
Variational and Diffusion Monte Carlo  
in the Continuum 

•  Describe VMC and DMC 
•  Trial functions 
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Variational Monte Carlo 
•  Historically first quantum simulation method 
•  Slater-Jastrow trial function 
•  Calculations of properties: n(k). 
•  Examples: liquid helium and electron gas. 
•  Wavefunctions for Quantum solids  
•  Ewald Sums for Charged systems  
•  WaveFunctions beyond Slater-Jastrow: back 

flow and 3-body 
•  Twist Averaged Boundary Conditions 
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First Major QMC Calculation 
•  PhD thesis of W. McMillan (1964) University of Illinois. 
•  VMC calculation of ground state of liquid helium 4. 
•  Applied MC techniques from classical liquid theory. 
•  Ceperley, Chester and Kalos (1976) generalized to fermions. 

• Zero temperature (single state) method 

• VMC can be generalized to finite temperature by using “trial” density 
matrix instead of “trial” wavefunction.    
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Notation 
•  Individual coordinate of a particle  ri 

•  All 3N coordinates   R= (r1,r2, …. rN) 
•  Total potential energy =   V(R) 

•  Kinetic energy : 

•  Hamiltonian : 
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Liquid helium 
the prototypic quantum fluid 

•  Interatomic potential is known more 
accurately than any other atom because 
electronic excitations are so high.  

•  A helium atom is an elementary particle. 
A weakly interacting hard sphere. 

• Two isotopes:  
•  3He (fermion: antisymmetric trial function, spin 1/2)  
•   4He(boson: symmetric trial function, spin zero) 
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Helium phase diagram 

• Because interaction is so weak 
helium does not crystallize at low 
temperatures. Quantum exchange 
effects are important 
• Both isotopes are quantum fluids 
and become superfluids below a 
critical temperature. 
• One of the goals of computer 
simulation is to understand these 
states, and see how they differ from 
classical liquids starting from non-
relativistic Hamiltonian: 
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Variational Monte Carlo (VMC) 

•  Variational Principle. Given an 
appropriate trial function: 
–  Continuous 
–  Proper symmetry 
–  Normalizable 
–  Finite variance 

•  Quantum chemistry uses a product of 
single particle functions 

•  With MC we can use any “computable” 
function. 
–  Sample  R from |Ψ|2 using MCMC. 
–  Take average of local energy: 
–  Optimize Ψ  to get the best upper bound  

•  Error in energy is 2nd order  
•  Better wavefunction, lower variance!  
•  (non-classical) “zero variance” principle.  
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Spin & real vs. complex 
•  How do we treat spin in QMC? 
•  For extended systems we use the Sz representation. 
•  We have a fixed number of up and down electrons and we 

antisymmetrize among electrons with the same spin. 
•  This leads to 2 Slater determinants. 
•  For a given trial function, its real part is also a trial function (but it may 

have different symmetries) 

•  For the ground state, without magnetic fields or spin-orbit interaction, 
we can always work with real functions. 

•  However, it may be better to work with complex functions.  
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Trial function for 4He: “Jastrow” or pair product 
•  We want finite variance of the local 

energy. 
•  Whenever 2 atoms get close together 

wavefunction should vanish. 
•  The pseudopotential u(r) is similar to 

classical potential 
•  Local energy has the form: 

 G is the pseudoforce: 
 
If v(r) diverges as r-n how should u(r) 

diverge?  Assume: 
  u(r)=r-m 

Keep N-1 atoms fixed and let 1 atom 
approach another and analyze the 
singular parts of the local energy. 

Gives a condition on u at small r. 
For Lennard-Jones 6-12 potential, 

Jastrow, u ~r -5 
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Fermions: antisymmetric trial function 
•  At mean field level the 

wavefunction is a Slater 
determinant. Orbitals for 
homogenous systems are a filled 
set of plane waves. 

•  We can compute this energy 
analytically (HF). 

•  To include correlation we 
multiply by a pseudopotential. We 
need MC to evaluate properties. 

•  New feature: how to compute the 
derivatives of a deteminant and 
sample the determinant. Use 
tricks from linear algebra. 

