di”cult problem than that in the preced-
ing paragraph. The reason is that when electrons occupy
the lowest quantum of the kinetic energy (namely the
lowest Landau level (LLL)), their behavior is determined
entirely by interactions, and it is not adiabatically con-
nected to noninteracting electrons (which form a macro-

scopically degenerate system). We do not have a natural
starting point akin to the Fermi sea of the Landau Fermi-
liquid theory. How, then, are we to tackle this problem?
Several recent studies [3, 4] have applied neural quan-

tum states (NQS) [5–7] to this problem, leveraging the
universal expressivity of neural networks to represent
quantum many-body wavefunctions within variational
Monte Carlo (VMC). These works employ the Psiformer
architecture [8], a transformer-based NQS that uses at-
tention mechanisms [9] to model electron correlations.
Remarkably, they demonstrate that the dramatic reor-
ganization from a macroscopically degenerate noninter-
acting system to gapped, incompressible FQH states can
be captured by starting from bare electrons and dressing
them using neural networks. As noted in Ref. [4], how-
ever, learning all correlations ab initio can become com-
putationally demanding and currently limits accessible
system sizes, though recent pre-training strategies [10] of-
fer promising avenues for scaling Psiformer-like Ansätze
to larger systems.
We take an alternative approach, building on the fact

that we do know the solution with a high degree of ac-
curacy for an idealized model: electrons in a strictly
two-dimensional space with pure Coulomb interactions
and no mixing between di!erent LLs. The accuracy of
the Jain wavefunctions [11, 12] has been confirmed by
comparisons with exact solutions known for small sys-
tems from computer calculations [12–16]. Remarkably,
this solution is formulated in terms of weakly interact-
ing (or, in the idealized limit, noninteracting) compos-
ite fermions (CFs), related to the solution of noninter-
acting electrons at an e!ective magnetic field. As the
system deviates from this ideal limit—whether through
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Recent variational studies have demonstrated that the strongly correlated ground states of the
fractional quantum Hall (FQH) e!ect can be captured using machine learning approaches starting
from no prior knowledge of the underlying physics. We introduce a complementary framework that
instead starts from Jain’s composite-fermion (CF) wavefunctions, which accurately describe FQH
states as weakly interacting states of CFs at fillings ω = n/(2pn + 1) in an idealized limit. As
we move away from this idealized limit to one more in line with experimental reality, we expect
CFs to become dressed much like the electrons of a noninteracting system, which are dressed by
neutral excitations as interaction is turned on adiabatically, as in Landau’s Fermi-liquid theory.
We model this dressing using a Feynman-Cohen-style backflow approach, implemented through
symmetry-preserving neural networks—a framework we refer to as CF-Flow. CF-Flow achieves
competitive accuracy with substantially greater computational e”ciency and scales to systems of
↭ 26 electrons. At fillings ω = 1/3 and 2/5, as a function of Landau-level mixing strength, CF-
Flow produces ground-state energies with low local-energy variance that are nearly indistinguishable
from those obtained using the fixed-phase di!usion Monte Carlo (fp-DMC) method, even though
the latter constrains the wavefunction phase to that of the lowest Landau level—thereby providing
insight into why fp-DMC has been successful in giving an accurate quantitative account of several
experiments. Finally, the symmetry-preserving architecture of CF-Flow enables access to excited
states and computation of the transport gap at ω = 1/3, where we find, unexpectedly, that it decays
exponentially toward a finite value in the limit of large Landau-level mixing, suggesting a first-order
transition from the FQH liquid to a non-FQH state.

I. INTRODUCTION

That any progress has been achieved in understanding
the behavior of interacting systems of quantum mechan-
ical particles—the subject of much of modern condensed
matter physics—is extremely remarkable. At the out-
set, the problem seems impossible: given that even the
problem of three interacting electrons eludes an exact
solution, how are we to understand the behavior of 1021
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For metals, Landau’s Fermi-liquid theory o!ers valu-

able insight [1]. The theory begins with noninteracting
electrons, for which we know the full solution: the ground
state is a Fermi sea, and the excitations are electron-hole
pairs. One then assumes that as the interaction is slowly
turned on, no phase transition occurs, and the electrons
of the noninteracting system evolve into Landau quasi-
particles—entities that retain the same quantum num-
bers as electrons but are “dressed” by a screening cloud
of particle-hole excitations emerging from the Fermi sea.
The properties of these quasiparticles near the Fermi en-
ergy can then be estimated through perturbative tech-
niques.

In this paper we consider a strongly interacting sys-
tem, namely electrons in two dimensions exposed to a
strong perpendicular magnetic field-the setup of the frac-
tional quantum Hall e!ect (FQHE) [2]. This is actually
a much more di”cult problem than that in the preced-
ing paragraph. The reason is that when electrons occupy
the lowest quantum of the kinetic energy (namely the
lowest Landau level (LLL)), their behavior is determined
entirely by interactions, and it is not adiabatically con-
nected to noninteracting electrons (which form a macro-

scopically degenerate system). We do not have a natural
starting point akin to the Fermi sea of the Landau Fermi-
liquid theory. How, then, are we to tackle this problem?

Several recent studies [3, 4] have applied neural quan-
tum states (NQS) [5–7] to this problem, leveraging the
universal expressivity of neural networks to represent
quantum many-body wavefunctions within variational
Monte Carlo (VMC). These works employ the Psiformer
architecture [8], a transformer-based NQS that uses at-
tention mechanisms [9] to model electron correlations.
Remarkably, they demonstrate that the dramatic reor-
ganization from a macroscopically degenerate noninter-
acting system to gapped, incompressible FQH states can
be captured by starting from bare electrons and dressing
them using neural networks. As noted in Ref. [4], how-
ever, learning all correlations ab initio can become com-
putationally demanding and currently limits accessible
system sizes, though recent pre-training strategies [10] of-
fer promising avenues for scaling Psiformer-like Ansätze
to larger systems.

We take an alternative approach, building on the fact
that we do know the solution with a high degree of ac-
curacy for an idealized model: electrons in a strictly
two-dimensional space with pure Coulomb interactions
and no mixing between di!erent LLs. The accuracy of
the Jain wavefunctions [11, 12] has been confirmed by
comparisons with exact solutions known for small sys-
tems from computer calculations [12–16]. Remarkably,
this solution is formulated in terms of weakly interact-
ing (or, in the idealized limit, noninteracting) compos-
ite fermions (CFs), related to the solution of noninter-
acting electrons at an e!ective magnetic field. As the
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The nature of the state at low Landau-level filling factors has been a long-standing puzzle in the field of the
fractional quantum Hall effect (FQHE). While theoretical calculations suggest that a crystal is favored at filling
factors ν ! 1

6 , experiments show, at somewhat elevated temperatures, minima in the longitudinal resistance that
are associated with fractional quantum Hall effect at ν = 1

7 , 2
11 , 2

13 , 3
17 , 3

19 , 1
9 , 2

15 , and 2
17 , which belong to the

standard sequences ν = n/(6n ± 1) and n/(8n ± 1). To address this paradox, we investigate the nature of some
of the low-ν states, specifically ν = 1

7 , 2
13 , and 1

9 , by variational Monte Carlo, density matrix renormalization
group, and exact diagonalization methods. We conclude that in the thermodynamic limit, these are likely to
be incompressible fractional quantum Hall liquids, albeit with strong short-range crystalline correlations. This
suggests a natural explanation for the experimentally observed behavior and a rich phase diagram that admits, in
the low-disorder limit, a multitude of crystal-FQHE liquid transitions as the filling factor is reduced.
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I. INTRODUCTION

The physics of the fractional quantum Hall effect (FQHE),
right from its beginning [1,2], has been intertwined with the
physics of the expected Wigner crystal phase in the lowest
Landau level (LLL) [3,4]. There has been a great deal of
theoretical [5–13] and experimental [14–36] work address-
ing this issue, and the following picture is widely accepted:
(i) At filling factors ν = n/(2n ± 1), ν = n/(4n ± 1), where
n is a positive integer, and their hole partners, the ground
state is a FQH liquid. These states are understood as integer
quantum Hall (IQH) state of composite fermions (CFs) [37],
which are bound states of electrons and an even number
of quantized vortices. (ii) In n-doped GaAs quantum wells,
an insulating phase is seen between ν = 1

5 and 2
9 and also

below ν = 1
5 [16,17]. A strong case may be made that these

insulators represent a crystal pinned by the disorder. Similarly,
insulating states, seen in the vicinity of ν = 1

3 [20,21], are
also viewed as disorder-pinned crystals. (iii) Theoretically, it
has been demonstrated that the crystal of composite fermions
[11–13] is energetically better than the crystal of electrons.
The number of vortices bound to composite fermions is fewer
than the maximum number of available vortices, which leaves
composite fermions with enough freedom to form a crystal.
(For example, at 1

7 and 1
9 , the best crystals have four and

six vortices bound to composite fermions.) In particular, the
crystal formed in-between 1

5 and 2
9 is explained as a crystal

of 2CFs [12]. (The symbol 2pCF denotes composite fermions
carrying 2p vortices.) (iv) Finally, the FQHE terminates for
ν ! 1

6 , where the crystal phase dominates.

It is the last assertion (iv) that we address in this paper. The
motivation is as follows. Experiments clearly show that the
state for ν < 1

5 is insulating with exponentially high resistance
at the lowest temperatures. At the same time, signatures of
FQHE at ν = 1

7 and 2
11 have been reported by Goldman et al.

[38] and Mallett et al. [39], respectively. Moreover, Pan et al.
[24,40] have observed developing FQH states at ν = 1

7 , 2
11 ,

2
13 , 3

17 , 3
19 , 1

9 , 2
15 , and 2

17 at elevated temperatures (see Table I
of Ref. [40] for a list of observed fractions), which belong to
the standard Jain sequences at ν = n/(6n ± 1) and n/(8n ±
1) arising from the integer quantum Hall effect of 6CFs and
8CFs. These observations are not readily reconcilable with the
assertion (iv).

We therefore revisit the generally accepted view that the
region below ν ! 1

6 is dominated by the crystal phase. The
issue is ultimately an energetic one and requires an accurate
understanding of both the liquid and the crystal phases. We
find that the competition between the FQHE liquid and the
crystal phases is much subtler than previously believed. On
the whole, our calculations support, in an ideal disorder-
free situation, an incompressible FQHE liquid with strong
short-range crystalline correlations at fractions such as ν = 1

7 ,
2
13 , 1

9 , which belong to the ν = n/(6n ± 1) and n/(8n ± 1)
sequences.

We provide here a summary of our results obtained from
three different methods we apply to this problem. Throughout
this work, we shall assume that the external magnetic field
is strong enough to fully spin polarize the electrons. Further-
more, we shall consider an ideal system with zero width, zero
Landau-level (LL) mixing, and no disorder.
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FIG. 3. Pair-correlation function g(r) for the exact lowest-
Landau-level Coulomb ground state (thick line) and Laughlin state
(dashed line) at ν = 1

7 (left panel) and 1
9 (right panel).

before extrapolating to N → ∞ [85]. This factor corrects
for the finite-size deviation of the electron density from its
thermodynamic value, thus providing a more accurate extrap-
olation.

An important characteristic of an incompressible state is
that it costs a finite energy to create charged excitations.
Figure 5 depicts the charge gap as a function of 1/N at
fractions of the type 1/(2p + 1). The charge gap at these
Laughlin fractions is defined as the sum of the energies of
a quasihole (QH) and a quasiparticle (QP), which in turn are
determined from exact diagonalization at 2Q = (2p + 1)(N −
1) ± 1, respectively. We find that the total orbital angular
momentum quantum number of the exact ground state at
2Q = (2p + 1)(N − 1) ± 1 is consistent with that predicted
by the CF theory for all the systems considered in this work.
The charge gap is equal to the energy required to create a
far-separated pair of quasihole and quasiparticle. From the
extrapolation, we obtain the charge gap in the thermodynamic
limit. While there are some finite-size fluctuations, at least
from the system sizes available to us, the charge gaps appear
to extrapolate to nonzero values for both ν = 1

7 and 1
9 . The

FIG. 4. Thermodynamic extrapolation of the exact lowest-
Landau-level Coulomb ground-state energies for filling ν = 1

3 , 1
5 ,

1
7 , 1

9 , and 1
11 . Left panel (a) shows the extrapolation obtained from

energies of finite-size systems in the spherical geometry and the
right panel (b) shows the thermodynamic energies as a function of
1/ν. The correlation energies include interaction with the positively
charged background and have been density corrected. All energies
are quoted in units of e2/(ε#).

FIG. 5. The energy of the quasihole (QH), quasiparticle (QP),
and their sum for the lowest-Landau-level Coulomb state at Laughlin
fractions as a function of 1/N , where N is the number of electrons.
All the energies quoted in units of e2/(ε#).

extrapolated thermodynamic values of the charge gap are
shown in Fig. 6 for several Laughlin fractions.

Next, we turn to neutral excitations at filling factors
1/(2p + 1). The CF theory predicts that the lowest-energy
neutral excitations are excitons of composite fermions, con-
sisting of a single CF particle-hole excitation. (The neutral
exciton mode has also been called the magnetoroton mode.)
The CF theory predicts that the exciton branch extends from
angular momentum L = 2 to N . Our exact diagonalization

FIG. 6. Exact lowest-Landau-level Coulomb charge gap, which
is the energy required to create a far-separated quasiparticle-
quasihole pair, for filling ν = n/(2pn + 1). The extrapolated gaps
were obtained from a linear fit in 1/N of gaps of finite-size systems
in the spherical geometry (see Fig. 5 for extrapolations of the charge
gap for Laughlin fractions). All energies are quoted in units of
e2/(ε#). The charge gap for 1

3 has been reproduced from Ref. [86].
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Exact diagonalization studies at 1/7 (up to 10 particles), 2/13 (up to 10 
particles), 1/9 (up to 9 particles) and 1/11 (up to 8 particles) are consistent 
with a liquid state, with gaps extrapolating to finite values.
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ν = 2 + 3/8 [41–43] and been studied theoretically [44,45].
FQHE at half-filling has also been observed in the N = 3 LL
of monolayer graphene [46]. Theoretical calculations [46,47]
suggest that the leading candidate to describe this FQHE state
is the Jain-221 parton state [48], which represents an f -wave
paired state of CFs [49,50]. FQHE has been observed in
the half-filled N = 1 LLs of bilayer graphene [51–55] and
trilayer graphene [56]; these are believed to be analogous
to the 5/2 FQHE [57,58]. Even-denominator FQH phases at
ν = 3/4 in the N = 0 LL of bilayer graphene [55] and at ν =
1/2 in the N = 0 LL of trilayer graphene [59] were recently
observed. These likely involve LL mixing, but a satisfactory
understanding of the underlying physical mechanism for these
states’ incompressibility is lacking [60,61]. FQHE states have
been observed at an isospin transition in the N = 0 LLs of
monolayer graphene at half and quarter filling, and their origin
was attributed to two-component physics [62,63].

