Variational and Diffusion Monte Carlo
in the Continuum

Describe VMC and DMC

Trial functions

Application to the homogeneous electron gas

Lab will use QMCPACK to 1llustrate a simple calculation

David Ceperley lecturer
Jeremy McMinis Lab instructor

University of Illinois Urbana-Champaign
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Variational Monte Carlo

Historically first quantum simulation method
Slater-Jastrow trial function

Calculations of properties: n(k).

Examples: liquid helium and electron gas.
Wavefunctions for Quantum solids

Ewald Sums for Charged systems

WaveFunctions beyond Slater-Jastrow: back
flow and 3-body

Twist Averaged Boundary Conditions
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First Major QMC Calculation

PhD thesis of W. McMillan (1964) University of Illinois.
VMC calculation of ground state of liquid helium 4.
Applied MC techniques from classical liquid theory.
Ceperley, Chester and Kalos (1976) generalized to fermions.

PHYSICAL REVIZIW VOLUME 138, NUMBER 24 1y V2RIL 17835

Ground State of Liquid He't

W. L. McMiLLan®
Departmens of Physics, University of [limns, 'rbana, [Uinois
(Received 16 November 1964)

The properties of the ground state of liquid He# are studied using a variational wave function of the form
IT;¢;f(r;,). The Lennard-Jones 12-6 potential is used with parameters determined from the gas data by
deBoer and Michiels. The configuration space integrals are performed by a Monte Carlo technique for 32
and 108 atoms in a cube with periodic boundary conditions. With f(r) =exp[— (2.6 £,7)%], the ground-
state energy is found to be —0.78 X 107!% ergs/atom, which is 2077 above the experimental value. The liquid
structure factor and the two-particle correlation function are in reasonably good agreement with the x-ray
and neutron scattering experiments.

«Zero temperature (single state) method

*VMC can be generalized to finite temperature by using “trial” density
matrix instead of “trial” wavefunction.
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Notation

Individual coordinate of a particle t;
All 3N coordinates R= (r,,1,, .... 1y)
Total potential energy = V(R)

N
. . 2
Kinetic energy : —ﬂ, E Vlz where /1 = ;—m
i=1

Hamiltonian: H =T+V
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Liquid helium
the prototypic quantum flui
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r |
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« Interatomic potential is known more
accurately than any other atom because 2o
electronic excitations are so high.

v(r) (K)

* A helium atom is an elementary particle.
A weakly interacting hard sphere.
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FIG. 1. The semiempirical pair potential between two helium
atoms: solid line, Aziz et al. (1992); dashed line, Lennard-
Jones 6-12 potential with e = 10.22 K and o = 2.556 A.

eTwo isotopes:
¢ 3He (fermion: antisymmetric trial function, spin 1/2)
e 4He(boson: symmetric trial function, spin zero)

o 12 o 6
VLJ(I"):48 7 — 7
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Helium phase diagram

40 T

eBecause interaction is so weak
helium does not crystallize at low
temperatures. Quantum exchange
effects are important

eBoth isotopes are quantum fluids
and become superfluids below a [ |
critical temperature. R B

T (K)

eOne Of the goals Of Computer FIG. 2. The phase diagram of *He.
simulation is to understand these

states, and see how they differ from H = _2 V24 V(R)
classical liquids starting from non- l
relativistic Hamiltonian:

30

20

P (bar)

10
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Variational Monte Carlo (VMC)

Variational Principle. Given an
appropriate trial function: J dR <W ‘H ‘ W>
— Continuous v —
— Proper symmetry j dR <V/€”>
— Normalizable 5
— Finite variance 5 JdR <W ‘H ‘ l//>
Quantum chemistry uses a product of o =

single particle functions J dR <WW>

With MC we can use any “computable”
function.

> E,

—E‘f

— Sample R from [¥[? using MCMC. .
— Take average of local energy: E I (R)= R I:W (R)H W(R):I

— Optimize ¥ to get the best upper bound

Error in energy is 2™ order b, = <EL (R)>,,,2 2k
Better wavefunction, lower variance!

(non-classical) “zero variance” principle.
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Spin & real vs. complex

How do we treat spin in QMC?
For extended systems we use the S, representation.

We have a fixed number of up and down electrons and we
antisymmetrize among electrons with the same spin.

This leads to 2 Slater determinants.

For a given trial function, its real part is also a trial function (but it may
have different symmetries)

(eikr e ) or (cos(kr),sin(kr))

For the ground state, without magnetic fields or spin-orbit interaction,
we can always work with real functions.

However, it may be better to work with complex functions.

Ceperley VMC & DMC



Trial function for “He: “Jastrow  or pair product

 We want finite variance of the local

energy.
 Whenever 2 atoms get close together
1 1 _”(”zj)

wavefunction sh01.11d Vam.sh.. | w(R) = H e
» The pseudopotential u(r) is similar to i<

classical potential

_ 2

« Local energy has the form: k£, (R) = Z[v(rij) —24V u(rij)}

G 1s the pseudoforce: =/

G, =2 Vu(ry)
J

If v(r) diverges as r®» how should u(r)

-1 G}

diverge? Assume:

2
- er" = 2/1(0(mr_’"—1) for n>2
u(r)=r
Keep N-1 atoms fixed and let 1 atom n
approach another and analyze the 1O E —1
singular parts of the local energy.
Gives a condition on u at small r. - 1 ]e
For Lennard-Jones 6-12 potential, m\2A

Jastrow, u ~r -
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Fermions: antisymmetric trial function

At mean field level the
wavefunction is a Slater
determinant. Orbitals for
homogenous systems are a filled
set of plane waves.