•  Reduces complexity to O(N2). 
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Optimization of trial function 

Try to optimize u(r) using reweighting 
(correlated sampling) 

–  Sample R using  P(R)=Ψ2(R,a0) 
–  Now find minima of the analytic 

function Ev(a) 
–  Or minimize the variance (more stable 

but wavefunctions less accurate). 
•  Statistical accuracy declines away from a0. 
•  New methods allow many more parameters 

2

2

1

2

2

( ) ( )
( )

( )

( , ) ( , )

( , )

( , )
( , )     

( )
( , ) ( , ) ( , )

ψ ψ

ψ

ψ

ψ ψ−

=

=

=

=

⎡ ⎤
⎢ ⎥⎣ ⎦=

∫
∫

∑
∑

∑
∑

V

i i
k

i
k

i

i
i

eff
i

i

a H a
E a

a

w R a E R a

w R a

R a
w R a

P R
E R a R a H R a

w
N

w



“modern” optimization 

•  With more computer time, we do a MC rw in both 
R and a (parameter space). 

•  Do usual VMC for a “block” and collect statistics 
on   E, dE/da, d2E/(daidaj). 

•  Special estimators for these quantities. 
•  Then make a change in a:  anew=aold+ c dE/da+… 
•  Iterate until convergence.  
•  Lots more tricks to make it stable. 
•  Can do hundreds of parameters.  
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Scalar Properties, Static Correlations and 
Order Parameters 

What do we get out of a simulation?  Energy by itself doesn’t tell you 
very much. 

Other properties  
•  do NOT have an upper bound property 
•  Only first order in accuracy 
EXAMPLES 
•  Static properties: pressure, specific heat etc. 
•  Density 
•  Pair correlation in real space and fourier space. 
•  Order parameters and broken symmetry: How to tell a liquid from a 

solid 
•  Specifically quantum: the momentum distribution 
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Other quantum properties 
•  Kinetic energy 
•  Potential energy 
•  Pair correlation function 
•  Structure function 
•  Pressure (virial relation) 

•  Momentum distribution 
–  Non-classical showing effects of 

bose or fermi statistics 
–  Fourier transform is the single 

particle off-diagonal density matrix 
•  Compute with McMillan Method. 
•  Condensate fraction ~10% 

Like properties from classical 
simulations 
No upper bound property 
Only first order in accuracy 
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Momentum Distribution 
•  Momentum distribution 

–  Classically momentum 
distribution is always a 
Gaussian 

–  Non-classical showing effects 
of bose or fermi statistics 

–  Fourier transform is the single 
particle off-diagonal density 
matrix 

•  Compute with McMillan Method. 

•  For fermions we need to use the 
determinant update formulas to find 
the effect of the movement of 1 
electron. 
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Derivation of momentum formula 
•  Want probability that a given atom has momentum hk. 
•  Find wavefunction in momentum space by FT wrt all the coordinates 

and integrating out all but one electron 

•  Expanding out the square and performing the integrals we get. 

 
Where: 
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The electron gas 
•  Standard model for 

electrons in metals 
•  Basis of DFT. 
•  Characterized by 2 

dimensionless 
parameters:  
–  Density 
–  Temperature 

 
•  What is energy? 
•  When does it freeze? 
•  What is spin 

polarization? 
•  What are properties? 
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Charged systems 
How can we handle charged systems? 
•  Just treat like short-ranged potential: cutoff potential at r>L/2. 

Problems: 
–  Effect of discontinuity never disappears: (1/r) (r2) gets bigger. 
–  Will violate Stillinger-Lovett conditions because Poisson equation 

is not satisfied 
•  Image potential solves this: 

VI =   Σ v(ri-rj+nL) 
–  But summation diverges. We need to resum. This gives the ewald 

image potential. 
–  For one component system we have to add a background to make 

it neutral. 
–  Even the trial function is long ranged and needs to be resummed. 
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Ewald summation method 
•  Key idea is to split potential into k-space part and real-

space part. We can do since FT is linear. 

•  Bare potential converges slowly at large r (in r-space) and 
at large k (in k-space) 
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Classic Ewald 

•  Split up using Gaussian charge 
distribution 

•  If we make it large enough we can 
use the minimum image potential in 
r-space. 