The motivation for the present study comes from a recent
experiment that reported evidence for developing FQHE at
ν = 1/6 and ν = 1/8 in wide QWs, in addition to many Jain-
sequence states at ν = n/(6n±1) and ν = n/(8n±1) [65].
These manifest through deep minima in Rxx on a background
resistance that rapidly rises with decreasing temperature. Evi-
dence for the n/(6n±1) states on a large Rxx background was
reported more than two decades ago [66]. This was surprising
because early theoretical studies had suggested [67] that for
ν < 1/6.5 a Wigner crystal (WC) is stabilized rather than the
FQHE liquid. Subsequent theoretical studies found that many
types of CF crystals (CFCs) can occur and demonstrated a
rather intricate interplay between the liquid and CF crystal
states [68–70]. A theoretical study argued that the FQHE
states survive down to much lower filling factors, although
they are separated by CF crystals in between [64].

This article considers many candidate states at ν = 1/6
in a wide QW, including the CF Fermi sea, various kinds
of crystals, and several kinds of paired CF states. The finite
width alters the electron-electron interaction, which we obtain
by evaluating the transverse wave function in a local density
approximation (LDA) [71,72]. We do not consider LL mixing,
which is not expected to be relevant here since the LL mixing
parameter is small in this electron-based system. Our primary
conclusions are as follows.

A. Summary of primary conclusions

Among the various FQHE states we have considered at
ν = 1/6, the Jain-2211111 (or 2215) parton state [48], defined
below, is the most favorable. This state represents an f -wave
pairing of CFs [50] and is predicted to support excitations with
non-Abelian statistics [49]. However, for the QW widths and
densities corresponding to the experiment [65], the energies
of the CF Fermi sea, the 4CF crystal (4CFC, i.e., a crystal of
CFs with four vortices bound to them), and the f -wave paired
CF states are too close to distinguish.

Based on these calculations, we cannot conclude that the
f -wave paired CF state will occur for large QW widths and
densities. However, if the FQHE at ν = 1/6 is experimentally
confirmed in these systems, we predict that it will be an f -
wave paired state of CFs. This can be verified experimentally,
for example, by determining the thermal Hall conductance of

FIG. 1. The top panel shows the proposed schematic phase dia-
gram as a function of filling factor and disorder at large quantum-well
widths and densities. This is identical to that shown in Ref. [64] ex-
cept that there are incompressible states also at ν = 1/6 and ν = 1/8.
The phase labeled CFC (CF crystal) is a perfect crystal only at zero
disorder; the correlation length of crystalline order decreases with
increasing disorder. The bottom panels show two possible phases at
a given filling factor [such as n/(6n±1) or 1/6] as a function of
disorder. The left panel shows the “FQHE phase,” which appears
for low disorder (U < Uc) when the incompressible liquid (blue)
percolates through the sample. The bottom right panel shows the
“correlated mixed-phase insulator,” which appears for large disorder
(U ! Uc). Here, the crystal (yellow) percolates but contains puddles
of the FQHE liquid, which diminishes the longitudinal resistance.
The critical disorder Uc for a given fraction corresponds to the height
of the dome in the phase diagram (marked for ν = 1/6).

this state. The thermal Hall conductance is given by κxy =
c−π2k2

BT/3h, where c− is the chiral central charge [73]; for
states with CF pairing in the relative angular momentum l
channel, we have c− = 1 + l/2 and, in particular, for f wave
pairing (l = 3) of CFs, we have c− = 5/2 [32,49,74].

We have also explored FQHE states away from ν = 1/6.
Exact diagonalization (ED) calculations on systems with up to
eight electrons show that the 1/7 Laughlin and the 2/11 and
2/13 Jain states remain stable for the parameters of interest.

B. Proposed phase diagram

Combining with experiments, we propose the schematic
phase diagram depicted in the upper panel of Fig. 1 for large
QW widths, which is a slight modification of that presented
by Zuo et al. [64]. At zero disorder, the Jain states are stabi-
lized at and near ν = n/(6n±1), and the f -wave paired CF
state is stabilized at and near ν = 1/6. At filling factors in
between, the CF crystal is stabilized. Now consider disorder,
which causes spatial variations in the filling factor. Due to
the intervening crystal phases, the behavior is very different
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A. Summary of primary conclusions

Among the various FQHE states we have considered at
ν = 1/6, the Jain-2211111 (or 2215) parton state [48], defined
below, is the most favorable. This state represents an f -wave
pairing of CFs [50] and is predicted to support excitations with
non-Abelian statistics [49]. However, for the QW widths and
densities corresponding to the experiment [65], the energies
of the CF Fermi sea, the 4CF crystal (4CFC, i.e., a crystal of
CFs with four vortices bound to them), and the f -wave paired
CF states are too close to distinguish.

Based on these calculations, we cannot conclude that the
f -wave paired CF state will occur for large QW widths and
densities. However, if the FQHE at ν = 1/6 is experimentally
confirmed in these systems, we predict that it will be an f -
wave paired state of CFs. This can be verified experimentally,
for example, by determining the thermal Hall conductance of

FIG. 1. The top panel shows the proposed schematic phase dia-
gram as a function of filling factor and disorder at large quantum-well
widths and densities. This is identical to that shown in Ref. [64] ex-
cept that there are incompressible states also at ν = 1/6 and ν = 1/8.
The phase labeled CFC (CF crystal) is a perfect crystal only at zero
disorder; the correlation length of crystalline order decreases with
increasing disorder. The bottom panels show two possible phases at
a given filling factor [such as n/(6n±1) or 1/6] as a function of
disorder. The left panel shows the “FQHE phase,” which appears
for low disorder (U < Uc) when the incompressible liquid (blue)
percolates through the sample. The bottom right panel shows the
“correlated mixed-phase insulator,” which appears for large disorder
(U ! Uc). Here, the crystal (yellow) percolates but contains puddles
of the FQHE liquid, which diminishes the longitudinal resistance.
The critical disorder Uc for a given fraction corresponds to the height
of the dome in the phase diagram (marked for ν = 1/6).

this state. The thermal Hall conductance is given by κxy =
c−π2k2

BT/3h, where c− is the chiral central charge [73]; for
states with CF pairing in the relative angular momentum l
channel, we have c− = 1 + l/2 and, in particular, for f wave
pairing (l = 3) of CFs, we have c− = 5/2 [32,49,74].

We have also explored FQHE states away from ν = 1/6.
Exact diagonalization (ED) calculations on systems with up to
eight electrons show that the 1/7 Laughlin and the 2/11 and
2/13 Jain states remain stable for the parameters of interest.

B. Proposed phase diagram

Combining with experiments, we propose the schematic
phase diagram depicted in the upper panel of Fig. 1 for large
QW widths, which is a slight modification of that presented
by Zuo et al. [64]. At zero disorder, the Jain states are stabi-
lized at and near ν = n/(6n±1), and the f -wave paired CF
state is stabilized at and near ν = 1/6. At filling factors in
between, the CF crystal is stabilized. Now consider disorder,
which causes spatial variations in the filling factor. Due to
the intervening crystal phases, the behavior is very different
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• Exactly at ,   and ,  the actual state is an 
incompressible FQHE liquid.  In between, we have CF crystals.

• Disorder favors crystals.

• At finite disorder, treated as variation in filling factor, we have regions of crystal 
and FQHE liquid.  At low-disorder, the liquid percolates, and perfect FQHE will 
be seen.  

• At higher disorder, the crystal percolates, producing an insulator.  Nonetheless, 
having large puddles of the FQHE liquid can depress the resistance at a finite 
temperature. 

• Eventually, as disorder is eliminated, FQHE will be seen at these fillings.

n /(6n ± 1) n /(8n ± 1) n /(10n ± 1)

Our view: a cascade of re-entrant transitions
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Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood
by neglecting the interactions between composite fermions altogether. For example, the fractional quantum
Hall effect at #!n/(2pn"1) corresponds to filled composite-fermion Landau levels, and the compressible
state at #!1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interac-
tions between composite fermions will determine the nature of the ground state. In this paper, a model is
constructed for the residual interaction between composite fermions, and various possible states are considered
in a variational approach. Our study suggests the formation of composite-fermion stripes, bubble crystals, as
well as fractional quantum Hall states for appropriate situations.
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I. INTRODUCTION

In two dimensions, electrons subjected to a strong mag-
netic field avoid one another by capturing an even number of
quantized vortices and turning into composite fermions.1,2

The composite fermions interact much more weakly than
electrons. In fact, tremendous progress can be made toward
understanding the dramatic behavior of this system by treat-
ing composite fermions as noninteracting. It is not that there
is no interaction between the composite fermions, but it is
weak and often does not alter the nature of the state in a
qualitative manner, i.e., can be treated perturbatively. In such
situations, while the inter-composite-fermion !CF" interac-
tion is surely important for quantitative considerations, it
does not affect the qualitative phenomenology, and can be
neglected altogether when the aim is to describe the qualita-
tive phenomenology.

For example, the odd-denominator fractions #!n/(2pn
"1) map into #*!n of composite fermions carrying 2p
vortices. Here, the system has a gap even in the absence of
inter-CF interactions—in stark contrast to the electron sys-
tem at #!n/(2pn"1) which had an enormous degeneracy
in the absence of interactions—and it is possible that for
many of these filling factors, the gap would not disappear as
the inter-CF interaction is slowly turned on to its physical
value. If that were the case, the inter-CF interaction is unim-
portant at a qualitative level. This explains the fractional
quantum Hall effect3 !FQHE" at filling factors #!n/(2pn
"1) in terms of the integral QHE !Ref. 4" of composite
fermions.1

Another example is at fractions #!1/2p , which map into
composite fermions at zero effective magnetic field. If the
interactions between composite fermion are neglected, a
Fermi sea is obtained.5 Conceptually, it is more difficult to
justify the neglect of inter-CF interactions in this case, as
there is no gap for the Fermi sea. Nonetheless, at least there
is a well defined ground state for composite fermions, unlike
for noninteracting electrons at #!1/2p , and various experi-
mental studies6 have shown that the CF Fermi sea is a good
starting point for many purposes.

We recall that at relatively high temperatures and low

mobilities only the integral quantum Hall effect was seen,
which is explained by neglecting the interaction between
electrons. As the sample quality improved and temperature
lowered, the FQHE was observed, which is understood in
terms of weakly interacting composite fermions. While the
model in which the composite fermions are taken as nonin-
teracting has been strikingly successful, one may ask if an-
other set of structures would emerge as the experiments fur-
ther improve. This question has motivated our investigation
of the subtle physics arising from inter-CF interactions. For-
tunately, there already exists a good microscopic approach
for investigating this issue, in the form of the wave functions
for composite fermions.1 Even though these wave functions
are motivated by the physics of independent composite fer-
mions, they give an excellent description of the interaction
between the composite fermions.2,7,8 In fact, the wave func-
tions practically give the exact solution to the problem,
which implies that they incorporate the full interaction ef-
fects. For example, consider the low-energy branch of exci-
tations, described as an exciton of composite fermions. If the
composite fermions were noninteracting, this branch would
not have any dispersion. In reality, there are oscillations in
the energy as a function of the wave vector, arising from the
residual interaction between the CF particle and the CF hole.
The dispersion computed from the wave functions provides
an accurate account of the oscillations.2,7,8 The wave func-
tions similarly obtain the energy of two CF particles or two
CF holes quite accurately.

The inter-CF interactions are of course always relevant to
quantitative issues. However, there are two situations in
which they can also make a qualitative difference in the
physics. The first situation is when the inter-CF interaction
overwhelms the gap of the noninteracting CF model, thereby
destroying the FQHE.9,10 It has been shown that for #$1/9
as well as for most fractions in higher Landau levels, the
FQHE undergoes an excitonic instability, i.e., the energy of
the exciton becomes smaller than the energy of the uniform
filled CF Landau-level !LL" state. The CF theory thus not
only tells us where the FQHE occurs but also where it does
not. !Recent experiments11 have shown evidence for FQHE
at 1/9 at finite temperatures. Even though this observation is
not presently understood, it ought to be stressed that it is not
inconsistent with the earlier theoretical predictions which
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in the lowest Landau level are not so good in higher Landau
levels, which makes our calculation somewhat biased against
the FQHE.

To estimate at what filling a transition occurs from the
bubble crystal to the stripe phase, we have determined their
energies as a function of the filling factor, shown in Fig. 4.
The stripes are found to be stable approximately in the re-
gion 0.4!!*!0.6, outside of which bubbles take over.
Overall, the phase diagram for various states of composite

fermions, shown schematically in Fig. 5, is remarkably simi-
lar to that for electrons. For electrons, "i# the FQHE occurs in
the lowest Landau level, "ii# stripes are believed to be rel-
evant in the vicinity of !"n#1/2 for n$2, and "iii# bubble
or Wigner crystal takes over in higher Landau levels for !
"n#!! with !!!0.4. The behavior for 2CF’s is quite
analogous.

VII. FINITE THICKNESS

We have assumed until now that the electron layer width
is zero. In actual experiments, the electron wave function has
a finite extent in the transverse direction, which modifies the
interaction pseudopotentials. The modified interaction has
been obtained in a local-density approximation.28,29 To esti-
mate how finite thickness affects the results presented above,
we have calculated the pseudopotentials for composite fer-
mions in the second CF LL and found "Fig. 6# that the value
V3

CF , which is the largest pseudopotential, is reduced as we
increase the density of the electrons. However, the change is
not large enough to alter the previous results. As seen in Fig.
7, at !"4/11, where the composite fermion filling is !*
"4/3, the bubble crystal phase continues to be most favor-
able among the ones studied.

VIII. CONCLUSION

In summary, we have considered theoretically the ques-
tion of what states of composite fermions are feasible as a
result of the residual interaction between composite fermi-
ons. For this purpose, we have constructed a model for the
CF-CF interaction, and studied various plausible states
within a variational scheme. Our results suggest that the frac-
tional quantum Hall effect, the stripe phase, as well as the
bubble crystal of composite fermions can all occur at various
filling factors.
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FIG. 5. Phase diagram of various CF states, with bubbles "solid
dots#, CF stripes "shaded region#, and CF FQHE "solid line# as a
function of the CF filling !*"n#!n* .

FIG. 6. Pseudopotentials for the CF-CF interaction in the 2nd
CF-LL for various densities for quantum wells of widths 15 and 30
nm. The interelectron interaction has been obtained in a local-
density approximation.