We can compute this energy
analytically (HF).

To include correlation we
multiply by a pseudopotential. We
need MC to evaluate properties.

New feature: how to compute the
derivatives of a deteminant and
sample the determinant. Use
tricks from linear algebra.

Reduces complexity to O(N?).

Y (R)= Det{eik"r" n, (0'.

J

PBC: k-L=27n+{6}

)j

ik.r:

VY., (R)=Detie "' e ™

-Duy)

Slater-Jastrow trial function.

det (g (1)) = det(a, (r, ) X1 (1 1

1 ddet(M) —Tr{Ml E)ﬂ}
det(M)  da da

-1
ki
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VARIATIONAL MONTE CARLO CODE

call initstate (s_old) < Initialize the state
p old= psi2(s_old) Evaluate psi_trial
LOOP {
call sample (s old,s new,T_new,1) <€ Samplenew siate
p_ new= psi2 (s_new) Evaluate psi_trial
call sample (s_new,s old,T_old,0) <«—— Find transition prob.
A = (p_new/T_new)/(p_old/T_old) for going backward

if(A > rand () ) { N T~

s old=s new

p_old=p_nhew

naccept = naccept +1} _
call averages (s_old) «—}

Acceptance prob.

~ — Accept the move

Collect statistics

Ceperley VMC & DMC




Optlmlzatlon of trial function

I y(a)Hy(a)

7 | EV (a) J
Jly@f
] - DWR.GER,q)
w - 2 W(R ,a)

Try to optimize u(raj Ausing reweighting w(R ,a) = |l//(R’ a)|

(correlated sampling) L P(R)

— Sample R using P(R)=Y*(R,a,)
— Now find minima of the analytic
function E (a)

— Or minimize the variance (more stable |:Z wl.:|
N .

E(R,a)=y  (R,a)HY(R,a)

but wavefunctions less accurate).

 Statistical accuracy declines away from a,,. of 2 e
« New methods allow many more parameters

Ceperley VMC & DMC



“modern” optimization

With more computer time, we do a MC rw 1n both
R and a (parameter space).

Do usual VMC for a “block™ and collect statistics
on E, dE/da, d*E/(dada;).

Special estimators for these quantities.

Then make a change in a: a_.,=a_ + ¢ dE/da+...
[terate until convergence.

Lots more tricks to make 1t stable.

Can do hundreds of parameters.

Ceperley VMC & DMC



Scalar Properties, Static Correlations and
Order Parameters

What do we get out of a simulation? Energy by itself doesn’ t tell you

very much.

Other properties

do NOT have an upper bound property

Only first order in accuracy

EXAMPLES

Static properties: pressure, specific heat etc.
Density
Pair correlation in real space and fourier space.

Order parameters and broken symmetry: How to tell a liquid from a
solid

Specifically quantum: the momentum distribution

Ceperley VMC & DMC



Other quantum properties

* Kinetic energy ) Like properties from classical
* Potential energy simulations

 Pair correlation function > No upper bound property
 Structure function Only first order in accuracy

» Pressure (virial relation) D o

~ 08
3

g(
Te—.
3
1
p.r)/p

04 : ]0 ]
0.2 4
/ﬂ ]
[s] 1 '
1 2 3 4 5 L] 7 8
r (1) ) 1 I ] 1 1
0 1 2 3 ry 5
r(A)
° m 1 1 1 FiG. 7. The single-particle density matrix as a function of
MOmGIltu dlStrlbutlon separation. The dashed curve indicates the asymptotic limit for

large 7, p1(r)~po=0.11p.

— Non-classical showing effects of

bose or fermi statistics n(r,r')= J.dr2...drNy/*(r,rz...)w(r', vy...)
— Fourier transform is the single .
particle off-diagonal density matrix a4 (I’ ! v, yerr)
*  Compute with McMillan Method. B W(’"a 7, oot

* Condensate fraction ~10% Ceperley VMC & DMC



Momentum Distribution

e  Momentum distribution

— Classically momentum s S— ' " ]
distribution is always a | —
Gaussian 2 0sl "’\H_.

— Non-classical showing effects o~
of bose or fermi statistics - ° a'o e

— Fourter transform is the single
particle off-diagonal density

) 1 ]
matrix n(r,r) == [dry..dryr’ (ror,. (', 7s..0)
* Compute with McMillan Method. 4

v )
« For fermions we need to use the w(r'r,...)

determinant update formulas to find
the effect of the movement of 1
electron.

Ceperley VMC & DMC



Derivation of momentum formula

« Want probability that a given atom has momentum hk.

* Find wavefunction in momentum space by FT wrt all the coordinates
and integrating out all but one electron

2

Pr(k,,.k,) = ‘ j dR e 't hng(R)

n, = [dk,...dky Pr(k,ky...ky)

« Expanding out the square and performing the integrals we get.

n, = J' {‘;’3’3 3; exp(—ik(r —s))n(r,s) = J (j;;e”‘rn(r)

Where: n(r,s)= gjdrz...dr]vl//* (7o 1y )W (8,751 )

For a homogeneous system, n(r,s)=n(|r-s|)

Ceperley VMC & DMC



Standard model for
electrons in metals

Basis of DFT.