•  Extra term for insulators:  
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Jastrow factor for the e-gas 
•  Look at local energy either in r space or k-space: 
•  r-space: as 2 electrons get close gives cusp condition: du/dr|0=-1 
•  k-space, charge-sloshing or plasmon modes. 

•  Can combine 2 exact properties in the Gaskell form. Write EV in terms structure 
factor  making “random phase approximation.” (RPA). 

•  Optimization can hardly improve  this form for the e-gas in either 2 or 3 dimensions. 
RPA works better for trial function than for the energy. 

•  NEED EWALD SUMS because potential trial function is long range, it also decays 
as 1/r, but it is not a simple power. 
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Long range properties 

• Give rise to dielectric properties 

• Energy is insensitive to uk at small k 

• Those modes converge t~1/k2 



Spline Jastrow factor 
•  For the HEG, the most general Jastrow factor has the form: 

•  u (r) must be continuous, with a continuous derivative. 
•  We can impose the cusp condition at r=0, and BC at r=L/2. 
•  It is a smooth function: represent it as piecewise cubic 

polynomial in the region 0< r < L/2.  
•   M “Knots” at bn.  Total number of unknowns is 2M-1 
•  Also uk k-space Jastrows.  Do we use RPA values? 
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Generalized Feynman-Kacs formula 
gives relation between trial function and exact wavefunction! 
 
average “population” starting from a single point R0 after a 
imaginary time “t”: 
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Wavefunctions beyond Jastrow 
•  Use method of residuals construct 

a sequence of increasingly better 
trial wave functions.  Justify from 
the Importance sampled DMC. 

•  Zeroth order is Hartree-Fock 
wavefunction 

•  First order is Slater-Jastrow pair 
wavefunction (RPA for electrons 
gives an analytic formula) 

•  Second order is 3-body backflow 
wavefunction 

•  Three-body  form is like a squared 
force. It is a bosonic term that does 
not change the nodes. 

smoothing  

ξ −∑ ∑ 2exp{ [ ( )( )] }ij ij i j
i j

r r r

( )

[ ] ( )( )

1

1

0

0

1 0

2
1

( ) ( )

( )

( ) ( )

n n

j j
j

H
n n

i

U R

j j j
j

R R e

e
E V R

e

E U R W R i Y R

τ φ φφ φ

φ

φ φ

−− < >
+

•

−

≈
∑

=
=

=

= − ∇ + • −∇∑

k r

k r



Ceperley VMC & DMC 

Backflow wave function 

•  Backflow means change the 
coordinates to quasi- coordinates.  

•  Leads to a much improved energy 
and to improvement in nodal 
surfaces. Couples nodal surfaces 
together. 

       Kwon PRB 58, 6800 (1998). 
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Dependence of energy on wavefunction 

 3d Electron fluid at a density rs=10 

    Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998 

•  Wavefunctions 
–  Slater-Jastrow (SJ) 
–  three-body (3) 
–  backflow (BF) 
–  fixed-node (FN) 

•  Energy <f |H| f> converges to ground 
state 

•  Variance <f [H-E]2 f> to zero. 
•  Using 3B-BF gains a factor of 4. 
•  Using DMC gains a factor of 4. 
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Twist averaged boundary conditions 
•  In periodic boundary conditions (Γ 

point), the wavefunction is 
periodicèLarge finite size effects 
for metals because of shell effects. 

•  Fermi liquid theory can be used to 
correct the properties.  

•  In twist averaged BC we use an 
arbitrary phase as r èr+L 

•  If one integrates over all phases the 
momentum distribution changes from 
a lattice of k-vectors to a fermi sea. 

•  Smaller finite size effects  
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Twist averaged MC 
•  Make twist vector dynamical by changing during the 

random walk. 
 
•  Within GCE, change the number of electrons 
•  Within TA-VMC 

–  Initialize twist vector. 
–  Run usual VMC (with warmup) 
–  Resample twist angle within cube 
–    (iterate) 

•  Or do in parallel. 

( )    i= 1,2,3iπ θ π− < ≤
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Grand Canonical Ensemble QMC 
•  GCE at T=0K: choose N such that E(N)-µN is minimized.  
•  According to Fermi liquid theory, interacting states are related to non-

interacting states and described by k.  
•  Instead of N, we input the fermi wavevector(s) kF. Choose all states 

with k < kF (assuming spherical symmetry) 
•  N will depend on the twist angle = number of points inside a randomly 

placed sphere. 