FIG. 7. Same as in Fig. 3 for the modified interaction.
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Electronic stripe-nematic phases are fascinating, strongly correlated states characterized by spontaneous
rotational symmetry breaking. In the quantum Hall regime, such phases typically emerge at half-filled,
high-orbital-index (N ≥ 2) Landau levels (LLs) where the short-range Coulomb interaction is softened by
the nodes of electron wave functions. In the lowest (N ¼ 0) LLs, these phases are not expected. Instead,
composite fermion (CF) liquids and fractional quantum Hall states, which are well explained in the picture
of weakly interacting CF quasiparticles, are favored. Here, we report the observation of an unexpected
stripe-nematic phase in the lowest LL at filling factor ν ¼ 5=8 in ultra-high-quality GaAs two-dimensional
hole systems, evinced by a pronounced in-plane transport anisotropy. Remarkably, ν ¼ 5=8 can be mapped
to a half-filled, high-index CF LL (NCF ¼ 2), analogous to the N ¼ 2 hole LL. Our finding signals a novel
stripe-nematic phase of CFs driven by the residual long-range interaction among these emergent
quasiparticles. This phase is surprisingly robust, surviving up to ∼100 mK. Its absence in electron-type
systems suggests that severe LL mixing stemming from the large hole effective mass and nonlinear LL fan
diagram plays a crucial role in modifying the CF-CF interaction.
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The concept of quasiparticles is pivotal for understand-
ing the complex electronic properties in condensed matter
physics. In solids, the behavior of electrons in a periodic
potential created by the atomic lattice can be effectively
described using Bloch electrons—quasiparticles that
resemble free electrons but with a renormalized effective
mass. In the extreme quantum limit of a two-dimensional
electron system (2DES), where electrons partially occupy
the lowest (N ¼ 0), highly degenerate Landau level (LL),
strong electron-electron Coulomb interaction leads to the
emergence of exotic correlated phases such as fractional
quantum Hall states (FQHSs) [1–3]. These many-body
electronic phases can be phenomenologically understood
through an effective single-particle framework by intro-
ducing a new type of quasiparticles known as composite
fermions (CFs), which are formed by attaching an even
number of magnetic flux quanta to each electron [4–6]. The
flux attachment reduces the external magnetic field and, in
an effective mean-field theory, also screens the Coulomb
interaction. As a result, two-flux CFs (2CFs) experience
zero effective magnetic field B" at LL filling factor ν ¼ 1=2
and form a compressible Fermi sea. This has been con-
firmed experimentally [7–9]. As the system moves away
from ν ¼ 1=2, the 2CFs experience a finite B" ¼ B − B1=2

and form their own LLs, known as lambda levels (ΛLs) [6].
Similar to electrons, 2CFs exhibit integer QHSs when
ΛLs are fully occupied, which manifest as Jain-sequence
FQHSs at ν ¼ n=ð2n$ 1Þ, n ¼ 1; 2; 3….
Electron-electron interaction in excited (N ≥ 1) LLs,

however, is rather different, because the nodes of electron

wave functions soften the short-range part of the Coulomb
interaction, giving rise to exotic correlated states, which are
not favored in the N ¼ 0 LLs. One peculiar example is the
candidate non-Abelian FQHS observed in half-filledN ¼ 1
LL at ν ¼ 5=2 [10], which is believed to originate from
BCS-like CF pairing [11–13]. In higher N ≥ 2 LLs, stripe
or electronic versions of liquid-crystal-like phases charac-
terized by significant in-plane transport anisotropy emerge
at half fillings, e.g., at ν ¼ 9=2 [14–23]. Early Hartree-Fock
theories predicted that these phases stem from unidirec-
tional charge-density waves consisting of stripes with alter-
nating integer ν (e.g., ν ¼ 4 and 5) [16–18,24]. At finite
temperatures, and in the presence of quantum fluctuations
and disorder, the stripe order can be disrupted, leading to
nematic phases [19,20,22]. In the remainder of the Letter,
we refer to such phases as stripe-nematic (SN) phases. In a
more general picture, nematic orders can also arise from
Pomeranchuk instability of Fermi seas [21,23].
We report here the observation of an unusual, aniso-

tropic phase at ν ¼ 5=8 in the lowest LL of ultra-high-
quality GaAs 2D hole systems (2DHSs). The LL filling
ν ¼ 5=8 can be mapped to a hole-flux CF ΛL filling
νCF ¼ 5=2, representing a half-occupied NCF ¼ 2 ΛL on
top of two fully occupied lower ΛLs (NCF ¼ 0 and 1). The
exotic phase we observe at ν ¼ 5=8 is, therefore, very
likely a manifestation of an SN phase of interacting CFs;
see Fig. 1(c). This phase is novel and intricate because both
the SN phase and the CF quasiparticles forming this phase
have collective origins.
We studied ultra-high-quality 2DHSs confined to

GaAs quantum wells grown on GaAs (001) substrates by
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molecular beam epitaxy. They were grown following the
optimization of the growth chamber vacuum integrity and
the purity of the source materials [25] as well as an
optimized, stepped-barrier design [26,27]. We performed
our experiments on 4 × 4 mm2 van der Pauw geometry
samples cleaved from a 2-inch GaAs wafer with alloyed
In:Zn contacts at the four corners and side midpoints. The
samples were cooled in a dilution refrigerator with a base
temperature of ≃30 mK. We measured the longitudinal
resistances along ½11̄0" (Rxx) and [110] (Ryy) crystal
directions [28] and the Hall resistance Rxy using the
conventional, low-frequency (∼17 Hz), lock-in amplifier
technique.
We focus on transport measurements on a GaAs 2DHS in

the lowest LL (ν < 1). Figure 1(a) presents Rxx and Ryy vs
perpendicular magnetic field B⊥. We observe a dramatic
anisotropic behavior at ν ¼ 5=8: Rxx exhibits a deep mini-
mum while Ryy shows a maximum (with Ryy=Rxx ≃ 40),
reminiscent of the SN phases that typically emerge in high
(N ≥ 2) LLs [14,15,22]. Such anisotropic behavior at
ν ¼ 5=8 is also seen in two other samples with similar
2D hole densities, but different quantum well widths; see
Supplemental Material (SM) Fig. S5 [29]. As we elaborate
later, this anisotropic behavior signals the emergence
of an SN phase of interacting 2CFs in a half-filled, high
(NCF ¼ 2) ΛL. The SN phase at ν ¼ 5=8 is in stark contrast
to the nearly isotropic behavior we observe elsewhere in the
lowest LL (ν < 1). Near ν ¼ 1=2, Rxx and Ryy are feature-
less and have similar values, consistent with an isotropic
Fermi sea of 2CFs. On the lower-B⊥ side of ν ¼ 1=2,

a sequence of minima, which signal the Jain-sequence
FQHSs, are observed at ν ¼ 2=3, 3=5, 4=7,… , up to 9=17.
It is worth noting that, between ν ¼ 1 and 2=3, an even-
denominator FQHS emerges at ν ¼ 3=4, consistent with
what was recently reported in ultra-high-quality GaAs
2DHSs [40,41]. These observations collectively demon-
strate the exceptionally high quality of the GaAs 2DHS in
our Letter.
To shed light on the origin of the exotic SN phase at

ν ¼ 5=8, we present our data in the 2CF picture by plotting
Rxx, Ryy, and Rxy in Fig. 1(b) as a function of νCF, where
νCF is the CF ΛL filling factor obtained from the relation
ν ¼ νCF=ð2νCF þ 1Þ. The Jain-sequence FQHSs at ν ¼ 2=3
and 3=5, evinced by wide, quantized Rxy plateaus accom-
panied with vanishing Rxx and Ryy, can be interpreted as
integer QHSs of 2CFs with νCF ¼ 2 and 3. An SN phase is
observed between ν ¼ 2=3 and 3=5 (between νCF ¼ 2
and 3). Here, CFs fully occupy the NCF ¼ 0 and NCF ¼
1 ΛLs, and partially occupy the NCF ¼ 2 ΛL, assuming
CFs are fully spin polarized. The peak anisotropy is seen
near ν ¼ 5=8, corresponding to νCF ¼ 2þ 1=2, where the
topmost NCF ¼ 2 ΛL is half occupied [Fig. 1(c)]. No Rxy

plateau is seen near ν ¼ 5=8. These observations highly
resemble the conventional SN phases reported in high
LLs of GaAs 2DESs [14,15,22], suggesting that what
we observe at ν ¼ 5=8 is an SN phase. Remarkably, this
SN phase is observed in the lowest LL, emerging from
interacting 2CFs rather than interacting holes.
Several other observations support our claim that CFs are

interacting in a partially filled ΛL in our 2DHS. The filling

(b) (c)(a)

(d)

(b) (c)cc)(a)

(d)((d)(

stripe-nematic phase

(c)

(d)

FIG. 1. An SN phase of CFs in the lowest LL. (a) Longitudinal resistances Rxx and Ryy vs perpendicular magnetic field B⊥ measured
along two mutually perpendicular crystal directions at T ≃ 30 mK. The circuit configurations used for the measurements are shown in
the right insets. Our 2DHS exhibits a highly anisotropic behavior between two Jain-sequence FQHSs ν ¼ 2=3 and 3=5, showing a peak
anisotropy (Ryy=Rxx ≃ 40) near ν ¼ 5=8. This signals the emergence of an SN phase in the FQHS regime. (b) Rxx, Ryy, and Hall
resistance Rxy are plotted as a function of CF filling factor, νCF. FQHSs identified by vanishing Rxx and Ryy, and accompanied by
quantized Hall plateaus, are observed at ν ¼ 3=5, 2=3, 5=7, and 3=4, corresponding to νCF ¼ 3, 2, 5=3, and 3=2, respectively. No Rxy

plateau is seen near ν ¼ 5=8 (νCF ¼ 5=2). (c) Origin of the SN phase at ν ¼ 5=8: first, we map hole LL filling ν ¼ 5=8 to CF ΛL filling
νCF ¼ 5=2, where CFs fully occupy the NCF ¼ 0 and NCF ¼ 1 ΛLs and half occupy the topmost, NCF ¼ 2 ΛL. An SN phase of CFs
forms in the half-filled NCF ¼ 2 ΛL, analogous to electronic SN phases in high LLs, e.g., at ν ¼ 9=2. (d) Origin of the exotic ν ¼ 3=4
FQHS: paired FQHS of CFs in the half-filled NCF ¼ 1 ΛL. We assume CFs are fully spin polarized; this is reasonable, given the very
large B⊥ where our observations are made.
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A highly correlated topological bubble phase 
of composite fermions

Vidhi Shingla1,4, Haoyun Huang1,4, Ashwani Kumar2, Loren N. Pfeiffer3, 
Kenneth W. West3, Kirk W. Baldwin3 & Gábor A. Csáthy    1 

Strong interactions and topology drive a wide variety of correlated 
ground states. Some of the most interesting of these ground states, such 
as fractional quantum Hall states and fractional Chern insulators, have 
fractionally charged quasiparticles. Correlations in these phases are 
captured by the binding of electrons and vortices into emergent particles 
called composite fermions. Composite fermion quasiparticles are randomly 
localized at high levels of disorder and may exhibit charge order when there 
is not too much disorder in the system. However, more complex correlations 
are predicted when composite fermion quasiparticles cluster into a bubble, 
and then these bubbles order on a lattice. Such a highly correlated ground 
state is termed the bubble phase of composite fermions. Here we report 
the observation of such a bubble phase of composite fermions, evidenced 
by the re-entrance of the fractional quantum Hall e!ect. We associate this 
re-entrance with a bubble phase with two composite fermion quasiparticles 
per bubble. Our results demonstrate the existence of a new class of strongly 
correlated topological phases driven by clustering and charge ordering of 
emergent quasiparticles.

Landau’s symmetry breaking paradigm provides a framework to classify 
phases described by local order parameters. Topological phases do 
not fit into this classification and are described instead by topological 
invariants. Topological phases are characterized by the formation of 
edge states and of an insulating bulk, and, in the vast majority of cases, 
symmetry breaking does not play any role. Indeed, the bulk of most 
ordinary topological phases, such as the integer quantum Hall state 
forming in the two-dimensional electron gas1, is an Anderson insulator. 
As the Landau level filling factor moves away from an integer value, 
bulk quasiparticles are generated, which are randomly localized. Local 
scanning probes provided evidence for such randomly localized bulk 
quasiparticles2. A representation of integer quantum Hall states with 
a finite quasiparticle density is shown in Fig. 1a.

In addition to ordinary topological phases characterized solely by 
topological invariants, there is a larger class of phases for which both 
topological and Landau-type orders need to be invoked. Such phases 
exhibit topologically protected edge states, while quasiparticles in 

their bulk break various spatial symmetries. An example of such a 
phase is the Wigner solid forming in the flanks of integer quantum 
Hall states3, which is related to the Wigner solid forming in the extreme 
quantum limit4. In the limit of no disorder, quasiparticles in the bulk 
of this phase are thought to order on a triangular lattice, while edge 
states maintain integer quantization of the Hall resistance. So far, 
conditions of low enough disorder for the formation of these types of 
Wigner solids were met in two-dimensional electron gases confined 
to gallium arsenide semiconductor (GaAs)3–9 and to graphene10. Even 
though microscopic observation of charge order is still lacking, meas-
urements of the pinning mode3, nuclear magnetic resonance charge 
topography5, the phonon mode6 and localization7–10 provide evidence 
of charge ordering in the bulk.

The complexity of charge order is known to increase in higher 
Landau levels, where more intricate broken symmetry topological 
phases are possible. Electronic bubble phases share the triangular 
lattice structure of the Wigner solid, but acquire an internal degree 
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peaks that are separated by a vanishingly small Rxx. Furthermore, as 
seen in Fig. 2, the Hall resistance Rxy at B = 7.76 T at the lowest tempera-
ture is quantized to 3h/5e2. These details may be further examined in 
Fig. 3. Altogether, we report four instances of similar complex trans-
port; three of these are shown in Extended Data Fig. 1 found in Sup-
plementary Information. Extended Data Figure 1 demonstrates 
reproducibility after thermal cycling and the observation of similar 
behaviour in a second sample. In Supplementary Information we also 
discuss anomalies at this filling factor region reported in earlier work.

Complex transport behaviour between two consecutive FQHSs can 
be due to either a spin transition or an unusual ground state. However, 
the transport behaviour observed near B = 7.76 T is inconsistent with a 
spin transition for three reasons. First, a quantized Hall resistance we 
observe at B = 7.76 T is not expected near a spin transition41,42. Second, 
the pattern of the longitudinal resistance measured near B = 7.76 T is 
different from that at a spin transition41,42. Third, a spin transition is 
not expected in the ν = 5/3 state41, but it is known to occur in the ν = 8/5 
state42,43. However, this transition is strongly dependent on the width of 
the confining quantum well42. The density 3.06 × 1011 cm−2 of our 30 nm 
wide quantum well samples greatly exceeds the critical density at this 
width42, hence the ν = 8/5 state in our sample forms deep inside the fully 
spin-polarized regime, far away from a spin transition. By ruling out a 
spin transition near B = 7.76 T, we ascertain that at this field there is a 
different ground state forming.