Characterized by 2
dimensionless
parameters:

— Density

— Temperature
r.=ala,
=¢"/Ta
What is energy?
When does i1t freeze?
What is spin
polarization?

What are properties?

I'<r, classical OCP
I' =175 classical melting

The electron gas

1077
E’ Polarizad uid?
&
-
% 10
c
c
L
3
Ly
b <
10"
Wigner cry=al
10°
10™
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Charged systems

How can we handle charged systems?

 Just treat like short-ranged potential: cutoff potential at r>L/2.
Problems:

— Effect of discontinuity never disappears: (1/r) (r?) gets bigger.

— Will violate Stillinger-Lovett conditions because Poisson equation
1s not satisfied

» Image potential solves this:
V= Zv(rr;+nl)
— But summation diverges. We need to resum. This gives the ewald
image potential.
— For one component system we have to add a background to make
it neutral.
— Even the trial function is long ranged and needs to be resummed.

Ceperley VMC & DMC



Ewald summation method

e Key 1dea 1s to split potential into k-space part and real-
space part. We can do since FT 1s linear.

V=" ¢@-r+nL)

1<j,L

V= z¢k (|,0k|2 —N) where p, =Zeikg”'
k i

and @ = éjdreik To(r)

Arre’
k2

For ¢(r)=¢’/r = @, =

« Bare potential converges slowly at large r (in r-space) and
at large k (in k-space)

Ceperley VMC & DMC



Classic Ewald

« Split up using Gaussian charge
distribution

() = erfc(kr)

decays fast at large r

—(k/2x)?

¢, =+ decays fast at large k

K= convergence parameter

« If we make it large enough we can
use the minimum 1mage potential in
r-space. Vo= 27

» Extra term for insulators: Wl 2e+1)Q

24,

Ceperley VMC & DMC



Jastrow factor for the e-gas

Look at local energy either in r space or k-space:

r-space: as 2 electrons get close gives cusp condition: du/dr|,=-1

k-space, charge-sloshing or plasmon modes.

V 1

/1;2 o< 52

Can combine 2 exact properties in the Gaskell form. Write E, in terms structure
factor making “random phase approximation.” (RPA).

2pu, =

2pu;, =—5+ \/ sl,g + ;‘2 S, =1deal structure factor

Optimization can hardly improve this form for the e-gas in either 2 or 3 dimensions.
RPA works better for trial function than for the energy.

NEED EWALD SUMS because potential trial function is long range, it also decays
as 1/r, but it 1s not a simple power.

o1 3D Long range properties
. B eGive rise to dielectric properties
lim__u(r)=3r"" 2D Prop
eEnergy is insensitive to u, at small k
log(r) 1D
C eThose modes converge t~1/k2

Ceperley VMC & DMC



Spline Jastrow factor

For the HEG, the most general Jastrow factor has the form:
u(;) =u (r)+ Zuke’%;
g

u, (ry=0 forr>L/2

u (r) must be continuous, with a continuous derivative.
We can impose the cusp condition at r=0, and BC at r=L/2.

It 1s a smooth function: represent it as piecewise cubic
polynomial 1n the region 0<r < L/2.

M “Knots” at b,. Total number of unknowns 1s 2M-1

Also u, k-space Jastrows. Do we use RPA values?

Ceperley VMC & DMC



Generalized Feynman-Kacs formula

gives relation between trial function and exact wavefunction!

average “‘population” starting from a single point R, after a
imaginary time “t”:
P(Ry:t) = [dR v(R) (R
0°°)— VAN €

V/(Ro)

expand the density matrix in terms of exact eigenstates

—jdzEL(t)
RO> ={{e?

—t(H-Ey)

i

P(Ry;t) = (R, e )

Ceperley VMC & DMC



Wavetunctions beyond Jastrow | smoothing

-1
Use method of residuals construct @ _,(R) = ¢ ( R)e_m’j" Hé,>
a sequence of increasingly better

trial wave functions. Justify from , i;kf *
the Importance sampled DMC. o =e
Zeroth order is Hartree-Fock E,=V(R)
wavefunction

_ 4, UR)
First order is Slater-Jastrow pair B = e

wavefunction (RPA for electrons E =U(R)- [V W(R)]2 n iE kj o (l'j —VjY(R))
J

gives an analytic formula)
Second order is 3-body backflow

wavefunction .

Three-body form is like a squared Y
force. It is a bosonic term that does o8 |
not change the nodes. “os |
04
eXp{Z [Z §ij(rij)(ri T rj)]z} 02 i
i r

0.0 .
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Backflow wave function

ik;r; ik X;
« Backflow means change the Det{e™' } = Detl{e "}

coordinates to quasi- coordinates.
X, =L+ znij(rij)(ri - rj)
J

* Leads to a much improved energy
and to improvement in nodal

surfaces. Couples nodal surfaces 3DEG
together.
1 O | v |}
Kwon PRB 58, 6800 (1998).
08 S 3 .
_06 | -
% (0]
g 04 - ‘ g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, & 7
0.2 _% 777777 Ao A i
.I OO PR YT YT W N WA WY W W [T VRN VUMY VAN VN N VU VN Y NN N S W W
th 00 50 100 150 200 250
I
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Dependence of energy on wavefunction
3d Electron fluid at a density r,=10
Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

Wavefunctions -0.107
— Slater-Jastrow (SJ) —_ ]
— three-body (3) -0.1075 7
— backflow (BF)

— fixed-node (FN) 0108 -

Energy <f [H| > converges to gro
state

Variance <f [H-E]? f> to zero.
Using 3B-BF gains a factor of 4.
Using DMC gains a factor of 4.