•  After we average over twist we get a sphere of filled states. 
•  Is there a problem with Ewald sums as the number of electrons varies?  

No! average density is exactly that of the background. We only work 
with averaged quantities. 
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Single particle size effects 
•  Exact single particle properties with TA within HF 
•  Implies momentum distribution is a continuous curve with a sharp 

feature at kF.  
•  With PBC only 5 k points 
      for k<kF 

        

•  Holzmann et al. PRL 107,110402 (2011) 
•  No size effect within single particle theory! 
•  Kinetic energy will have much smaller size effects. 
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Potential energy  
•  Write potential as integral over structure function: 

•  Error comes from 2 effects.  
–  Approximating integral by sum 
–  Finite size effects in S(k) at a given k. 

•  Within HF we get exact S(k) with TABC.  
•  Discretization errors come only from non-analytic points of S(k). 

–   the absence of the k=0 term in sum. We can put it in by hand since we know 
the limit S(k) at small k (plasmon regime)  

–  Remaining size effects are smaller, coming from the non-analytic behavior of 
S(k) at 2kF. 
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Brief History of Ferromagnetism  
in electron gas 

 
What is polarization state of fermi liquid at low density? 

•  Bloch 1929   got polarization from exchange interaction: 
–  rs > 5.4  3D 
–  rs > 2.0  2D 

•  Stoner 1939:  include electron screening: contact interaction 
•  Herring 1960 
•  Ceperley-Alder 1980    rs >20 is partially polarized 
•  Young-Fisk experiment on doped CaB6 1999 rs~25. 
•  Ortiz-Balone 1999 : ferromagnetism of e gas at rs>20.  
•  Zong et al   Redo QMC with backflow nodes and TABC.  
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Polarization of 3DEG 

Polarization 

transition 

•  We see second order partially 
polarized transition at rs=52 

•  Is the Stoner model (replace 
interaction with a contact potential) 
appropriate? Screening kills long 
range interaction. 

•  Wigner Crystal at rs=105 

• Twist averaging makes calculation 
possible--much smaller size effects. 
• Jastrow wavefunctions favor the 
ferromagnetic phase. 
• Backflow 3-body wavefunctions more 
paramagnetic 
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Phase Diagram 
•  Partially polarized 

phase at low density. 
•  But at lower energy 

and density than 
before. 

•  As accuracy gets 
higher, polarized 
phase shrinks 

•  Real systems have 
different units. 
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Summary of Variational (VMC) 
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Summary and problems with variational 
methods 

•  Powerful method since you can 
use any trial function 

•  Scaling (computational effort 
vs. size) is almost classical 

•  Learn directly about what 
works in wavefunctions 

•  No sign problem 

•  Optimization is time consuming 
•  Energy is insensitive to order 

parameter 
•  Non-energetic properties are less 

accurate. O(1) vs. O(2) for energy. 
•  Difficult to find out how accurate 

results are. 
•  Favors simple states over more 

complicated states, e.g. 
–  Solid over liquid 
–  Polarized over unpolarized 

What goes into the trial wave function comes out! “GIGO” 

We need a more automatic method! Projector Monte Carlo 
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Projector Monte Carlo 
• Originally suggested by Fermi and implemented in 1950 by 
Donsker and Kac for H atom. 

• Practical methods and application developed by Kalos: 
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Diffusion Monte Carlo 
•  How do we analyze 

this operator?  

•  Expand into exact 
eigenstates of H. 

•  Then the evolution is 
simple in this basis. 

•  Long time limit is 
lowest energy state 
that overlaps with the 
initial state, usually 
the ground state. 

•  How to carry out on 
the computer? 
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Monte Carlo process 
•  Now consider the variable “t” as a 

continuous time (it is really 
imaginary time). 

•  Take derivative with respect to time 
to get evolution. 

•  This is a diffusion + branching 
process. 

•  Justify in terms of Trotter’s 
formula. 

Requires interpretation of the 
wavefunction as a probability 
density. 

