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The concept of emergent BCS regime

Paradigmatic models:
() Uniform electron gas

(i) Repulsive Hubbard model

The goal: To utilize Feynman diagrammatics (Diagrammatic Monte Carlo) to
bridge the emergent long-wave BCS physics with strongly correlated ultraviolet
microscopics.



Linear response of the normal state
to a pair-creating perturbation

Modify the Hamiltonian: H — H + (77;2 yy,+ H.C.)

AN

infinitesimally small

(infinitesimal) linear response: <l//11// 2> pair-creating perturbation

Diagrammatically:
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Singular response: eigenvector-eigenvalue problem

B I = G,G,m,,

Response diverges (i.e., the critical temperature is reached),
when the following eigenvalue becomes equal 1.

I — A X —e—

Corresponding eigenvector defines the pairing channel.



Emergent BCS regime: long-wave effective theory
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In this regime:
z(K
Green'’s function has a Fermi-liquid form G(k,w.) = - A( ) ~
(close to the Fermi surface): o, — V(K)o [k—k_ (k)]

The effective four-pole vertex T is small and
Independent of temperature and frequency.

The eigenvector is temperature and frequency independent.

Temperature dependence of /T Is essentially due to the Green'’s function factor:

MT) = |g|In(A/T) = T. = Ae VI8l lg] <1




Eigenvalue-eigenvector problem for the gap function A
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A crucial obstacle for the (otherwise straightforward) DiagMC.:
In the majority of interesting cases, the diagrammatic series for I"
Is well beyond the convergence radiusat T ~T_ .

How about extrapolating A(T) from T >T_?

Works with A(T) but not with A(T) !

(As we will see later.)



Implicit renormalization approach

A. Chubukov, N. Prokof'ev, and BS, Phys. Rev. B 100, 064513 (2019)



Renormalization of the interaction in the Cooper channel

r

[
T = |-r| + -r()_

\/\

excluding the low-energy part

Not doable because of the “curse of multivariableness.”

However, Z(T) can be extracted from a modified eigenvalue-eigenvector problem
based on bare 1.




A few preliminary steps

maltrix-vector notation:

— ~

AA = —AA, EEA(p,a))

Introduce low- and high-energy parts with respect to a certain characteristic energy scale QC ;

A = AD 4 A®@ AP (p,w)=0 at gs +w? > Qi low-energy part

A(z)(p,a)) =0 at fs +w’ < Qi high-energy part

A= AQD 4 A2 L ARD L A(2)

AL — _ AADAD) _ A1) A (2)
AA AA AT A

2(2) — AR (2 A(21) A (1 - - "
A AP = APIAE _ ACDAW (So far, it is just an identical rewriting.)



Implicit-renormalization formulation

Replace with:
AAD = _ AGDAD _ AR AAD = _ AWAO® _ AR
A — _ A@)A(2) _ ARDAWD A — _ AR)A(2) _ ACDH AW
A A =—AA AA A A7A AA

Let us see that A and (new) AW exactly correspond to the renormalized theory.

Substituting A® = _[f+ A(ZZ)]‘l ACYA® (implied by the second equation)
into the first equation, we get:

This is exactly the kernel
of the effective theory.

A(n) _ A(lz)[i‘ + A(ZZ)]—l A(21)

_—— A —



lllustrative simulation of the 3D
uniform electron gas
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FIG. 3: Temperature dependence of the eigenvalues

A(T) for RPA (red circles) and KO (black triangles)
vertex functions at r¢ = 2.0 and £ = 3. The linear fits of
the RPA (red dotted line) and KO (black dashed line)
data are almost identical. The extrapolated value of

T. = 2.71 x 1072°E is extremely small.

(KO stands for Kukkonen-Overhauser approximation.)



Conclusions |

A protocol for extrapolating numerical data towards TC from higher temperatures
—applicable to first-principle description of real metals, as well as strongly
Interacting models—has to adequately capture the physics of the emergent
weakly-interacting effective theory.

Implicit renormalization protocol provides a simple, efficient, and unbiased way of
solving the extrapolation problem. The scheme has a built-in tool of controlling
the systematic error of extrapolation—the only systematics of the otherwise
numerically exact method.

The implicit renormalization approach is perfectly compatible with the DiagMC.
One can solve the corresponding eigenvalue problem without invoking the matrix
inversion or even explicitly calculating the four-point vertex function T".