%B’

-0.1085 +

e

-0.109 |
0 0.05 0.1

Variance
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Twist averaged boundary conditions

@ = eikr
» In periodic boundary conditions (I
point), the wavefunction is KL =2xzn+ 6
periodic=» Large finite size effects

for metals because of shell effects. 1
* Fermi liquid theory can be used to oL
correct the properties. A
. : » k,
* In twist averaged BC we use an .
arbitrary phase as r =»r+L

» If one integrates over all phases the
momentum distribution changes from ¥(x + L) = e¥(x)
a lattice of k-vectors to a fermi sea.

 Smaller finite size effects

01055 & a0 _
—0.1060i PBC _ <
! .
Z 0.1065 TABC = .
m L \Z 2
5] E
_ ] q =
~0.1070[- b :
I ] | | | | | Ii
- .l Cer q
. 000

.000 0.005 0.010 0.015 0.020
-1



Twist averaged MC

Make twist vector dynamical by changing during the
random walk.

<0 <rm i=(1,2,3)

Within GCE, change the number of electrons
Within TA-VMC
— Initialize twist vector.

— Run usual VMC (with warmup)
— Resample twist angle within cube
— (iterate)

Or do 1n parallel.

Ceperley VMC & DMC



Grand Canonical Ensemble QMC

GCE at T=0K: choose N such that E(N)-uN i1s minimized.

According to Fermi liquid theory, interacting states are related to non-
interacting states and described by k.

Instead of N, we input the fermi wavevector(s) kg. Choose all states
with k < kg (assuming spherical symmetry)

N will depend on the twist angle = number of points inside a randomly

placed sphere. 3333333338333333331
.64 4

= ase )

- 2mr_. 6 So0 4
k=T it s

Lok 33 :

.64 4

oy <k 33 :

After we average over twist we get a sphere of filled states.

Is there a problem with Ewald sums as the number of electrons varies?
No! average density is exactly that of the background. We only work
with averaged quantities.

Ceperley VMC & DMC



Single particle size effects

Exact single particle properties with TA within HF

Implies momentum distribution is a continuous curve with a sharp

feature at k.

With PBC only 5 k points e e
for k<k; osf T[T
I \\\ ................ _
) 0.8 3 3 .

Holzmann et al. PRL 107,110402 (2011)

No size effect within single particle theory!

Kinetic energy will have much smaller size effects.
Ceperley VMC & DMC
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Potential energy

Write potential as integral over structure function:

y=JakTsw)  s0)=(p.p)=1+ (VD ()

Error comes from 2 effects.

— Approximating integral by sum

— Finite size effects in S(k) at a given k.
Within HF we get exact S(k) with TABC.
Discretization errors come only from non-analytic points of S(k).

2
SHF(k) :1__25q—q'+k
N 9.9

— the absence of the k=0 term in sum. We can put it in by hand since we know
the limit S(k) at small k (plasmon regime)

— Remaining size effects are smaller, coming from the non-analytic behavior of

Ceperley VMC & DMC



Brief History of Ferromagnetism
in electron gas

What is polarization state of fermi liquid at low density?
N.—N
‘: _ T 1

N+ N,

* Bloch 1929 got polarization from exchange interaction:
— 1,>54 3D
- r,>2.0 2D
e Stoner 1939: include electron screening: contact interaction
* Herring 1960
* Ceperley-Alder 1980 1, >20 1s partially polarized
* Young-Fisk experiment on doped CaB, 1999 r~25.
* Ortiz-Balone 1999 : ferromagnetism of e gas at r>20.
« Zongetal Redo QMC with backflow nodes and TABC.

Ceperley VMC & DMC



Polarization of 3DEG

We see second order partlaﬂy *Twist averaging makes calculation
polarized transition at r;=52 possible--much smaller size effects.
Is the Stoner model (replace Jastrow wavefunctions favor the

interaction with a contact potential)  ferromagnetic phase.
appropriate? Screening kills long

: ; *Backflow 3-body wavefunctions more
range iteraction.

: paramagnetic
Wigner Crystal at r =105
0.0BIIIIIIIIIIIIIII
> i
D:' -
s — 0.02 |
i ] S i
_ | Polarization i v -
0-5 1~ " . X 0.01 -
B | transition — o I
RN 5 . v i gm u
i : ] T
— | = Lo oo v b v b
_05 I_ 11 Illll L1 | 111 | | I | | 11 I— O 0-2 0.4 0.6 0.8 ].
40 o0 60 70 80 ; VMC & <

I"S



Phase Diagram

Partially polarized
phase at low density.

But at lower energy
and density than
before.

As accuracy gets
higher, polarized
phase shrinks

Real systems have
different units.