 
But is it?  Only in the boson ground 

state. Otherwise there are nodes. 
Come back to later. 
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Trotter’s formula 
•  How do we find the solution of: 

•  The operator solution is: 

•  Trotter’s formula (1959): 

•  Assumes that A,B and A+B are reasonable operators. 

•  This means we just have to figure out what each operator 
does independently and then alternate their effect.  This is 
rigorous in the limit as nè∞. 

•  In the DMC case A is diffusion operator, B is a branching 
operator. 

•  Just like “molecular dynamics”: at small time we evaluate 
each operator separately. 
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ˆ ˆ
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Evaluation of kinetic density matrix 

   

r e−τ T r ' = φα
* (r)φα (r ')e−τTα

α
∑

In PBC eigenfunctions of T̂ = 1

Ω
e− i

kr

and eigenvalues are λk 2

r e−τ T r ' = 1

Ω
e− i

kr ei


kr 'e−τλk2

k
∑

convert to an integral

r e−τ T r ' = 1

2π( )3 dkei

k ( r '−r )−τλk2

∫ = 4πλτ( )−3/2
e− r−r '( )2 /4λτ

Danger: makes assumption about boundaries and statistics.
This is a diffusion process.
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Putting this together 

 
•  n is number of time slices. 
•  τ  is the “time-step” 

•  V is “diagonal” 

•  Error at finite n comes from commutator is roughly: 

•  Diffusion preserves normalization but potential does not! 
  

   

ρ̂ = e−β (T+V )

ρ̂ = limn→∞ e−τ Te−τV⎡
⎣

⎤
⎦

n

τ = β / n

   

r e−τ T r ' = 4πλτ( )−3/2
e− r−r '( )2 /4λτ

r e−τ V r ' = δ (r − r ')e−τV (r )

2
ˆ ˆ,

2
T V

e
τ ⎡ ⎤− ⎣ ⎦

1
ˆ ˆ ˆ ( )( )

0 0 1 1~ .... nV RV Rn H T T
n n nR e R R e R e R e R e τττ τ τ −−− − −

−
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Basic DMC algorithm 
•  Construct an ensemble (population P(0)) sampled from 

the trial wavefunction. {R1,R2,…,RP} 
•  Go through ensemble and diffuse each one (timestep τ) 

•  number of copies= 
•  Trial energy ET adjusted to keep population fixed. 

 

•  Problems: 
1.  Branching is uncontrolled 
2.  Population unstable 
3.  What do we do about fermi statistics? 

ndrn 
uprn 
floor function 

' 2 ( )k kR R tλτζ= +

( )( ) TV R Ee uτ− − +

0 ( )

( , )
lim ( )

( , )t

dRH R t
E V R

dR R t φ

φ

φ→∞ ∞
= ≈∫

∫



Ceperley VMC & DMC 

Population Bias 

•  Having the right trial energy guarantees that population 
will on the average be stable, but fluctuations will 
always cause the population to either grow too large or 
too small.  

•  Various ways to control the population 
•  Suppose P0 is the desired population and P(t) is the 

current population.  How much do we have to adjust ET 
to make P(t+T)=P0? 

 
•  Feedback procedure: 

( )
0

0

( ) ( )
ln( ( ) / )

TT E

T

P t T e P t P
P t PE
T

δ

δ

− −+ = =

=

( )0 0ln /T TE E P Pκ= +

•  There will still be a (much smaller) bias in the energy 
caused by a limited population. 
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Importance Sampling 
 

•  Why should we sample the wavefunction? The physically 
correct pdf is |ϕ|2. 

•  Importance sample (multiply) by trial wave function. 

 
   Evolution = diffusion   + drift      +     branching 

•  We have three terms in the evolution equation. 
Trotter’s formula still applies. 

[ ]
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•  To the pure diffusion algorithm we have added a drift step 
that pushes the random walk in directions of increasing trial 
function: 

•  Branching is now controlled by the local energy 

•  Because of zero variance principle, fluctuations are controlled. 
•  Cusp condition can limit infinities coming from singular 

potentials. 
•  We still determine ET by keeping asymptotic population stable. 

•  Must have accurate “time” evolution.  Adding accept/reject 
step is a major improvement. 