For insight on the unusual transport pattern near B = 7.76 T, we 
recall the transport phenomenology of the re-entrant integer quantum 
Hall states. These states are satellite formations near integer quantum 

Hall states associated with electronic bubble phases13–19. Both integer 
quantum Hall states and the re-entrant states are characterized by a 
vanishing Rxx and a quantized Rxy, but are separated from each other 
by a deviation from quantization. Transport behaviour near B = 7.76 T 
is similar: both the ν = 5/3 state and the region near B = 7.76 T are char-
acterized by a vanishing Rxx and a quantized Rxy, and they are separated 
by a deviation from quantization developing near B = 7.73 T. However, 
in contrast to the re-entrant integer states, the Hall resistance near 
B = 7.76 T is not quantized to an integer but rather to a fractional value 
R

xy

= 3h/5e

2. Henceforth we will refer to the unusual transport develop-
ing near B = 7.76 T as the re-entrant fractional quantum Hall state 
(RFQHS), and we associate it with a new ground state of the system. 
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est Λ-level. An increasing B field in this region of filling factors results 
in a decrease of the effective magnetic field, which in turn leads to a 
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CF “superconductivity”



• FQHE has been observed at many even-denominator fractions: 
. These cannot be understood 

in terms of noninteracting CFs.
5/2,1/2,1/4,3/4,3/8,3/10,1/6,1/8

• These FQHE states emerge from a CF metal when the weak 
residual interaction between the CFs causes them to form pairs, 
opening a gap.  This provides a second mechanism for FQHE.

Even-denominator FQHE: CF pairing



• By going to a higher LL

• By increasing the quantum well width / 
density

• By enhancing LL mixing

Empirically: The inter-CF interaction becomes 
attractive as the strength of the short range repulsion 
between the electrons is reduced. This may be done in 
three ways:

Pairing from purely repulsive interaction?



• Trial wave functions:  Pfaffian / anti-Pfaffian 
(Moore and Read, 1991), parton (Jain 1989, 
Balram, Barkeshli, Rudner, 2018; Faugno et al. 
PRL; …)

•  These do not have any variational 
parameters and do not have any explicit 
relation to the CF metal.

Previous approaches



• Two variational parameters:  and .  

• The CF-BCS wave function reduces to the CF Fermi sea for  or 
. 
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VIEWPOINT

Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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Composite fermions on a torus

• Natural geometry for pairing; take a square torus;  

• Technical hurdle:  the projection  spoils the 
periodic boundary conditions. Needs to be modified.

N = 12,32
z̄j → 2∂/∂zj

Haldane, Rezayi (1985); Rezayi, Haldane (2000); Hermanns, Surosa, Bergholtz, 
Hansson, Karlhede (2008); Hermanns (2013); Greiter, Schnells, Thomale (2016); 
Pu, Wu, Jain (2017); Sharma, Pu, Jain (2021)
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The final form of the JK projected wave BCS function is XXXX needs to be fixed
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The JK projected wave function satisfies the periodic boundary conditions as shown in Appendix A.
TEMPORARY
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The JK projected wave function satisfies the periodic
boundary conditions as shown in Appendix A.
For ⌫ = 1/4 we have another choice for the JK pro-

jection, where we pull all of the Jastrow factor into the

Pf to write Pf
hP

n
g(l)kn

F̂n(zi, zj)J2
i
J2
j

i
. We have tested

this as well and found that the resulting wave function
is very close to that in Eq. (22) and does not change any
conclusions.
We define a dimensionless variational parameter �̃ for

the CF-BCS wave function [42]:

�̃ =
|�(l)

kF
|

~2|kF |2/2m⇤ . (27)

This is the gap parameter. We introduce another pa-
rameter, kcuto↵ , such that only wave vectors |k|  kcuto↵
participate in pairing. The quantity g(l)kn

can then be

re-written as [42] FIX EQUATION

g(l)kn
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8
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For our calculations, we determine the magnitude of kF
using the relation:

⇡|kF |2 = N |b1 ⇥ b2| (29)

We perform our numerical calculations for even num-
ber of particles with N = 12 and N = 32 particles.
The Fermi sea configuration is approximately circular for
these system sizes.

IV. THE ⌫ = 5
2 STATE

A previous work described the application of the CF-
BCS theory to the 5/2 state, which refers to half-filled
second LL, and demonstrated a p-wave pairing instabil-
ity [19]. Here we discuss the role of PH symmetry in this
context.
Let us recall the situation with the MR model. The

MR-Pf state, which is a candidate state for the FQHE
at half-filling in second LL, is not PH symmetric [40]. It
is a zero energy state of a three-body interaction, which
explicitly breaks PH symmetry [9] XXXX REFS XXXX.
Another candidate state at ⌫ = 5/2 is the anti-Pf, which
is related to the MR Pf by a PH transformation. The
pairing channel for anti-Pf is l = �3 and is a di↵erent
topological phase than the Pf [39, 40]. In the absence
of Landau level mixing, the Pf and anti-Pf produce the
same energy for the Coulomb interaction at ⌫ = 5/2. To
summarize: (i) For the two-body Coulomb interaction,
the CFFS at ⌫ = 1/2 is PH symmetric but the MR-Pf
state breaks PH symmetry. A measure of the symme-
try breaking is that the overlap between the Pf and the
anti-Pf for 12 particles is ⇡ 0.3372 (it would be 1 for a
PH symmetric state), given in Table II. (ii) The Pf and
anti-Pf states, which are related by PH symmetry, are
equivalent in the absence of LL mixing. Here we ask to
what extent these properties carry over to the CF-BCS
states at l = 1 and l = �3. (How LL mixing breaks this
tie to select one of these states is beyond the scope of the
present work.)
To begin with, we ask if there is also an instability in
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FIG. 1. The configurations of Fermi sea used in our calculations for N = 12 (left panel), N = 16 (middle panel) and N = 32 (right panel).
We also show the approximate circular Fermi surface.

For ν = 1/2 we simply work with (a periodic version of)
the Coulomb interaction. For ν = 5/2, we use an effective
interaction in the LLL to mimic the SLL coulomb interaction
by matching their Haldane pseudopotential coefficients. This
was earlier done in Ref. [17], which showed that an accurate
effective interaction is

V eff (r) = e2

ε

{
1
r

+ a1e−α1r2 + a2r2e−α2r2

}
. (41)

The best-fitted parameters are a1 = 117.429, a2 = −755.468,
α1 = 1.3177, and α2 = 2.9026, which guarantee that the first
four pseudopotential coefficients are the same as the second
LL Coulomb pseudopotentials. While calculating the energy
on torus geometry, the k-space summation of the interaction
should be used [39]. The details of the numerical calculations
are given in Appendix B. We neglect corrections due to finite
thickness and LL mixing throughout this work.

We have performed our calculation for systems with 12,
16 and 32 particles, because these produce fairly circular
Fermi seas for even N . The approximate magnitude of kF is
estimated using the following relation:

π |kF |2 = N |b1 × b2|. (42)

In Fig. 1, we show the k-space configurations of CFFS for
these systems, with the solid black lines showing the approx-
imate Fermi surfaces. For both ν = 1/2 and ν = 5/2, we find
the minimum energy by considering a range of values for δkF

and minimizing the energy for each δkF by varying kcutoff .
The energies per particle are shown in Fig. 2 for both

ν = 1/2 and ν = 5/2 as a function of δkF . This illustrates
the most notable finding of our work: at ν = 5/2, the energy
minimum for SLL occurs at δkF ≈ 1.2, indicating the presence
of CF pairing. In contrast, the minimum energy at ν = 1/2 is
obtained for kcutoff = kF , i.e., for the CFFS, which is consis-
tent with an absence of pairing. However, we note that due to
the discreteness of the momentum lattice, our work does not
rule out, strictly speaking, a very weak pairing at ν = 1/2.

To ascertain how the CF BCS wave function compares with
the MR wave function, we compute the overlap of the CF
BCS wave function with the MR wave function for different
values of the variational parameter δkF for N = 12, 16 parti-
cles. The overlaps are shown in Fig. 3, which also displays
the overlap of the CF-BCS state with the CFFS. [The overlaps
are calculated for wave functions within the same Haldane
pseudomomentum sector (K1, K2).] The overlaps between dif-
ferent trial wave functions, as shown in Fig. 3, are obtained

using the Monte Carlo algorithm. In the CF-BCS wave func-
tion, the momentum cutoff kcutoff is chosen, for each value of
δkF , so as to minimize the energy in the second LL. When
δkF → 0, the overlap between the CF BCS wave function and
CFFS is 1, as expected. The CF BCS wave function has the
highest overlap of ∼0.94 (∼0.88) with the MR state for δkF ≈
0.7 (Fig. 4) for N = 12 (N = 16) particles. We also obtain
the overlap of the CF-BCS state with the exact LLL, SLL
and MR state as shown in Fig. 4. The method used to obtain

FIG. 2. The Coulomb energy per particle for (a) ν = 1/2, (b) ν =
5/2 as a function of the parameter δkF for different system sizes.
For each value of δkF , minimum energy is obtained by varying the
momentum cutoff. The energies are quoted in units of e2/ε&; for ν =
5/2, the energies are plotted relative to the CFFS energy. At ν = 1/2
the CFFS has the lowest energy for all δkF (for ν = 1/2, the error
bars have been omitted, which are on the order of 0.00001).
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Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-
Abelian braid statistics and topological quantum computation. We construct a p-wave paired Bardeen-Cooper-
Schrieffer (BCS) wave function for composite fermions in the torus geometry, which is a convenient geometry
for formulating momentum space pairing as well as for revealing the underlying composite-fermion Fermi sea.
Following the standard BCS approach, we minimize the Coulomb interaction energy at half filling in the lowest
and the second Landau levels, which correspond to filling factors ν = 1/2 and ν = 5/2 in GaAs quantum wells,
by optimizing two variational parameters that are analogous to the gap and the Debye cutoff energy of the BCS
theory. Our results show no evidence for pairing at ν = 1/2 but a clear evidence for pairing at ν = 5/2. To
a good approximation, the highest overlap between the exact Coulomb ground state at ν = 5/2 and the BCS
state is obtained for parameters that minimize the energy of the latter, thereby providing support for the physics
of composite-fermion pairing as the mechanism for the 5/2 fractional quantum Hall effect. We discuss the
issue of modular covariance of the composite-fermion BCS wave function, and calculate its Hall viscosity and
pair correlation function. By similar methods, we look for but do not find an instability to s-wave pairing for
a spin-singlet composite-fermion Fermi sea at half-filled lowest Landau level in a system where the Zeeman
splitting has been set to zero.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] has proved
a treasure trove of exotic emergent phenomena. A striking
example is the FQHE at filling factor ν = 5/2 [2,3], which
corresponds to half filled second Landau level (LL) in GaAs
quantum well systems. The most promising theoretical ex-
planation of this state [4,5] passes through a succession of
remarkable emergences: First is the emergence of compos-
ite fermions (CFs), namely, electrons carrying two quantized
vortices, which arise as a result of the repulsive interaction
between electrons [6–8]. Composite fermions experience no
effective magnetic field at half filling and attempt to form a
CF Fermi sea (CFFS), in analogy to the CFFS at ν = 1/2
in the lowest LL (LLL) [9–15]. The CFFS in the second LL
(SLL), however, is unstable to a topological p-wave pairing
of fully spin-polarized composite fermions, which opens a
gap and thus produces a FQHE. Furthermore, this paired
state is predicted to give birth to its own new emergent
particles, namely, Majorana particles obeying non-Abelian
braiding statistics [4,5]. These are interesting in their own
right and have also generated exciting proposals for topo-
logical quantum computation [16]. The past three decades
have seen an intense theoretical and experimental investiga-
tion of the “5/2 state,” which has lent nontrivial support to
certain aspects of the above-outlined physical mechanism for
the 5/2 FQHE. Moore and Read (MR) proposed an ansatz
wave function for the paired CF state [4], which has a lower
energy than the CFFS [17] and a significant overlap with the
exact Coulomb ground state for small systems [18]. Further-
more, numerical calculations indicate that the CFFS in the

second Landau level (LL) is unstable to Cooper pairing [19].
More recently, it has been shown [20] that a wave function
belonging to the parton class [21] also describes topologi-
cal superconductivity of composite fermions and provides a
comparably decent quantitative account of the exact Coulomb
state. Experimentally, convincing evidence exists that the 5/2
state in the SLL is fully spin polarized [22–25], which is a
necessary condition for topological p-wave superconductiv-
ity. The appearance of a CFFS at ν = 5/2 at either elevated
temperatures [26] or at nearby filling factors [25] supports
the notion that the 5/2 state arises from an instability of the
CFFS. Furthermore, the thermal Hall conductance of the 5/2
state has been found to be half quantized [27], as expected
from topological superconductivity, although its value is in-
consistent with the expectation from the MR state or its hole
conjugate.

Even though the MR wave function can be readily seen
to describe pairing of composite fermions, it is not expressed
in the standard Bardeen-Cooper-Schrieffer (BCS) form. There
are several motivations to construct a CF-BCS wave function.
For one thing, the MR (or the parton) wave function does not
contain any variational parameters that would allow one to
optimize the pair wave function. (The absence of variational
parameters is a rather ubiquitous feature of the CF theory,
but often, especially in the LLL, the parameter-free wave
functions turn out to be such accurate representations of the
Coulomb ground states that the lack of variational parameters
is seen as a virtue rather than a shortcoming.) Second, a BCS
wave function should clarify how the paired state evolves out
of the CFFS. Finally, the BCS framework can in principle be
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We report an experimental investigation of the fractional quantum Hall effect (FQHE) at the even-denominator
Landau-level filling factor ν = 1/2 in very-high-quality wide GaAs quantum wells and at very high magnetic
fields up to 45 T. The quasi-two-dimensional electron systems we study are confined to GaAs quantum wells with
widths W ranging from 41 to 96 nm and have variable densities in the range of !4 × 1011 to !4 × 1010 cm−2.
We present several experimental phase diagrams for the stability of the ν = 1/2 FQHE in these quantum wells.
In general, for a given W , the 1/2 FQHE is stable in a limited range of intermediate densities where it has a
bilayerlike charge distribution; it makes a transition to a compressible phase at low densities and to an insulating
phase at high densities. The densities at which the ν = 1/2 FQHE is stable are larger for narrower quantum wells.
Moreover, even a slight charge distribution asymmetry destabilizes the ν = 1/2 FQHE and turns the electron
system into a compressible state. We also present a plot of the symmetric-to-antisymmetric subband separation
("SAS), which characterizes the interlayer tunneling, vs density for various W . This plot reveals that "SAS at
the boundary between the compressible and FQHE phases increases linearly with density for all the samples.
There is no theoretical explanation for such a simple dependence. Finally, we summarize the experimental data
in a diagram that takes into account the relative strengths of the interlayer and intralayer Coulomb interactions
and "SAS. We conclude that consistent with the conclusions of some of the previous studies, the ν = 1/2 FQHE
observed in wide GaAs quantum wells with symmetric charge distribution is stabilized by a delicate balance
between the interlayer and intralayer interactions and is very likely described by a two-component (#331) state.