1028 electrons in metals .
degenerate Fermi liquid
1022 |- |
T
\CE)/ 1021 — ~
fey Ortiz /
c 1020 — // ® |
9 polarized fluid
o 1019 _\x _
A
b
O
L 1018 - —
v Wigner
1017 crystal classical _
plasma
1016 | / |
0.01 0.1 100 1000
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Summary of Variational (VMC)

1.E+01
Simple trial function

LE+00 {.
T
G
= 1.E-02 - -
= Better trial function
*1E03~

1LE-04 - applications

1.E'05 T I I I I T T

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

computer time (sec)
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Summary and problems with variational
methods

» Powerful method since you can

, , Optimization is time consuming
use any trial function

, _ * Energy is insensitive to order
* Scaling (computational effort parameter

vs. size) is almost classical « Non-energetic properties are less

» Learn directly about what accurate. O(1) vs. O(2) for energy.
works in wavefunctions « Difficult to find out how accurate
° NO Sign problem results are.

» Favors simple states over more
complicated states, e.g.

— Solid over liquid
— Polarized over unpolarized

What goes into the trial wave function comes out! “GIGO”

We need a more automatic method! Projector Monte Carlo

Ceperley VMC & DMC



Projector Monte Carlo

*Originally suggested by Fermi and implemented in 1950 by
Donsker and Kac for H atom.

Practical methods and application developed by Kalos:

PHYSICAL REVIEW A VOLUME 9, NUMBER 5§ MAY 1974

Helium at zero temperature with hard-sphere and other forces

M. H. Kalos*
Courant Institute of Mathematical Sciences, New Yark Untversity, New York, New York 10012

D. Levesque and L. Verlet N
Laboratoire de Physique Théorique et Hautes Energies, Orsay, France
(Received 22 August 1973)

Various theoretical and numerical problems relating to heliumlike systems in thelr ground
states are treated, New developments in the numerical solution of the Schrodinger equation
permit the solution of 256-body systems with hard-sphere forces. Using periodic boundary
conditions, fluid and crystal states can be described; results for the energy and radial-dis-
tribution functions are given. A new method of correcting for low=lying phonon excitations

Ceperley VMC & DMC



Diffusion Monte Carlo

How do we analyze (H_E, )
this operator?  ——— W(R,f)=¢ " TW(R,0)

— H¢0{ :Ea¢a

Expand into exact

eigenstates of H. w(R,0)= ZQZ(R) <¢a ‘1//(0)>

Then the evolution is . AE_F

simple in this basis. W(R,t) = Z%{(R)e HEambr) <¢a ‘W(O)>
st energy state M YR =g (R)e™ 7 (g [y(0))

that overlaps with the
initial state, usually
the ground state.

How to carry out on
the computer?

E, = E, = normalization fixed

Ceperley VMC & DMC



Monte Carlo process

e Now consider the variable “t” as a
continuous time (it is really
imaginary time).

e Take derivative with respect to time _aW(R’t) =(H-E,)W(R,t)

to get evolution. ot
e This is a diffusion + branching 5
process. _ 5
e Justify in terms of Trotter’s H = Z 2m_vi +V(R)
formula. l i 2
( aW(Rat) 2
Requires interpretation of the B — _Z _Vil//(Rﬂt)
. = ot =~ 2m,
wavefunction as a probability y i
density. (R,
- — =V (R)-E)y(R,1)
But is it? Only in the boson ground ~ ot

state. Otherwise there are nodes.
Come back to later.

Ceperley VMC & DMC



Trotter’ s formula

e How do we find the solution of: dp —(A+B)p

dt
e The operator solution is: b= M
e Trotter's formula (1959): p=lm __ [eﬁﬁe?é T

e Assumes that A,B and A+B are reasonable operators.

<RO [eﬁf]eﬂ Rn>:<R0 R'1><R'l ”Rl>....<Rn_l ”]R'n><R'n

LB
en en
e This means we just have to figure out what each operator
does independently and then alternate their effect. This is
rigorous in the limit as n=»oo,

e In the DMC case A is diffusion operator, B is a branching
operator.

e Just like “molecular dynamics”: at small time we evaluate
each operator separately.

LR

L4
e’ e”

R}

Ceperley VMC & DMC



Evaluation of kinetic density matrix
)= 20 ()0, (e

-TT
e

(r
- - - 1 —ikF
In PBC eigenfunctions of 7' = —=e

Jo

. 2
and eigenvalues are Ak

<r r'> _ zle—i/}?ei/}'f'e—dkz
T €2

convert to an mntegral
-tT

<r : r'>: 1 : J‘dkeié(f'—z?)—mkz :(477:/11_)—3/2 e_(,,_r.)z/uf

(2r)
Danger: makes assumption about boundaries and statistics.

—1tT
e

e

This 1s a diffusion process.
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Putting this together

n is number of time slices.