The implicit renormalization protocol also allows one to obtain the correct gap
function immediately below T_.



Despite ungquestionable success, the Implicit renormalization (IR) approach encounters
certain technical limitations and lacks a direct connection with what can be measured
experimentally. Technical limitations of IR are most pronounced in the vicinity of the
“guantum transition point” at which a given channel undergoes a transition from Cooper-

stable to Cooper-unstable regime.

Alternative approach: Trace the flow of the net linear response
rather than its singular part (if any)



Well-known result for the linear response in the (emergent) BCS regime:
xo(T)  1/In (T/T,) (T = T.+0) (1)
Good, but not enough,...

... as is clear from the following accurate formula—to be derived later :

() = <A (lgl <1, T.<T<A) 2
A T e In(A/T) BI=5 e @)

The numerator corresponds to the response of an ideal gas (up the the pre-refactor
¢ taking care of the UV-renormalization of the strength of pair-creating perturbation).

Within a large interval of temperatures where | g|In(A/T) < 1, expression (2) has
little to do with (1).




Derivation and further improvement



Back to the initial setup, but now solving for the total response

Modify the Hamiltonian: H — H + (77;2 yy,+ H.C.)

AN

infinitesimally small

(infinitesimal) linear response: <l//11// 2> pair-creating perturbation

Diagrammatically:
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In a direct analogy with the definition of A ,

A
—p = —_—  —
define R:
R

and get the “gap equation with the right-hand-side”

e
— T
e
dk
R+[FGG_R=1, [ET [
k pkpp P D L ; (272.)07

n

can be replaced
with unity (operator)




Rk + J kaGpG_pRp —_ 1 = RO(T) — R() = Rk—>0

) 1+ g In(A/T)’

%o =J R.G.G_, « Ry(T) In(A/T)
k

R\(T) =
o) 1+ g'In(A'/T)

cIn(A/T)
1+ gIn(A/T)

Xo(T) = In(A'/AN)=1/g—-1/g’



Improved response function Ry(7") vs standard y,(7")

Definition: Ry= R,

cIn(A/T)
Xo(T) = (T.< T < A)
1 + gIn(A/T)

Ry(T) =

T+ InAIT) In(A'/A)=1/g—=1/¢ only two fitting parameters

T, = Ne' = Ae'® (8.8'<0)



lllustrative simulations of the uniform
electron gas in 2D
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FIG. 2.

Temperature evolution of the standard pair susceptibility xo and modified pair susceptibility Ro of the 2D uniform

electron gas in the s-channel for various values of rs. Red circles correspond to QTP rs = 0.6339, squares stand for stable
regimes (g > 0), and triangles are used for the unstable regimes (g < 0). The lines are the fits with the ansatz (2) for xo and
ansatz (3) for Ro. (a) Function xo(T"). For stable regimes, xo(T") saturates to a constant at T < T ~ Ae*/!9!; for unstable
regimes, xo(7) diverges at T = T; at the QTP, xo(7") diverges as T' — 0. (b) Inverse xo(T") rescaled with the ideal-gas

logarithmic factor. (c) Inverse Ry.



T
0.3287 0.4196 0.6339 | : :
0.4 0.6 0.8 1.0 1.2

FIG. 3. Superconducting phase diagram of the 2D UEG. For
each channel, the line starting at QTP shows the (would-be)
critical temperature. Critical values of r, for £ as large at 10
are presented in the inset.



Conclusions I

Pair susceptibility (linear response to a static spatially uniform pair-creating perturbation) of the normal
Fermi liquid features universal for all BCS superconductors temperature dependence:

() = < IA/T) (lg| <1, T.<T<A)
AN e In(A/T) IS5 L

This ansatz applies to both stable and unstable pairing channels. In both cases, the higher-
temperature part of the flow is the same, up to small corrections, and represents singular in the 7 — 0O
limit response of an ideal Fermi liquid.

A sharp difference between the stable and unstable cases develops only at exponentially low
temperatures: the unstable channel hits finite-temperature singularity at 7. while the stable channel
develops non-trivial correlations suppressing the zero-temperature singularity.

The T = 0 singularity survives only at the quantum transition points separating the stable and
unstable regimes.

Powerful tool for numeric simulations (with Drag MC) and quantum emulations (with ultracold atoms).

Might also be generalized to the proximity tunneling setups.