DOI: 10.1103/PhysRevB.88.245413 PACS number(s): 73.21.Fg, 73.43.Qt

I. INTRODUCTION

The fractional quantum Hall effect (FQHE)1 is predomi-
nantly seen in high-quality two-dimensional (2D) electron sys-
tems in the lowest (N = 0) Landau level at odd-denominator
fillings ν.2 In the first, excited (N = 1) Landau level, a
FQHE exists at the even-denominator filling ν = 5/2.3,4

This enigmatic FQHE has become the focus of considerable
theoretical and experimental attention, partly because of its
potential application in topological quantum computing.5

Despite numerous experimental efforts during the past two
decades, however, a thorough understanding of its origin
remains elusive. In particular, it is yet unknown whether or
not the spin degree of freedom is necessary to stabilize this
state. If yes, then the 5/2 FQHE state could be described by
a two-component, Halperin-Laughlin (#331) wave function.6

But if the 5/2 FQHE is stable in a fully spin-polarized 2D
electron system, then it is likely to be the one-component,
Moore-Read (Pfaffian) state.7 The latter is of enormous interest
as it is expected to obey non-Abelian statistics and have use in
topological quantum computing.5

The possibility of an even-denominator FQHE in the lowest
Landau level, e.g., at ν = 1/2, has been theoretically discussed
in numerous publications.6–21 Experimentally, FQHE states
at ν = 1/2 have been seen in electron systems confined
to either double22 or wide23–32 GaAs quantum well (QW)
systems; ν = 1/2 FQHE was also reported very recently in
a bilayer graphene system.33 In wide GaAs QWs, the FQHE
has also been seen at other even-denominator fillings, namely,
at ν = 3/2 (Ref. 26) and at ν = 1/4.30–32 In a double QW
with negligible interlayer tunneling but comparable interlayer
and intralayer Coulomb interactions, it is generally accepted
that the ν = 1/2 FQHE is stabilized by the additional (layer)

degree of freedom and is described by the two-component,
#331 state;8–12,14–21 in this case, the components are the layer
indices. However, the situation is more subtle for the case of
electrons in a single, wide QW where the electron-electron
repulsion lifts the potential energy near the well center and
creates an effective barrier.23–32,34,35 Although the system
can have a “bilayerlike” charge distribution at sufficiently
high densities, the interlayer tunneling, quantified by the
symmetric-to-antisymmetric subband separation ("SAS), can
be substantial. Moreover, in a QW with fixed well width,
the magnitude of "SAS can be tuned from small to large
values by decreasing the electron density in the QW while
keeping the total charge distribution symmetric (“balanced”).
When "SAS is negligible compared to the intralayer Coulomb
energy (e2/4πεlB), then, similar to the double-QW system,
#331 is the likely ground state if a ν = 1/2 FQHE is observed
(lB =

√
h̄/eB is the magnetic length and ε is the dielectric

constant). If "SAS is a significant fraction of e2/4πεlB ,
however, then it is likely that the ν = 1/2 FQHE state is a
one-component, Pfaffian state.13

Here we present results of our extensive experimental study
of the ν = 1/2 FQHE in very-high-quality, wide GaAs QWs
with well widths (W ) ranging from 41 to 96 nm and tunable
densities (n) in the range of !4 × 1011 to !4 × 1010 cm−2. Our
data, taken at low temperatures and very high perpendicular
magnetic fields (B up to 45 T), allow us to determine the most
comprehensive set of experimental conditions for the stability
of the ν = 1/2 FQHE in symmetric, wide GaAs QWs. We
present our data in several experimental phase diagrams, in-
cluding a d/lB vs"SAS/(e2/4πεlB) diagram; d/lB is the ratio
of the interlayer distance (d) and the magnetic length, and is a
measure of the relative strengths of the intralayer (e2/4πεlB)
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with symmetric charge distributions confined to wide GaAs QWs.
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are given (in units of nm) next to each set of data points, and
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the QW is symmetric (δn/n = 0). It becomes weak when
δn/n = 0.017 and is completely destroyed when δn/n =
0.034. This evolution is also very similar to what is observed
in electron systems confined to wider GaAs QWs.25–29,31 It
shows that even in relatively narrow QWs, the ν = 1/2 FQHE
is destabilized by a slight asymmetry in the charge distribution.

V. PHASE DIAGRAMS FOR THE STABILITY
OF ν = 1/2 FQHE

We have made measurements similar to those shown in
Figs. 2 and 3 for several samples with different QW widths,
and summarize the results in various “phase diagrams” shown
in Figs. 5–7. In all these figures, the charge distribution in
the wide QW is symmetric and the filled symbols indicate
that the ν = 1/2 FQHE is stable. The size of the filled
symbols for data from some representative QW widths (W =
45, 48, 56, and 77 nm) gives an approximate indication of
the strength of the FQHE as deduced, e.g., from the depth
of the ν = 1/2 Rxx minimum or from the measured energy
gaps.25,26 The open symbols in Figs. 5–7 denote the absence of
a ν = 1/2 FQHE. In all the samples, the trend is the same: The

245413-4

PHASE DIAGRAMS FOR THE STABILITY OF THE . . . PHYSICAL REVIEW B 88, 245413 (2013)

40

60

80

100

W
 (

n
m

)

0 1 2 3 4

n (1011 cm-2)

Luhman ’08

Suen ’92 - ’94

Our data

Insulating

FQHE

Compressible

Bν = 1/2
 (T)

0 10 20 30

FIG. 6. (Color online) The well width (W ) vs density (n) phase
diagram for the state of the electron system at ν = 1/2 in symmetric,
wide GaAs QWs. The symbols have the same meaning as in Fig. 5.

ν = 1/2 FQHE is seen in an intermediate-density range which
depends on the QW width, but turns into a compressible state
when the density is sufficiently lowered. In Figs. 5–7, we mark
the approximate boundary between the FQHE and the com-
pressible state with a dashed curve. This boundary is a main
focus of our work presented here. At sufficiently high densities,
the electron system turns into an insulating phase whose char-
acteristics suggest the formation of a pinned bilayer Wigner
crystal.27–29 We have indicated the boundary between the
FQHE and the insulating phase with a dotted curve in Figs. 5–7.
This boundary and the properties of the insulating phase are
interesting in their own right, but are beyond the scope of our
study. We note, however, that this boundary is difficult to deter-
mine in narrower QWs because of the very high densities, and
hence very high magnetic fields, that are required for its access.

Before discussing these phase diagrams, we would like to
highlight some additional information that Fig. 5 provides: For
a given well width W , "SAS decreases with increasing n, and
this dependence allows us to determine reasonably precise val-
ues for W . This is important because, as stated in Sec. II, many
of our samples were not rotated during the molecular-beam
epitaxial growth and W is not precisely known. To determine
W , we performed self-consistent (Hartree) calculations of
the charge distribution and potential, and hence "SAS, while
keeping W as a fitting parameter. Examples of the results of
such calculations are shown by two thin, solid red lines in Fig. 5
for W = 48.1 and 48.8 nm. It is clear that the measured data
points for the sample whose W we quote as 48 nm fall between
these two lines. Using a similar procedure, we determined W
for all other samples, except for the sample of Ref. 30 (green
circles in Fig. 5). For this sample, a W = 50 nm was quoted in
Ref. 30, but no measurements of"SAS were reported. We thus
used W = 50 nm and in Fig. 5 we plot our calculated "SAS
for the two densities reported in Ref. 30. We would like to
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emphasize that for consistency in our presentation, we used the
same calculations to determineW for the older samples of Suen
et al.23–26 (black data points in Fig. 5). We have found that
there is a small discrepancy between W determined from our
fits and those quoted previously. In particular, we find W = 57,
67, and 70 nm, while in Refs. 23–26, the quoted values are 60,
68, and 71 nm, respectively. These discrepancies mainly stem
from the differences in the self-consistent calculations and the
band parameters used. Given the accuracies of the measured
"SAS and also the self-consistent calculations, we estimate the
overall absolute accuracy of the quoted W to be about ±5%.
Their relative accuracy, however, is better than about ±2%.
Our quoted W also agree with the nominal QW widths based
on the epitaxial growth rates to within about ±10%. Returning
to the phase diagrams in Figs. 5–7, each provides a different
perspective on the stability of the ν = 1/2 FQHE in wide
GaAs QWs. Figure 5 is rather unique in that the parameters
for both axes, "SAS and density, are experimentally measured
quantities. The plot clearly demonstrates that the ν = 1/2
FQHE is only stable in a range of intermediate densities which
depends on the QW width. More remarkably, it reveals that
the boundary between the FQHE and compressible ground
states (dashed line in Fig. 5) appears to be well described by
essentially a straight line. We are not aware of any theoretical
calculations which predict such a simple (linear) boundary for
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The Halperin-Lee-Read Fermi sea of composite fermions at half-filled lowest Landau level is the realization
of a fascinating metallic phase that is a strongly correlated “non-Fermi liquid” from the electrons’ perspective.
Remarkably, experiments have found that, as the width of the quantum well is increased, this state makes a
transition into a fractional quantum Hall state, the origin of which has remained an important puzzle since
its discovery more than three decades ago. We perform detailed and accurate quantitative calculations using a
systematic variational framework for the pairing of composite fermions that closely mimics the Bardeen-Cooper-
Schrieffer theory of superconductivity. Our calculations show that, (i) as the quantum-well width is increased, the
single-component composite-fermion Fermi sea occupying the lowest symmetric subband of the quantum well
undergoes an instability into a single-component p-wave paired state of composite fermions; (ii) the theoretical
phase diagram in the quantum-well width–electron-density plane is in excellent agreement with experiments;
(iii) a sufficient amount of asymmetry in the charge distribution of the quantum well destroys the fractional
quantum Hall effect, as observed experimentally; and (iv) the two-component 331 state is energetically less
favorable than the single-component paired state. Evidence for fractional quantum Hall effect has been seen in
wide quantum wells also at quarter-filled lowest Landau level; here our calculations indicate an f -wave paired
state of composite fermions. We further investigate bosons in the lowest Landau level at filling factor equal to
one and show that a p-wave pairing instability of composite fermions, which are bosons carrying a single vortex,
occurs for the short range as well as the Coulomb interaction, in agreement with exact diagonalization studies.
The general consistency of the composite-fermion Bardeen-Cooper-Schrieffer approach with experiments lends
support to the notion of composite-fermion pairing as the primary mechanism of fractional quantum Hall effects
at even-denominator filling factors. Various experimental implications are mentioned.
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I. INTRODUCTION

The observation of a fractionally quantized Hall plateau
at RH = h/νe2 indicates the formation of an incompressible
state at filling fraction ν [1]. Beginning with ν = 1/3 [2],
a large array of fractions have been observed [3,4]. Most
of the observed fractions have the form ν = n/(2pn ± 1), n
and p integers, which are understood as the integer quantum
Hall effect of composite fermions (CFs), namely, electrons
bound to an even number (2p) of quantized vortices [5,6].
A CF is often pictured as the bound state of an electron and
2p flux quanta. These fractions terminate into compressible
states at even-denominator fractions such as ν = 1/2, which
are realizations of the Fermi seas of CFs [4,7–9]. The first
even-denominator fractional quantum Hall effect (FQHE) was
observed at ν = 5/2 in GaAs quantum wells [10]. Moore and
Read (MR) proposed a Pfaffian (Pf) state [11], which was sub-
sequently interpreted as representing a p-wave pairing of CFs
and associated with the ν = 5/2 FQHE [12–17]. This state is
akin to topological superconductivity of CFs and is therefore
believed to host quasiparticles obeying non-Abelian statistics
[11,14]. More recently, Balram, Barkeshli, and Rudner [18]
showed that the 5/2 state can also be successfully modeled in
terms of the so-called “2̄2̄111” parton wave function, which
belongs to the class of wave functions introduced in Ref. [19]
and shown in Ref. [20] to host non-Abelian excitations.

Möller and Simon [21] and Sharma et al. [22] treated the
CF pairing in the 5/2 state in an approach that closely mimics
the Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity and showed that the CF Fermi sea (CFFS) is unstable
to the pairing of CFs in the p-wave channel. As with the
BCS theory, this approach can be used to provide a unified
treatment of pairing instabilities in different relative angular-
momentum channels and to make predictions regarding the
optimal pairing channel. Also, because it contains the CFFS
as a limiting case, it can in principle be applied to situations
where a transition occurs, as a function of some parameter,
from the compressible CFFS state into an incompressible
paired FQHE state.

While a FQHE has been observed at ν = 5/2 in the sec-
ond Landau level (LL), the states at ν = 1/2 and ν = 1/4 in
narrow quantum wells (QWs) are well established to be com-
pressible Fermi seas of CFs carrying two and four vortices,
respectively [7–9,23–32], as expected for weakly interacting
CFs. Unexpectedly, Suen et al. observed FQHE at ν = 1/2
in wide QWs in 1992 [33,34], followed by systematic studies
demonstrating that a transition from the CFFS to a FQHE state
occurs as the width of the QW or the electron density is in-
creased [35,36]. A similar behavior was observed at ν = 1/4
by Shabani and collaborators [36–38]. One may ask why elec-
trons at ν = 1/2 and ν = 1/4 in the lowest LL (LLL) behave
differently from ν = 5/2 in the second LL in narrow QWs,
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Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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The general consistency of the composite-fermion Bardeen-Cooper-Schrieffer approach with experiments lends
support to the notion of composite-fermion pairing as the primary mechanism of fractional quantum Hall effects
at even-denominator filling factors. Various experimental implications are mentioned.

DOI: 10.1103/PhysRevB.109.035306

I. INTRODUCTION

The observation of a fractionally quantized Hall plateau
at RH = h/νe2 indicates the formation of an incompressible
state at filling fraction ν [1]. Beginning with ν = 1/3 [2],
a large array of fractions have been observed [3,4]. Most
of the observed fractions have the form ν = n/(2pn ± 1), n
and p integers, which are understood as the integer quantum
Hall effect of composite fermions (CFs), namely, electrons
bound to an even number (2p) of quantized vortices [5,6].
A CF is often pictured as the bound state of an electron and
2p flux quanta. These fractions terminate into compressible
states at even-denominator fractions such as ν = 1/2, which
are realizations of the Fermi seas of CFs [4,7–9]. The first
even-denominator fractional quantum Hall effect (FQHE) was
observed at ν = 5/2 in GaAs quantum wells [10]. Moore and
Read (MR) proposed a Pfaffian (Pf) state [11], which was sub-
sequently interpreted as representing a p-wave pairing of CFs
and associated with the ν = 5/2 FQHE [12–17]. This state is
akin to topological superconductivity of CFs and is therefore
believed to host quasiparticles obeying non-Abelian statistics
[11,14]. More recently, Balram, Barkeshli, and Rudner [18]
showed that the 5/2 state can also be successfully modeled in
terms of the so-called “2̄2̄111” parton wave function, which
belongs to the class of wave functions introduced in Ref. [19]
and shown in Ref. [20] to host non-Abelian excitations.