T is the “time-step”

V is “diagonal”

< R & Rn> N < R, ‘eT

(r

(/e

R1>e_TV(R1)....<R

—TT

—TV

[3 e—ﬁ(ZA"H;)

~ ~ =N
A1 —TtT -1V
p=lm [e e }

—T
e

n—1

Error at finite n comes from commutator is roughly: 7

Diffusion preserves normalization but potential does not!
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Basic DMC algorithm

e Construct an ensemble (population P(0)) sampled from
the trial wavefunction. {R;,R, ,Rp}

e Go through ensemble and diffuse each one (timestep T)

R'k ZRk +\/2ﬂﬂ'§(t)'_ ndrn

« —— uprn

~7(V(R)-Ey) floor function
e number of copies= € T
e Trial energy E; adjusted to keep population fixed.
. dRHP(R,t)
E,=lim J ~ <V(R)>¢(m)

7 JdRo(R,0)
e Problems:

1. Branching is uncontrolled
2. Population unstable
3. What do we do about fermi statistics?

Ceperley VMC & DMC



Population Bias

Having the right trial energy guarantees that population
will on the average be stable, but fluctuations will
always cause the population to either grow too large or
too small.

Various ways to control the population

Suppose P, is the desired population and P(t) is the
current population. How much do we have to adjust E;
to make P(t+T)=Py? pPr+T)=e""P()=P,

_In(P(?)/ F)

T

SE,

Feedback procedure: |E, =E, +«xln(P/P)

e There will still be a (much smaller) bias in the energy
caused by a limited population.

Ceperley VMC & DMC



Importance Sampling

e Why should we sample the wavefunction? The physically
correct pdf is |$|2.

e Importance sample (multiply) by trial wave function.

SR =y, (R)P(R,t)  Im,_, f(R,1) =y, (R)P,(R)

U (RD)
ot

_d D AR AV (2 Vi (R) + (v H ) £ (R

Evolution = diffusion + drift + branching

=y (RH[f(R, 1)/ y;(R)] Commute ¥ through H

e We have three terms in the evolution equation.
Trotter’ s formula still applies.

Ceperley VMC & DMC



To the pure diffusion algorithm we have added a drift step
that pushes the random walk in directions of increasing trial

function: R'=R+2A%VIny,(R)

Branching is now controlled by the local energy
-1 -
EL(R)_ET =y (R)HW(R)_ET

Because of zero variance principle, fluctuations are controlled.

Cusp condition can limit infinities coming from singular
potentials.

We still determine E; by keeping asymptotic population stable.
[dRo(R.0) Hy, (R)
[arf (R.1)

Must have accurate “time” evolution. Adding accept/reject
step is a major improvement.

E, =lim,

—>00

= <EV/(R)>

ACY)

Ceperley VMC & DMC



Importanced sampled Green’ s function:
(R -TH
G(R— R)=1") <R\

v (R) )

Exact property of DMC Green’s function

W(R) G(R—R")=|¥(R) G(R'—R)
We enforce detailed balance to decrease time step

errors.
G(s'—> S)‘W(S )‘
] G(S — s )‘l//(s)‘

VMC satisfies detailed balance.

Typically we choose time step to have 99% acceptance
ratio.

Method gives exact result if either time step is zero or
trial function is exact.

A(s —s')=min| 1,

Ceperley VMC & DMC



Schematic of DMC

Ensemble evolves
according to 4

Possibie new

Generation conflgurations

oW of new and thek Now
configurations configurations multiplicity, m

e Diffusion LA

e Drift

configurations

e branching T T T,

. e &)
m=16

4

[ it 4

ensemble . . ° < .

°
°
.
. ]
.
\ m=0.3
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DIFFUSION MONTE CARLO CODE

call initstate(s old)
psi_old = psi(s_old)
d old = drift(s_old)
LOOP {

(_.

Initialize the ensemble
of states

Evaluate psi_trial

Evaluate grad psi_trial

Loop over steps

Loop over walkers

LOOP {
call sample (s old,s new,T new,d old,1)
psi_new = psi (S_new)
if (psi_new * psi_old <0) { Check node crossing

weight = 0 <f Kill walker if it crosses
} else { a node of psi_trial

d_old = drift (s_old)
call sample(s_new,s old,T old,d new,0) find transition prob.
A = (p_new/T_new)/(p_old/T old) for going backward
if(A > rand () ) { -
s _old=s new
p_old=p_new A Accept the move

Sample new state from
drifted Gaussian

Evaluate psi_trial

Evaluate grad psi_trial

Acceptance prob.

naccept = naccept +1} }

weight *= exp(- tau * local_energy (s_old) )} Updare weight
call reweight (s _old)
call a_ye_ragesﬂ(sh_old) <

Reweight ensemble

Collect statistics

Ceperley VMC & DMC




Mixed estimators

e Problem is that PMC
samples the wrong
distribution.

e OK for the energy

e Linear extrapolation
helps correct this
systematic error

e Other solutions:
- Maximum overlap
- Forward walking
— Reptation/path
integrals

Ceperley VMC & DMC

[ary (R)4p(R)

A =

A [ary (R)P(R)

_ [drg' (R)4(R)
[arg" (R)P(R)

_ Jary" (R) Ay (R)

(4), =

A) =
) [dry (R (R)

(4), 5 2(4),, —(4), +

o\(o-v))

(A

4), = de

(4), <<1j1>>V ((¢—W)2) for the density
(

1/1)2 minimized wrt A



Forward Walking

e Let’s calculate the average population resulting from DMC
starting from a single point R, after a time "t’.

;”((2 )) < » ‘ S E) Ro>

expand the density matrix in terms of exact eigenstates

P(Ry;t)=

P(Ry;t)= 8, (R, )e ")

lim, . P(R,t)= ?VOERO)) (ya,)

e We can estimate the correction to the mixed estimator by
weighting with the number of descendants of a given

configuration. |
(4), =lim, _,_ MEP(Ri;t)A(Ri)

e Problem: the fluctuations in the weights eventually diverge.