' 2 ln ( )TR R Rλτ ψ= + ∇

   EL(R)− ET =ψ −1(R)Hψ (R)− ET

0 ( )

( , ) ( )
lim ( )

( , )
T

t f

dR R t H R
E E R

dRf R t ψ

φ ψ
→∞ ∞

= ≈∫
∫
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•  Importanced sampled Green’s function: 

•  Exact property of DMC Green’s function 

•  We enforce detailed balance to decrease time step 
errors. 

•  VMC satisfies detailed balance. 
•  Typically we choose time step to have 99% acceptance 

ratio. 
•  Method gives exact result if either time step is zero or 

trial function is exact. 
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2
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Schematic of DMC 
Ensemble evolves 

according to 
 
•  Diffusion 
•  Drift 
•  branching 

  ensemble 
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Mixed estimators 
•  Problem is that PMC 

samples the wrong 
distribution. 

•  OK for the energy 
•  Linear extrapolation 

helps correct this 
systematic error 

•  Other solutions: 
–  Maximum overlap 
–  Forward walking 
–  Reptation/path 

integrals 
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Forward Walking 
 

•  Let’s calculate the average population resulting from DMC 
starting from a single point R0 after a time `t’. 

•  We can estimate the correction to the mixed estimator by 
weighting with the number of descendants of a given 
configuration. 

•  Problem: the fluctuations in the weights eventually diverge. 
Don’t make ‘t’ too large. 
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Fusion sticking coefficient 
Phys. Rev. A 31, 1999 (1985). 

 •  Consider the  3 body system (µ d t) 
•  For the sticking coefficient, we need the exact 

wavefunction at the point where 2 nuclei are 
at the same position. (this is a singular point) ( )1 2 3,r r rψ =
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Other projector functions can be used 
 

•  Common effect on long-time (iteration) limit. 
•  3rd  choice generates a Krylov sequence. Only works for 

bounded spectra such as a lattice model. 
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Green’s Function Monte Carlo 
Kalos, Levesque, Verlet Phys. Rev. A9, 2178 (1974). 

•  It is possible to make a  zero time-step-error method 
•  Works with the integral formulation of DMC 

•  Sample time-step from Poisson distribution 
•  Express operator in a series expansion and sample the 

terms stochastically. 

•  Recent Revival: “Continuous time Monte Carlo” for 
lattice models. 
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Fermions? 
•  How can we do fermion simulations?  The initial condition can 

be made real but not positive (for more than 1 electron in the 
same spin state) 

•  In transient estimate or released-node methods one carries 
along the sign as a weight and samples the modulus. 

•  Do not forbid crossing of the nodes, but carry along sign when 
walks cross. 

•  What’s wrong with node release: 
–  Because walks don’t die at the nodes, the computational 

effort increases (bosonic noise) 
–  The signal is in the cancellation which dominates 

Monte Carlo can add but not subtract 

ˆ(H E )t( ) sign( ( ,0)) | ( ,0) |Tt e R Rφ φ φ− −=
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Transient Estimate Approach 

•  ψ(β)  converges to the exact ground state 
•  E is an upper bound converging to the exact answer 

monotonically 
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Model fermion problem: Particle in a box 
Symmetric potential: V(r) =V(-r)   
Antisymmetric state:  f(r)=-f(-r) 

Initial (trial) state Final (exact) state 

Sign of walkers fixed by initial position. They are allowed to diffuse freely. 
f(r)= number of positive-negative walkers. Node is dynamically established by 
diffusion process. (cancellation of positive and negative walkers.) 

Positive walkers 

Negative walkers 

Node 

(0) ( ) ( )
( )

(0) ( )
t E t

E t
t

σ σ
σ σ

=∑
∑
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Scaling in Released-Node 

•  At any point, positive and negative walkers will tend to cancel 
so the signal is drown out by the fluctuations. 

•  Signal/noise ratio is :    t=projection time 
 EF and EB are Fermion, Bose energy (proportional to N) 

•  Converges but at a slower rate. Higher accuracy, larger t. 
•  For general excited states: 

 Exponential complexity! 
•  Not a fermion problem but an excited state problem. 
•  Cancellation is difficult in high dimensions.  

Initial distribution Later distribution 
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Exact fermion calculations 
•  Possible for the electron 

gas for up to 60 
electrons. 