Möller and Simon [21] and Sharma et al. [22] treated the
CF pairing in the 5/2 state in an approach that closely mimics
the Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity and showed that the CF Fermi sea (CFFS) is unstable
to the pairing of CFs in the p-wave channel. As with the
BCS theory, this approach can be used to provide a unified
treatment of pairing instabilities in different relative angular-
momentum channels and to make predictions regarding the
optimal pairing channel. Also, because it contains the CFFS
as a limiting case, it can in principle be applied to situations
where a transition occurs, as a function of some parameter,
from the compressible CFFS state into an incompressible
paired FQHE state.

While a FQHE has been observed at ν = 5/2 in the sec-
ond Landau level (LL), the states at ν = 1/2 and ν = 1/4 in
narrow quantum wells (QWs) are well established to be com-
pressible Fermi seas of CFs carrying two and four vortices,
respectively [7–9,23–32], as expected for weakly interacting
CFs. Unexpectedly, Suen et al. observed FQHE at ν = 1/2
in wide QWs in 1992 [33,34], followed by systematic studies
demonstrating that a transition from the CFFS to a FQHE state
occurs as the width of the QW or the electron density is in-
creased [35,36]. A similar behavior was observed at ν = 1/4
by Shabani and collaborators [36–38]. One may ask why elec-
trons at ν = 1/2 and ν = 1/4 in the lowest LL (LLL) behave
differently from ν = 5/2 in the second LL in narrow QWs,
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Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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Correlated States of Electrons in Wide QuantumWells at Low Fillings:
The Role of Charge Distribution Symmetry
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Magnetotransport measurements on electrons confined to a 57-nm-wide, GaAs quantum well reveal

that the correlated electron states at low Landau level fillings (!) display a remarkable dependence on the

symmetry of the electron charge distribution. At a density of 1:93! 1011 cm"2, a developing fractional

quantum Hall state is observed at the even-denominator filling ! ¼ 1=4 when the distribution is

symmetric, but it quickly vanishes when the distribution is made asymmetric. At lower densities, as

we make the charge distribution asymmetric, we observe a rapid strengthening of the insulating phases

that surround the ! ¼ 1=5 fractional quantum Hall state.

DOI: 10.1103/PhysRevLett.103.046805 PACS numbers: 73.21.Fg, 73.43.Qt

Low disorder two-dimensional (2D) electron systems
(ESs) at high magnetic fields (B) have provided one of
the richest grounds to study the physics of interacting
charged particles [1]. Much of the work has been done in
2D ESs confined to modulation-doped GaAs=AlGaAs het-
erostructures where the electrons are separated from the
ionized impurities to minimize the scattering and disorder.
Recently, it has been recognized that 2D ESs of the highest
quality can be realized in modulation-doped wide quantum
well (WQW) GaAs samples of width $30 nm [2–5].
These samples have led to the observation of some of the
most spectacular fractional quantum Hall state (FQHS)
phenomena and reentrant insulating phases (IPs) at very
low Landau level (LL) filling factors (!) as well as in the
higher LLs (!> 2). Most recently, a new FQHS at the
even-denominator filling ! ¼ 1=4 was reported in a 50-
nm-wide GaAs WQW at very high B [6].

Here we present magnetotransport measurements on 2D
ESs confined to a 57-nm-wide GaAs WQW. We employ
back- and front-gate electrodes to control the electron
density n as well as the symmetry of the charge distribu-
tion. Our measurements reveal that this symmetry plays a
crucial role in stabilizing the correlated states of 2D elec-
trons at low !. We find that the recently observed FQHS at
! ¼ 1=4 quickly disappears when the charge distribution is
made asymmetric, suggesting that the origin of this state is
similar to the ! ¼ 1=2 FQHS observed in WQWs [7,8]. At
lower n, we observe a very strong FQHS at ! ¼ 1=5. As
commonly observed, the 1=5 state is flanked by IPs at
nearby !; these IPs are generally believed to be signatures
of pinned electron Wigner solid states. The IPs in our
WQW, however, have a surprisingly small resistivity,
only about 50 k!=h at a temperature (T) of 35 mK, and
a weak T dependence when the charge distribution is
symmetric. Remarkably, when we make the charge distri-
bution asymmetric, the resistivity of the IPs increases by
more than a factor of 20 at 35 mK and shows a strong T
dependence, while the resistivity at lower B barely
changes.

Our structure was grown by molecular beam epitaxy and
consists of a 57-nm-wide GaAs WQW bounded on each
side by an ’ 130-nm-thick undoped AlGaAs spacer layer.
The WQW is modulation doped symmetrically with Si "
layers. The mobility of our sample is # ¼ 2:5!
106 cm2=Vs at n ¼ 1:93! 1011 cm"2. A Ti=Au front
gate evaporated on the surface and a Ga back-side gate
were used to change the density of the 2D ES and control
the symmetry of its charge distribution. The longitudinal
and transverse resistivities $xx and $xy, respectively, were
measured in a van der Pauw square geometry. The data
were taken in a 3He=4He dilution refrigerator with a base T
of 35 mK in a 35 T magnet. For electrical measurements
we used the lock-in technique at a frequency of 5.66 Hz
with a sample excitation current of 1–10 nA.
When electrons at very low n are confined to a

modulation-doped WQW, they occupy the lowest electric
subband and have a single-layer-like (but rather thick in the
growth direction) charge distribution. As more electrons
are added to the well while keeping the distribution sym-
metric, their electrostatic repulsion forces them to pile up
near the well’s walls, and the charge distribution appears
increasingly bilayerlike [7–12]. At high n, the electrons
typically occupy the lowest two, symmetric and antisym-
metric, electric subbands which are separated in energy by
"SAS. An example of the charge distribution in such a
system is given in Fig. 1(b), where we show the results
of our self-consistent calculations for n ¼ 1:93!
1011 cm"2 electrons symmetrically distributed in our
57-nm-wide WQW. A crucial property of the ES in a
WQW is that both "SAS and d (the interlayer separation),
which characterize the coupling between the layers, de-
pend on n: Increasing n makes d larger and "SAS smaller
so that the system can essentially be tuned from a (thick)
single-layer-like ES at low n to a bilayer one by increasing
n. This evolution with density plays a decisive role in the
properties of the correlated electron states in this system
[8–11]. Equally important is the symmetry of the charge
distribution in the WQW. For a fixed n, as the distribution
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Pairing of composite fermions provides a possible mechanism for fractional quantum Hall effect at even
denominator fractions and is believed to serve as a platform for realizing quasiparticles with non-Abelian
braiding statistics. We present results from fixed-phase diffusion Monte Carlo calculations which predict
that substantial Landau level mixing can induce a pairing of composite fermions at filling factors ν ¼ 1=2
and ν ¼ 1=4 in the l ¼ −3 relative angular momentum channel, thereby destabilizing the composite-
fermion Fermi seas to produce non-Abelian fractional quantum Hall states.
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The recent observation by Wang et al. [1,2] of fractional
quantum Hall effect (FQHE) at filling factor ν ¼ 3=4 has
come as a surprise, because a priori one would have
expected a composite-fermion (CF) Fermi sea here [3–5],
where composite fermions are bound states of electrons and
an even number of quantized vortices [6–8]. The half-filled
Landau level (LL) state at ν ¼ 1=2 is known to be a Fermi
sea of composite fermions with two quantized vortices
bound to them. A Fermi sea of composite fermions carrying
four vortices has also been confirmed unambiguously at
ν ¼ 1=4 through commensurability oscillations [9]. This
implies, by particle-hole (PH) symmetry, a CF Fermi sea
(CFFS) also at ν ¼ 1 − 1=4 ¼ 3=4. Further support to a
CFFS at these fractions comes from the observation
of FQHE at several fractions belonging to the sequences
ν ¼ s=ð4s# 1Þ and ν ¼ 1 − s=ð4s# 1Þ [10–12], which
are integer quantum Hall states of composite fermions
carrying four vortices; these terminate into CFFSs at
ν ¼ 1=4 and ν ¼ 3=4 in the limit s → ∞.
FQHE at an even denominator fraction was first

observed at ν ¼ 5=2 [13,14], which corresponds to half
filling in the second LL. It has been proposed that FQHE
here arises from a pairing of composite fermions [15–18],
which is modeled in terms of the Moore-Read Pfaffian
(MR-Pf) wave function [15] representing a chiral p-wave
pairing of composite fermions. (Even denominator FQHE
in the N ¼ 1 LL of bilayer graphene is analogous to the
5=2 state in GaAs quantum wells (QWs) [19–22].) Why is
there a difference between the physics at half filling in the
lowest and the second LLs? For this purpose one must
consider the CF-CF interaction, which derives from the
electron-electron interaction. Extensive comparisons
with exact diagonalization studies as well as experiments
have shown that the model of non-interacting composite

fermions is qualitatively valid when the short-range part of
the interelectron interaction is dominant, which is the case
in the lowest LL (LLL) [8]. The short range part of the
electron-electron interaction is weaker in the second LL (as
measured by the Haldane pseudopotentials [23]), rendering
the interaction between composite fermions slightly
attractive, and thereby causing a pairing instability of the
CFFS [24]. The excitations of this state are predicted, akin
to the Abrikosov vortices in a two-dimensional chiral
p-wave superconductor, to be realizations of particles
obeying non-Abelian braid statistics [15,18,25–27].
What can weaken the short range part of the interelectron

interaction in the LLL? One possibility is finite QW width.
There is indeed evidence for FQHE at ν ¼ 1=4 in very wide
QWs [28–31]. Ref. [32] has proposed that the modification
of the interaction due to QW width makes the CFFS
unstable to an f-wave pairing. However, the 3=4 FQHE
has been observed in rather narrow QWs (width of only
20 nm [1]), which sit comfortably in the CFFS region of the
phase diagram evaluated in Ref. [32].
With the QW width ruled out as a relevant factor, one is

left with LL mixing (LLM) as the possible cause for FQHE
at ν ¼ 3=4. The FQHE at ν ¼ 3=4 has been observed in
hole-type samples [1], which, because of the larger hole
mass, and hence smaller cyclotron energy, have much
stronger LLM than electron-type samples. Indeed, the LLM
parameter is κ ≃ 10 and 14 for the two samples of Ref. [1],
where κ ¼ ðe2=ϵlÞ=ðℏωcÞ is the ratio of the Coulomb
energy to the cyclotron energy (here ϵ is the dielectric
constant of the semiconductor, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the mag-

netic length at magnetic field B, and ℏωc ¼ ℏeB=mbc is
the cyclotron energy of particles with band mass mb).
It is clear that LLM will screen the short range part of the

interelectron interaction. Can it induce pairing of composite
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This state has a very high energy at small κ (as is the case
for all states that are not LLL projected), but its energy
comes down rapidly with LLM. As shown in the
Supplemental Material [75], even at large LLM, the
pair-correlation function of the l ¼ −3 paired states show
oscillations that decay with distance and converge to the
density, as anticipated for gapped liquid states [61,99].

As mentioned earlier, LLM weakens the short-distance
repulsion between the electrons and may thus induce a
weak residual attractive interaction between CFs leading to
their pairing. We do not have a simple qualitative argument
for why pairing in the l ¼ −3 channel is preferred over
other pairing channels. Only detailed calculations, like the
ones presented here, can help identify the optimal pairing
channel, as is also the case for the extensively studied CF
pairing at ν ¼ 5=2 (see Supplemental Material for further
discussion [75]); of course, the decisive verification will
come only from experiments.

The results are sensitive to the trial wave function used to
fix the phase even within the same topological sector. For
example, the energies starting from the projected and
unprojected 22111 or CFFS states are significantly differ-
ent for small κ, although they tend to be similar for large κ.
That implies that the precise value of κ where the
phase transition takes place from the CFFS to the paired
state is only approximate. Finite width corrections are also
likely to affect the transition. These points notwithstanding,
our calculations make what we believe to be a plausible
case that a transition will take place as a function of κ
into a paired state. We note here that FQHE at ν ¼ 1=2
has been observed in wide QWs [31,100–104]; some
calculations have suggested a two-component Abelian
Halperin-331 state [105–107] while others the MR-Pf or
the APf [108,109]. In contrast, for our current problem
where we are considering the role of LLM at zero width, the
MR-Pf (Pf1) is not competitive for any κ.
The topological properties of ΨPf−3 , which is in the

same phase as the APf, have been enumerated in earlier
articles [49,50]. All candidate states support quasiparticles
with fractional charge e=4p. The APf state supports an
upstream neutral mode, which is experimentally measur-
able [110]; this can distinguish it from the MR-Pf and
22 12pþ1 states (with the caveat that edge reconstruction
can produce upstream neutral modes in these states as
well). A decisive measurement would be the thermal Hall
conductance [111], which is given by c½π2k2B=ð3hÞ&T,
where the chiral central charge is c ¼ 1þ l=2 for the state
with CF pairing in the relative angular momentum l
channel.
Unfortunately, the above calculation cannot be per-

formed directly at ν ¼ 3=4, because the hole conjugates
of the unprojected wave functions are not defined, and even
for the LLL projected states the hole conjugates can be
constructed only for very small systems, as this requires
working with their explicit Fock space representations.
Nonetheless, our results support the idea that LLM is
responsible for a paired FQHE here. Reference [54] found
that even though the energies of the MR-Pf and APf wave
functions vary substantially with κ, they remain surpris-
ingly close, and the same is true of the gaps of the 1=3 and
2=3 FQHE states. It is therefore a plausible first guess that
the 3=4 FQHE state stabilized in Ref. [1] may be in the
same universality class as the hole partner of the l ¼ −3
paired state.
We have not considered the possibility of the crystal

state in our calculations. Previous theoretical (see [46]
and references therein), as well as experimental studies (see
[112] and references therein), have indicated that sufficient
LLM can also stabilize the crystal phase. At what κ the
crystal phase appears at ν ¼ 1=4 and ν ¼ 1=2 is left for a
future study.
Before ending, we note that values of κ > 7 at ν ¼ 1=2

have been achieved in hole-type GaAs QWs as well as

FIG. 2. This figure shows the thermodynamic energies as a
function of the LL mixing parameter κ when the phase sector is
fixed using various trial states shown on the figures. For small κ
the lowest energy is obtained in the CFFS phase sector, but for
large κ the state derived from the l ¼ −3 paired state wins at both
ν ¼ 1=2 and ν ¼ 1=4.
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quantum Hall effect (FQHE) at filling factor ν ¼ 3=4 has
come as a surprise, because a priori one would have
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where composite fermions are bound states of electrons and
an even number of quantized vortices [6–8]. The half-filled
Landau level (LL) state at ν ¼ 1=2 is known to be a Fermi
sea of composite fermions with two quantized vortices
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four vortices has also been confirmed unambiguously at
ν ¼ 1=4 through commensurability oscillations [9]. This
implies, by particle-hole (PH) symmetry, a CF Fermi sea
(CFFS) also at ν ¼ 1 − 1=4 ¼ 3=4. Further support to a
CFFS at these fractions comes from the observation
of FQHE at several fractions belonging to the sequences
ν ¼ s=ð4s# 1Þ and ν ¼ 1 − s=ð4s# 1Þ [10–12], which
are integer quantum Hall states of composite fermions
carrying four vortices; these terminate into CFFSs at
ν ¼ 1=4 and ν ¼ 3=4 in the limit s → ∞.