Don’t make ‘t’ too large.
Ceperley VMC & DMC



Fusion sticking coefficient
Phys. Rev. A 31, 1999 (1985).

e Consider the 3 body system (u d t)

e For the sticking coefficient, we need the exact
wavefunction at the point where 2 nuclei are
at(the same Fosition. (this is a singular point)

W\n=r,n

T I I T I

o 9 o .
% ° o.o.o.o. ) .°.§.O.u.o.o.o.o.o.o.o.%.
24 o P [ ]
o % ®
.
e
e
22— —(
‘ N

a® 1 ]
20— —
L ]
® |

18158 -

I | ] 1 1 |
0 5 10 15 20 25 30

FIG. 1. The growth of the population vs the number of Monte Carlo generations using the population estimator (O ) and the local
energy estimator (@) at the triplet coalescence point (all three particles starting at the origin). The ©'s are shifted one-half gencration

Ceperley VMC & DMC to the left for clarity.



Other projector functions can be used

e_T(E ~Er)

Diffusion MC
G(E) =+ |:1 +7(E—-E; )]_1 Green's Function MC G

[I—T(E—ET)] Power MC

G(E,) =1= ground state remains after many iterations

dG .
T=———| =time step

0

for all 3 cases: lim, __ G(E)" = o "T(E-Er)

e Common effect on long-time (iteration) limit.

e 31 choice generates a Krylov sequence. Only works for
bounded spectra such as a lattice model.

Ceperley VMC & DMC



Green’ s Function Monte Carlo
Kalos, Levesque, Verlet Phys. Rev. A9, 2178 (1974).

e It is possible to make a zero time-step-error method
e Works with the integral formulation of DMC

G(R,R") = <R‘[1+T(H—ET )]‘1‘ R'> _ T %eﬂ[im&]

e Sample time-step from Poisson distribution

e Express operator in a series expansion and sample the
terms stochastically.

G(R,R")=H(R,R")+ [dR"G(R,R")K(R", R')

e Recent Revival: “Continuous time Monte Carlo” for
lattice models.

Ceperley VMC & DMC



Fermions?

e How can we do fermion simulations? The initial condition can
be made real but not positive (for more than 1 electron in the
same spin state)

e In transient estimate or released-node methods one carries
along the sign as a weight and samples the modulus.

#(1) =& " sign(g(R, 0)) | 4(R,0) |

e Do not forbid crossing of the nodes, but carry along sign when
walks cross.

e What's wrong with node release:

— Because walks don’t die at the nodes, the computational
effort increases (bosonic noise)

— The signal is in the cancellation which dominates

Monte Carlo can add but not subtract

Ceperley VMC & DMC



Transient Estimate Approach

¥(B)= e_fH‘P
Z(B) = ( ) (We?"W)= [dR,..dR,¥ (R,)(Re™R,)...(R, e ™R,)¥(R,)

e W(B) converges to the exact ground state

e E is an upper bound converging to the exact answer
monotonically
(%,)

Z(B)= [ dR,..dR, ¥ (R,)|(Re™R,)...(R, e ™R,)

V4

—e=(a(R,)o(Ry))

o (Ry)o(R:)

bose

Ceperley VMC & DMC



Model fermion problem: Particle in a box
Symmetric potential: V(r) =V(-r)
Antisymmetric state: f(r)=-f(-r)

Initial (trial) state Final (exact) state
—Positive walkess=

—Node™

Negative walkers

Sign of walkers fixed by initial position. They are allowed to diffuse freely.
f(r)= number of positive-negative walkers. Node is dynamically established by
diffusion process. (cancellation of positive and negative walkers.)

3 GO)GOE®)
EO)V =55 0000
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Scaling in Released-Node

Initial distribution Later distribution

At any point, positive and negative walkers will tend to cancel
so the signal is drown out by the fluctuations.

Signal/noise ratio is : e fErEs] t=projection time

E:. and E; are Fermion, Bose energy (proportional to N)
Converges but at a slower rate. Higher accuracy, larger t.
For general excited states: oa+EE _ONEE

- - . E E
Exponential complexity! CPUtimec< & t =g ®
Not a fermion problem but an excited state problem.
Cancellation is difficult in high dimensions.

Ceperley VMC & DMC



Exact fermion calculations

e Possible for the electron
gas for up to 60
electrons.

e 2DEG at rs=1 N=26

e Transient estimate
calculation with SJ and
BF-3B trial functions.

<‘PT ‘e‘tH

¥, )

Ceperley VMC & DMC



General statement of the
“fermion problem”

e Given a system with N fermions and a known
Hamiltonian and a property O. (usually the energy).

e How much time T will it take to estimate O to an
accuracy €?How does T scale with N and &€?

e If you can map the quantum system onto an equivalent
problem in classical statistical mechanics then:

T o< N%™2 With 0 <a < 4
This would be a “solved” quantum problem!

All approximations must be controlled!
*Algebraic scaling in N!

e.g. properties of Boltzmann or Bose systems in equilibrium.

Ceperley VMC & DMC



Fixed-node method

e Initial distribution is a pdf. )
It comes from a VMC simulation. J (&:0) =y (R)

e Drift term pushes walks away
from the nodes.

e Impose the condition:
e This is the fixed-node BC

e Will give an upper bound to the £, >F

exact energy, the best upper ,
bound consistent with the FNBC. Epny =E; 1f @(R)y(R)20 all R

of(R,t) has a discontinuous gradient at the nodal location.
eAccurate method because Bose correlations are done exactly.
eScales well, like the VMC method, as N3. Classical complexity.

eCan be generalized from the continuum to lattice finite
temperature, magnetic fields, ...

eOne needs trial functions with accurate nodes.

¢(R)=0 when y,.(R)=0.

Ceperley VMC & DMC



Proof of fixed-node theorem

e Suppose we solve S.E. in a subvolume V determined by
the nodes of an antisymetric trial function.

H ¢, =E, 0., insideV

Extend the solution to all space with the permutation operator.

by (B)= 3 (1) 6, (PR)

Inside a given sub-volume only permutations of a given sign (%) contribute.
Hence the extended solution 1s non-zero.

Evaluate the variational energy the extended trial function.

>(-1)"" [dro,(PR) g, (P'R)

E <o _E <

0 PiP' . v S Epe
2(_1) J-dquFEPR)quN(P'R)

PP'

Edges of volumes do not contribute to the integral since the solution vanishes

Ceperley VMC & DMC



Nodal Properties

If we know the sign of the exact wavefunction (the nodes), we
can solve the fermion problem with the fixed-node method.

e If f(R) is real, nodes are f(R)=0 where R is the 3N dimensional
vector.

e Nodes are a 3N-1 dimensional surface. (Do not confuse with
single particle orbital nodes!)

e Coincidence points r; = r; are 3N-3 dimensional hyper-planes

e In 1 spatial dimension these “points” exhaust the nodes:
fermion problem is easy to solve in 1D with the “no crossing
rule.”

e Coincidence points (and other symmetries) only constrain
nodes in higher dimensions, they do not determine them.

e The nodal surfaces define nodal volumes. How many nodal
volumes are there? Conjecture: there are typically only 2
different volumes (+ and -) except in 1D. (but only
demonstrated for free particles.)

Ceperley VMC & DMC



2d slice thru 322d space

e Free electron

e Other electrons

e Nodes pass thru

their positions
e Divides space
into 2 regions
e Wavelength
given by
interparticle
spacing

Ceperley VMC & DMC

Nodal Picture:

Fig. 3. A 2D cross section of the ground-state wave function of 161 free (polarized) fermions
in a periodic square. All 161 particle positions were sampled using variational Monte Carlo
from @¢(R)% The filled circle indicates the original position of the first particle. The other 160
particles are fixed at positions indicated by the open circles, and nodes of the wave function
as a function of the position of the first particie are plotted. The resolution of the contouring
program is approximately half of the fine scale shown around the border of the plot.



Fixed-Phase method

Generalize the FN method to complex trial functions: ‘P(R) =e

Since the Hamiltonian is Hermitian, the variational energy is
real:

[dR ™V ® Y (R)+ AV'U(R) = A[RVU(R)] + A[SVU(R)] |
v o= de o 2IUR)

~U(R)

E

We see only one place where the energy depends on the
phase of the wavefunction.

If we fix the phase, then we add this term to the potential
energy. In a magnetic field we get also the vector potential.

effective potential=V (R) + 2 A [A (n)+3V,U (R)T

We can now do VMC or DMC and giet upper bounds as before.

The imaginary part of the local energy will not be zero unless
the right phase is used.

Used for twisted boundary conditions, magnetic fields,
vortices, phonons, spin states, ...
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Problem with core electrons

e Bad scaling in both VMC and DMC

e In VMC, energy fluctuations from core dominate the
calculation

e In DMC, time step will be controlled by core dynamics
e Solution is to eliminate core states by a pseudopotential

e Conventional solution: semi-local form

<I” r '> =v, ,(ro(r—r)+ 21}1 (r)P(cos(r-r"))

e Ensures that valence electrons go into well defined
valence states with the wavefunction and energy for
each angular momentum state prescribed.

e PP is non-local: OK for VMC. Leads to an extra MC
integral. But DMC uses a locality approximation and
good trial functions. Extra approximation.

Ceperley VMC & DMC
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Summary of T=0 methods:

Variational(VMC), Fixed-node(FN), Released-node(RN)

1.E+01
1.E+00 -

1.E-01 -

1.E-02 -

/

Better trial function
1.E-03+4 T

1LE-04 applications

1.E'05 T I I I I T T
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

error (au)

computer time (sec)
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Problems with projector methods

Fixed-node is a super-variational method
DMC dynamics is determined by Hamiltonian

Zero-variance principle allows very accurate calculation of
ground state energy if trial function is good.

Projector methods need a trial wavefunction for accuracy.
They are essentially methods that perturb from the trial

function to the exact function. (Note: if you don’t use a trial
function, you are perturbing from the ideal gas)

Difficulty calculating properties other than energy. We must
use “extrapolated estimators” or “forward walking”.

f(R,>) =, (R, (R) not |¢,(R)|

Bad for phase transitions and finite temperature, complex
systems.

Path Integral MC (reptation MC) solves some of these
problems.
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