FQHE at an even denominator fraction was first
observed at ν ¼ 5=2 [13,14], which corresponds to half
filling in the second LL. It has been proposed that FQHE
here arises from a pairing of composite fermions [15–18],
which is modeled in terms of the Moore-Read Pfaffian
(MR-Pf) wave function [15] representing a chiral p-wave
pairing of composite fermions. (Even denominator FQHE
in the N ¼ 1 LL of bilayer graphene is analogous to the
5=2 state in GaAs quantum wells (QWs) [19–22].) Why is
there a difference between the physics at half filling in the
lowest and the second LLs? For this purpose one must
consider the CF-CF interaction, which derives from the
electron-electron interaction. Extensive comparisons
with exact diagonalization studies as well as experiments
have shown that the model of non-interacting composite

fermions is qualitatively valid when the short-range part of
the interelectron interaction is dominant, which is the case
in the lowest LL (LLL) [8]. The short range part of the
electron-electron interaction is weaker in the second LL (as
measured by the Haldane pseudopotentials [23]), rendering
the interaction between composite fermions slightly
attractive, and thereby causing a pairing instability of the
CFFS [24]. The excitations of this state are predicted, akin
to the Abrikosov vortices in a two-dimensional chiral
p-wave superconductor, to be realizations of particles
obeying non-Abelian braid statistics [15,18,25–27].
What can weaken the short range part of the interelectron

interaction in the LLL? One possibility is finite QW width.
There is indeed evidence for FQHE at ν ¼ 1=4 in very wide
QWs [28–31]. Ref. [32] has proposed that the modification
of the interaction due to QW width makes the CFFS
unstable to an f-wave pairing. However, the 3=4 FQHE
has been observed in rather narrow QWs (width of only
20 nm [1]), which sit comfortably in the CFFS region of the
phase diagram evaluated in Ref. [32].
With the QW width ruled out as a relevant factor, one is

left with LL mixing (LLM) as the possible cause for FQHE
at ν ¼ 3=4. The FQHE at ν ¼ 3=4 has been observed in
hole-type samples [1], which, because of the larger hole
mass, and hence smaller cyclotron energy, have much
stronger LLM than electron-type samples. Indeed, the LLM
parameter is κ ≃ 10 and 14 for the two samples of Ref. [1],
where κ ¼ ðe2=ϵlÞ=ðℏωcÞ is the ratio of the Coulomb
energy to the cyclotron energy (here ϵ is the dielectric
constant of the semiconductor, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the mag-

netic length at magnetic field B, and ℏωc ¼ ℏeB=mbc is
the cyclotron energy of particles with band mass mb).
It is clear that LLM will screen the short range part of the

interelectron interaction. Can it induce pairing of composite
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FIG. 1. (a) Schematics of the pairing mechanism for even-denominator FQHS at ⌫ = 1/4. The blue spheres represent holes, and
the green vertical arrows the magnetic field flux quanta. The curved short arrows in the right two panels represent magnetic
flux quanta attached to holes to form four-flux composite fermions (4CFs). If Landau level mixing is strong, 4CFs pair and
condense to form a FQHS at ⌫ = 1/4. (b) Longitudinal resistance Rxx vs. magnetic field B trace for a 2DHS, with hole
density p = 1.3 ⇥ 1011 cm�2 and QW width w = 20 nm, near ⌫ = 1/2 taken at T ' 20 mK with I = 20 nA. Inset shows the
self-consistently calculated hole charge distribution (red) and potential (black). (c) Rxx vs. B trace near ⌫ = 1/4, taken at
T ' 100 mK with I = 0.1 nA. Inset shows Rxx vs. B between ⌫ = 2/7 and 1/4 taken at T ' 137 mK with I = 50 nA.

flux CFs (2CFs) being the ground state when the low-
est LL is half-occupied [27]. We also observe several
even-denominator FQHSs, such as those at ⌫ = 3/4,
3/8, and 5/12, which are discussed elsewhere [21]. At
higher B, as shown in Fig. 1(c) and its inset, we mea-
sure Rxx at elevated temperatures (' 100 and 137 mK).
For 18 < B < 20.5 T, Rxx remains in the k⌦ range, and
we observe odd-denominator FQHSs at ⌫ = 2/7, 3/11,
4/15, and 5/19. These are the Jain-sequence states of 4-
flux CFs (4CFs) that follow ⌫ = n/(4n�1) [27], and their
presence, together with the higher-order FQHSs flanking
⌫ = 1/2, attests to the exceptionally high quality of the
2DHS.

In Fig. 1(c), when B exceeds 20.5 T, Rxx sharply in-
creases and attains values ' 40 M⌦, even at a relatively
high temperature of ' 100 mK. The 2DHS in fact be-
comes highly insulating in this field range, as we demon-
strate later in this Letter. Such B-induced insulating
phases have been previously reported in GaAs 2DESs at
⌫ . 1/5 [28–30] and in GaAs 2DHSs at ⌫ . 1/3 [31–33].
They are generally believed to signal the formation of
Wigner solids (WSs) pinned by the ubiquitous disorder
[31–34].

The highlight of our study is the observation, for the
first time, of a very deep and sharp Rxx minimum at

⌫ = 1/4, signaling a developing FQHS at this filling. The
fact that the Rxx minimum at ⌫ = 1/4 appears on top of
the insulating background suggests a close competition
between the ⌫ = 1/4 FQHS and WS states near ⌫ = 1/4.
This is reminiscent of the recent observation of a devel-
oping FQHS at ⌫ = 1/7 in ultra-high-mobility 2DESs,
also competing with surrounding WS states [35, 36].

In order to confirm that the Rxx minimum we observe
at ⌫ = 1/4 is intrinsic to ultra-high-quality 2DHSs, we
measured several samples from di↵erent wafers with var-
ious hole densities. In Figs. 2 and 3, we present data for
three samples with holes densities p = 4.1, 6.5, and 1.0,
and QW widths 35, 20, and 20 nm, respectively. Sim-
ilar behavior is observed in all three samples. On the
lower-field side of ⌫ = 1/4, we observe Rxx minima at
odd-denominator ⌫ = 2/7 and 3/11, and a minimum or
an inflection point at 4/15, signaling developing FQHSs
belonging to the ⌫ = n/(4n� 1) sequence; these are seen
more clearly in log scale plots of Figs. 2(b, d) and Fig.
3(a) inset. As we increase B and approach ⌫ = 1/4, Rxx

grows very rapidly, and the 2DHSs enters the insulating
phase. Remarkably, in all samples, a well-defined and
sharp Rxx minimum is seen at ⌫ = 1/4 superimposed on
the insulating background.

We also investigated the temperature dependence of

• Evidence for FQHE at  is seen in high quality hole-type 
samples with , riding on an insulating background.

ν = 1/4
κ = 3 − 6
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Single-component fractional quantum Hall states (FQHSs) at even-denominator filling factors may host
non-Abelian quasiparticles that are considered to be building blocks of topological quantum computers.
Such states, however, are rarely observed in the lowest-energy Landau level, namely at filling factors ν < 1.
Here, we report evidence for an even-denominator FQHS at ν ¼ 1=4 in ultra-high-quality two-dimensional
hole systems confined to modulation-doped GaAs quantum wells. We observe a deep minimum in the
longitudinal resistance at ν ¼ 1=4, superimposed on a highly insulating background, suggesting a close
competition between the ν ¼ 1=4 FQHS and the magnetic-field-induced, pinned Wigner solid states. Our
experimental observations are consistent with the very recent theoretical calculations that predict that
substantial Landau level mixing, caused by the large hole effective mass, can induce composite fermion
pairing and lead to a non-Abelian FQHS at ν ¼ 1=4. Our results demonstrate that Landau level mixing can
provide a very potent means for tuning the interaction between composite fermions and creating new non-
Abelian FQHSs.
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Even-denominator fractional quantum Hall states
(FQHSs) are fascinating condensed matter phases. The
best-known example is the even-denominator FQHS at
Landau level (LL) filling factor ν ¼ 5=2 observed in GaAs
two-dimensional electron systems (2DESs) when a first
excited (N ¼ 1) spin LL is half-occupied [1,2]. It is
generally believed to be a BCS-type, paired state of
flux-particle composite fermions (CFs) [3–6]. This state
may have non-Abelian quasiparticles as its excitations, and
be of potential use in fault-tolerant, topological quantum
computing [7–9].
The CF pairing that leads to the stability of the ν ¼ 5=2

FQHS is facilitated by the node in the in-plane wave
function of electrons in the N ¼ 1 LL as it allows them to
come closer to each other. Such pairing is much harder to
achieve in the ground state (N ¼ 0) LL, consistent with the
near absence of even-denominator FQHSs. Instead, the
ground state at ν ¼ 1=2 (and 1=4) is a compressible CF
Fermi sea, flanked by a plethora of odd-denominator
FQHSs at nearby fillings [10]. An exception is a 2DES
with bilayer charge distribution. A FQHS at ν ¼ 1=2 was
observed in 2DESs confined to wide GaAs quantum wells
(QWs) [11–14] and double QWs [15]. These were origi-
nally interpreted as a two-component, Abelian FQHS
described by the Halperin-Laughlin (ψ331) wave function
[16,17], with the layer or electric sub-band index playing
the role of an extra degree of freedom. Although the two-
component origin of the ν ¼ 1=2 FQHS is widely accepted
for the double QWs where interlayer tunneling is

negligible, recent experiments [18–20] and theory [21]
suggest that in wide QWs where interlayer tunneling is
significant, the ν ¼ 1=2 FQHS is likely a single-compo-
nent, non-Abelian state. In addition, another even-denom-
inator FQHS was reported in wide GaAs QWs at ν ¼ 1=4
[22,23], and theory suggests it is also likely a single-
component, non-Abelian state, topologically equivalent to
an f-wave paired state of CFs [24]. We emphasize that, for
both ν ¼ 1=2 and 1=4 FQHSs in wide QWs, the thick and
bilayerlike charge distribution is crucial as it leads to a
softening of the Coulomb repulsion and CF pairing.
Here, we report experimental evidence for a developing

FQHS at ν ¼ 1=4 in ultra-high-quality 2D hole systems
(2DHSs) confined to narrow GaAs QWs with single-layer
charge distributions.We attribute this surprising observation
to the much larger effective mass of GaAs 2D holes
(m" ≃ 0.5, in units of free electron mass) [25] compared
to electrons (m" ¼ 0.067), and the ensuing severe LL
mixing (LLM). LLM is often parametrized as the ratio of
the Coulomb energy to cyclotron energy, κ ¼ ðe2=4πϵlBÞ=
ðℏeB=m"Þ, and is proportional to m"B1=2, where lB ¼
ðℏ=eBÞ1=2 is the magnetic length. LLM can play a crucial
role in determining themany-body ground states in different
2D material systems, including semiconductor heterostruc-
tures [26,27] and atomically thin 2D materials (e.g., mono-
layer graphene [28]). For example, it can affect the
stabilization of possible non-Abelian FQHSs at ν ¼ 5=2
[26,27] and high-field Wigner crystal [29]. Most relevant to
our Letter, very recent theoretical calculations suggest that
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Even-denominator fractional quantum Hall states
(FQHSs) are fascinating condensed matter phases. The
best-known example is the even-denominator FQHS at
Landau level (LL) filling factor ν ¼ 5=2 observed in GaAs
two-dimensional electron systems (2DESs) when a first
excited (N ¼ 1) spin LL is half-occupied [1,2]. It is
generally believed to be a BCS-type, paired state of
flux-particle composite fermions (CFs) [3–6]. This state
may have non-Abelian quasiparticles as its excitations, and
be of potential use in fault-tolerant, topological quantum
computing [7–9].
The CF pairing that leads to the stability of the ν ¼ 5=2

FQHS is facilitated by the node in the in-plane wave
function of electrons in the N ¼ 1 LL as it allows them to
come closer to each other. Such pairing is much harder to
achieve in the ground state (N ¼ 0) LL, consistent with the
near absence of even-denominator FQHSs. Instead, the
ground state at ν ¼ 1=2 (and 1=4) is a compressible CF
Fermi sea, flanked by a plethora of odd-denominator
FQHSs at nearby fillings [10]. An exception is a 2DES
with bilayer charge distribution. A FQHS at ν ¼ 1=2 was
observed in 2DESs confined to wide GaAs quantum wells
(QWs) [11–14] and double QWs [15]. These were origi-
nally interpreted as a two-component, Abelian FQHS
described by the Halperin-Laughlin (ψ331) wave function
[16,17], with the layer or electric sub-band index playing
the role of an extra degree of freedom. Although the two-
component origin of the ν ¼ 1=2 FQHS is widely accepted
for the double QWs where interlayer tunneling is

negligible, recent experiments [18–20] and theory [21]
suggest that in wide QWs where interlayer tunneling is
significant, the ν ¼ 1=2 FQHS is likely a single-compo-
nent, non-Abelian state. In addition, another even-denom-
inator FQHS was reported in wide GaAs QWs at ν ¼ 1=4
[22,23], and theory suggests it is also likely a single-
component, non-Abelian state, topologically equivalent to
an f-wave paired state of CFs [24]. We emphasize that, for
both ν ¼ 1=2 and 1=4 FQHSs in wide QWs, the thick and
bilayerlike charge distribution is crucial as it leads to a
softening of the Coulomb repulsion and CF pairing.
Here, we report experimental evidence for a developing

FQHS at ν ¼ 1=4 in ultra-high-quality 2D hole systems
(2DHSs) confined to narrow GaAs QWs with single-layer
charge distributions.We attribute this surprising observation
to the much larger effective mass of GaAs 2D holes
(m" ≃ 0.5, in units of free electron mass) [25] compared
to electrons (m" ¼ 0.067), and the ensuing severe LL
mixing (LLM). LLM is often parametrized as the ratio of
the Coulomb energy to cyclotron energy, κ ¼ ðe2=4πϵlBÞ=
ðℏeB=m"Þ, and is proportional to m"B1=2, where lB ¼
ðℏ=eBÞ1=2 is the magnetic length. LLM can play a crucial
role in determining themany-body ground states in different
2D material systems, including semiconductor heterostruc-
tures [26,27] and atomically thin 2D materials (e.g., mono-
layer graphene [28]). For example, it can affect the
stabilization of possible non-Abelian FQHSs at ν ¼ 5=2
[26,27] and high-field Wigner crystal [29]. Most relevant to
our Letter, very recent theoretical calculations suggest that
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Next-generation even-denominator fractional quantum Hall
states of interacting composite fermions
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The discovery of the fractional quantumHall state (FQHS) in 1982 ushered a new era of
research in many-body condensed matter physics. Among the numerous FQHSs, those
observed at even-denominator Landau level filling factors are of particular interest
as they may host quasiparticles obeying non-Abelian statistics and be of potential
use in topological quantum computing. The even-denominator FQHSs, however,
are scarce and have been observed predominantly in low-disorder two-dimensional
(2D) systems when an excited electron Landau level is half filled. An example is the
well-studied FQHS at filling factor ⌫ = 5/2 which is believed to be a Bardeen-Cooper-
Schrieffer-type, paired state of flux-particle composite fermions (CFs). Here, we report
the observation of even-denominator FQHSs at ⌫ = 3/10, 3/8, and 3/4 in the lowest
Landau level of an ultrahigh-quality GaAs 2D hole system, evinced by deep minima
in longitudinal resistance and developing quantized Hall plateaus. Quite remarkably,
these states can be interpreted as even-denominator FQHSs of CFs, emerging from
pairing of higher-order CFs when a CF Landau level, rather than an electron or a hole
Landau level, is half-filled. Our results affirm enhanced interaction between CFs in a
hole system with significant Landau level mixing and, more generally, the pairing of
CFs as a valid mechanism for even-denominator FQHSs, and suggest the realization
of FQHSs with non-Abelian anyons.

even denominator | fractional quantum Hall e�ect | lowest Landau level | composite fermion pairing |
Landau level mixing

Electrons in flat bands have essentially no kinetic (Fermi) energy and therefore provide a
prime platform for exploring many-body physics and emergent interaction phenomena.
Nearly perfect flat bands with zero dispersion can be achieved via applying a strong,
perpendicular magnetic field (B) to a two-dimensional electron system (2DES), where
electrons occupy quantized Landau levels (LLs) (1–4). Over the past decades, electrons
(or holes) confined to GaAs heterostructures have been the system of choice to realize
this framework because of their extraordinary high purity and transport mobility (1–6).
Continuous improvements in the quality of GaAs 2DESs have facilitated the discovery
of many exotic interaction phenomena, such as odd- and even-denominator fractional
quantum Hall states (FQHSs) (1, 7), Wigner solids, and stripe/nematic and bubble
phases (2–4).

Among these phenomena, the FQHS, an incompressible liquid of electrons formed
when a rational fraction of a LL is occupied, has been an active topic of interest thanks
to its nontrivial topological properties. The vast majority of FQHSs are observed in the
lowest orbital LLs at odd-denominator fillings and can be explained by Laughlin’s wave
function (8) and Jain’s composite fermion (CF) model (9). By attaching an even number
(2m) of magnetic flux quanta to each electron to form a CF, the strongly interacting
electrons inB can be equivalently described as weakly interactingCFs in residualmagnetic
field B⇤ = B � B1/2m, where B1/2m is the magnetic field at filling factor ⌫ = 1/2m.
In this picture, CFs occupy effective LLs, termed Lambda levels (⇤Ls), formed by B⇤,
and FQHSs of electrons at ⌫ = j/(2mj ± 1) can be understood as the integer QHSs of
2m-flux CFs (2mCFs) at filling ⌫2m-CF = j, known as the Jain-sequence states (j is an
integer) (3, 4, 9).

While in the interpretation of the Jain-sequence states, CFs are viewed as noninteract-
ing quasiparticles, there is evidence that these emergent quasiparticles can indeed interact
and exhibit intriguing interaction phenomena of their own. Examples include FQHSs
at unconventional fillings (7, 10–13), Bloch ferromagnetism (14), Wigner crystallization
(15), and topological bubbles (16). In particular, CF–CF interaction can generate FQHSs
at unconventional fillings beyond the Jain-sequence states via different mechanisms.

Significance

In a large perpendicular magnetic
field, electrons confined in a
plane occupy quantized, (Landau)
energy levels. When a fraction of
the lowest-energy Landau level
(LLL) is occupied, electron–
electron Coulomb interaction
dominates over single-electron
kinetic energy, and fractional
quantum Hall states (FQHSs)
manifest themselves as the
many-body ground states.
Predominantly odd-denominator
FQHSs are observed in the LLL
and can be understood in a
single-particle picture using the
theory of noninteracting
electron-flux quasiparticles
(composite fermions). Here, we
report observation of FQHSs at
even-denominator fractions
(3/10, 3/8, and 3/4) in the LLL of
holes. An understanding of these
states necessitates accounting for
residual interaction between
composite fermions. Our results
provide insights into the
realization of FQHSs through
composite fermion interaction
and their pairing.
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ν = 5/2

ν = 3/8

(a)

(b)

(i) (ii) (iii)

(i) (ii) (iii) (iv)B

B

FIG. 1. Schematics of the pairing mechanism for even-denominator FQHSs at (a) ⌫ = 5/2, and (b) ⌫ = 3/8.
The small blue spheres represent electrons (or holes) whereas the grey and blue planes represent electron LLs and CF ⇤Ls,
respectively. The yellow vertical arrows represent the magnetic field experienced by electrons or CFs. The curved short arrows
represent magnetic flux quanta attached to electrons or holes to form CFs (blue spheres with curved arrows). The magenta
fluxes are felt by all the CFs while the green fluxes are only felt by the CFs in the topmost LL or ⇤L. On the right of each
panel, density of states for each LL or ⇤L is shown; the red dash-dotted line is the Fermi energy. At ⌫ = 5/2 (3/8), 2CFs
(4CFs) in the 1" LL (1 ⇤L) pair up and open a gap, leading to an incompressible ground state.

serve are particularly remarkable as they are formed in
the N = 0 (rather than N = 1) LL, and combine the key
features of the two types of unconventional FQHSs dis-
cussed above: a partially-filled CF ⇤L, and CF pairing.
We interpret these states as even-denominator FQHSs of
CFs emerging from pairing of CFs in the excited (N = 1)
CF ⇤L [Fig. 1(b)], analogous to the ⌫ = 5/2 FQHS.

Figure 2 highlights our main findings: We observe
even-denominator FQHSs in the lowest LL at ⌫ = 3/4,
3/8, 3/10, and an unusual odd-denominator FQHS at
⌫ = 4/11, evinced by deep Rxx minima. A weaker min-
imum is also seen at ⌫ = 5/12. The ⌫ = 3/4 FQHS
was also reported very recently in a record-high-mobility
2DHS [21]. Numerous high-order Jain-sequence states
are also observed near ⌫ = 1/2, at ⌫ = 1/3, 2/5, ...,
up to ⌫ = 14/29, and at ⌫ = 2/3, 3/5, ..., up to 15/29
(Fig. 2 and its inset), comparable to what has been seen
in the record-high-quality GaAs 2DESs [5]. These fea-
tures demonstrate the exceptionally high quality of our
2DHS sample. We note that, in contrast to the trace
between 7 and 16 T where Rxx remains . 3 k⌦, Rxx

on the flanks of ⌫ = 1/3 (between ⌫ = 1/3 and 3/8,
and 1/3 and 2/7) reaches very high values of the order
of ' 100 k⌦, at T ' 37 mK. We show traces taken at
three di↵erent temperatures, revealing an insulating be-
havior in these regions: As we increase T from 37 to 121
mK, Rxx values decreases by more than an order of mag-
nitude. Such reentrant insulating phases appearing be-
tween strong FQHSs have been reported in GaAs 2DESs
near ⌫ = 1/5 [22, 23], and are generally believed to be

Wigner solids pinned by the ubiquitous disorder [2, 24].
In GaAs 2DHSs, a similar reentrant behavior was seen
at higher fillings, near ⌫ = 1/3 [25, 26]. This is gener-
ally attributed to the larger e↵ective mass of 2D holes
(' 0.5 m0) compared to GaAs 2D electrons (0.067 m0),
and the ensuing severe LL mixing in 2DHSs which favors
the Wigner solid states as ground states at higher fillings
[27].

The most pronounced Rxx minima at ⌫ = 4/11 and
3/10 are observed at intermediate T ' 78 mK. They be-
come shallower at lower T ' 37 mK. This signals a close
competition between the FQHSs and Wigner solid states.
More specifically, the energies of the FQHS and Wigner
solid states are so close that the FQHS wins in a very nar-
row range of ⌫, but a minuscule density inhomogeneity
in the 2DHS can disturb the FQHS. This is reminiscent
of what was recently reported in an ultrahigh-mobility
2DES at very low ⌫ = 1/7 [28]. A complete set of our
temperature dependence data is presented in the Sup-
plementary Information. A quantitative measure of the
robustness of a FQHS is the size of its activation en-
ergy gap. However, Rxx minima at ⌫ = 3/8, 4/11 and
3/10 in our 2DHS are strongly a↵ected by the insulating
background on their flanks. Alternatively, we perform
a pseudogap analysis and estimate gaps of the order of
a few hundred mK for these FQHSs (Supplementary In-
formation). These gaps are somewhat larger than the
energy gap deduced for the ⌫ = 3/4 FQHS in a 2DHS
sample with slightly smaller density (' 20 mK) [21], but
we emphasize that there is a large uncertainty in all these
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FIG. 1. Schematics of the pairing mechanism for even-denominator FQHSs at (a) ⌫ = 5/2, and (b) ⌫ = 3/8.
The small blue spheres represent electrons (or holes) whereas the grey and blue planes represent electron LLs and CF ⇤Ls,
respectively. The yellow vertical arrows represent the magnetic field experienced by electrons or CFs. The curved short arrows
represent magnetic flux quanta attached to electrons or holes to form CFs (blue spheres with curved arrows). The magenta
fluxes are felt by all the CFs while the green fluxes are only felt by the CFs in the topmost LL or ⇤L. On the right of each
panel, density of states for each LL or ⇤L is shown; the red dash-dotted line is the Fermi energy. At ⌫ = 5/2 (3/8), 2CFs
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plementary Information. A quantitative measure of the
robustness of a FQHS is the size of its activation en-
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The discovery of the fractional quantumHall state (FQHS) in 1982 ushered a new era of
research in many-body condensed matter physics. Among the numerous FQHSs, those
observed at even-denominator Landau level filling factors are of particular interest
as they may host quasiparticles obeying non-Abelian statistics and be of potential
use in topological quantum computing. The even-denominator FQHSs, however,
are scarce and have been observed predominantly in low-disorder two-dimensional
(2D) systems when an excited electron Landau level is half filled. An example is the
well-studied FQHS at filling factor ⌫ = 5/2 which is believed to be a Bardeen-Cooper-
Schrieffer-type, paired state of flux-particle composite fermions (CFs). Here, we report
the observation of even-denominator FQHSs at ⌫ = 3/10, 3/8, and 3/4 in the lowest
Landau level of an ultrahigh-quality GaAs 2D hole system, evinced by deep minima
in longitudinal resistance and developing quantized Hall plateaus. Quite remarkably,
these states can be interpreted as even-denominator FQHSs of CFs, emerging from
pairing of higher-order CFs when a CF Landau level, rather than an electron or a hole
Landau level, is half-filled. Our results affirm enhanced interaction between CFs in a
hole system with significant Landau level mixing and, more generally, the pairing of
CFs as a valid mechanism for even-denominator FQHSs, and suggest the realization
of FQHSs with non-Abelian anyons.

even denominator | fractional quantum Hall e�ect | lowest Landau level | composite fermion pairing |
Landau level mixing

Electrons in flat bands have essentially no kinetic (Fermi) energy and therefore provide a
prime platform for exploring many-body physics and emergent interaction phenomena.
Nearly perfect flat bands with zero dispersion can be achieved via applying a strong,
perpendicular magnetic field (B) to a two-dimensional electron system (2DES), where
electrons occupy quantized Landau levels (LLs) (1–4). Over the past decades, electrons
(or holes) confined to GaAs heterostructures have been the system of choice to realize
this framework because of their extraordinary high purity and transport mobility (1–6).
Continuous improvements in the quality of GaAs 2DESs have facilitated the discovery
of many exotic interaction phenomena, such as odd- and even-denominator fractional
quantum Hall states (FQHSs) (1, 7), Wigner solids, and stripe/nematic and bubble
phases (2–4).

Among these phenomena, the FQHS, an incompressible liquid of electrons formed
when a rational fraction of a LL is occupied, has been an active topic of interest thanks
to its nontrivial topological properties. The vast majority of FQHSs are observed in the
lowest orbital LLs at odd-denominator fillings and can be explained by Laughlin’s wave
function (8) and Jain’s composite fermion (CF) model (9). By attaching an even number
(2m) of magnetic flux quanta to each electron to form a CF, the strongly interacting
electrons inB can be equivalently described as weakly interactingCFs in residualmagnetic
field B⇤ = B � B1/2m, where B1/2m is the magnetic field at filling factor ⌫ = 1/2m.
In this picture, CFs occupy effective LLs, termed Lambda levels (⇤Ls), formed by B⇤,
and FQHSs of electrons at ⌫ = j/(2mj ± 1) can be understood as the integer QHSs of
2m-flux CFs (2mCFs) at filling ⌫2m-CF = j, known as the Jain-sequence states (j is an
integer) (3, 4, 9).

While in the interpretation of the Jain-sequence states, CFs are viewed as noninteract-
ing quasiparticles, there is evidence that these emergent quasiparticles can indeed interact
and exhibit intriguing interaction phenomena of their own. Examples include FQHSs
at unconventional fillings (7, 10–13), Bloch ferromagnetism (14), Wigner crystallization
(15), and topological bubbles (16). In particular, CF–CF interaction can generate FQHSs
at unconventional fillings beyond the Jain-sequence states via different mechanisms.

Significance

In a large perpendicular magnetic
field, electrons confined in a
plane occupy quantized, (Landau)
energy levels. When a fraction of
the lowest-energy Landau level
(LLL) is occupied, electron–
electron Coulomb interaction
dominates over single-electron
kinetic energy, and fractional
quantum Hall states (FQHSs)
manifest themselves as the
many-body ground states.
Predominantly odd-denominator
FQHSs are observed in the LLL
and can be understood in a
single-particle picture using the
theory of noninteracting
electron-flux quasiparticles
(composite fermions). Here, we
report observation of FQHSs at
even-denominator fractions
(3/10, 3/8, and 3/4) in the LLL of
holes. An understanding of these
states necessitates accounting for
residual interaction between
composite fermions. Our results
provide insights into the
realization of FQHSs through
composite fermion interaction
and their pairing.
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