•  2DEG at  rs=1  N=26 

•  Transient estimate 
calculation with SJ and 
BF-3B trial functions. 

tH
T Te−Ψ Ψ
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General statement of the  
“fermion problem” 

•  Given a system with N fermions and a known 
Hamiltonian and a property O. (usually the energy). 

•  How much time T will it take to estimate O to an 
accuracy ε? How does T scale with N and ε? 

•  If you can map the quantum system onto an equivalent 
problem in classical statistical mechanics then: 

2NT −∝ εα With 0 <a < 4  
This would be a “solved” quantum problem! 
• All approximations must be controlled!  
• Algebraic scaling in N! 
e.g.  properties of Boltzmann or Bose systems in equilibrium. 
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Fixed-node method 
•  Initial distribution is a pdf.   

 It comes from a VMC simulation. 
•  Drift term pushes walks away 

from the nodes. 
•  Impose the condition: 
•  This is the fixed-node BC 
•  Will give an upper bound to the 

exact energy, the best upper 
bound consistent with the FNBC. 

2
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φ ψ

=

= =

≥
= ≥

• f(R,t) has a discontinuous gradient at the nodal location. 
• Accurate method because Bose correlations are done exactly.  
• Scales well, like the VMC method, as N3. Classical complexity. 
• Can be generalized from the continuum to lattice finite 
temperature, magnetic fields, … 
• One needs trial functions with accurate nodes. 
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Proof of fixed-node theorem 
•  Suppose we solve S.E. in a subvolume V determined by 

the nodes of an antisymetric trial function.   

  

ĤφFN = EFNφFN    inside V

Extend the solution to all space with the permutation operator.

φ̂FN (R) ≡ 1
N !

−1( )
P
∑ P

φFN PR( )
Inside a given sub-volume only permutations of a given sign (±) contribute.
Hence the extended solution is non-zero.
Evaluate the variational energy the extended trial function.

E0 ≤
−1( )

PP '
∑ P+P '

dR∫ φFN
* PR( ) ĤφFN P ' R( )

−1( )
PP '
∑ P+P '

dR∫ φFN
* PR( )φFN P ' R( )

= EFN ≤ EVMC

Edges of volumes do not contribute to the integral since the solution vanishes
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Nodal Properties 
If we know the sign of the exact wavefunction (the nodes), we 

can solve the fermion problem with the fixed-node method. 
•  If f(R) is real, nodes are f(R)=0 where R is the 3N dimensional 

vector.  
•  Nodes are a 3N-1 dimensional surface. (Do not confuse with  

single particle orbital nodes!) 
•  Coincidence points ri  = rj are  3N-3 dimensional hyper-planes 
•  In 1 spatial dimension these “points” exhaust the nodes: 

fermion problem is easy to solve in 1D   with the “no crossing 
rule.” 

•  Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them. 

•  The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.) 
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Nodal Picture:  
2d slice thru 322d space 

•  Free electron 
•  Other electrons 

•  Nodes pass thru 
their positions  

•  Divides space 
into 2 regions 

•  Wavelength 
given by 
interparticle 
spacing 
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Fixed-Phase method 
 

•  Generalize the FN method to complex trial functions: 
•  Since the Hamiltonian is Hermitian, the variational energy is 

real: 

•  We see only one place where the energy depends on the 
phase of the wavefunction. 

•  If we fix the phase, then we add this term to the potential 
energy. In a magnetic field we get also the vector potential.  

•  We can now do VMC or DMC and get upper bounds as before. 
•  The imaginary part of the local energy will not be zero unless 

the right phase is used. 
•  Used for twisted boundary conditions, magnetic fields, 

vortices, phonons, spin states, …  
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Problem with core electrons 
•  Bad scaling in both VMC and DMC 
•  In VMC, energy fluctuations from core dominate the 

calculation 
•  In DMC, time step will be controlled by core dynamics 
•  Solution is to eliminate core states by a pseudopotential 

•  Conventional solution: semi-local form 

•  Ensures that valence electrons go into well defined 
valence states with the wavefunction and energy for 
each angular momentum state prescribed. 

•  PP is non-local: OK for VMC. Leads to an extra MC 
integral.  But DMC uses a locality approximation and 
good trial functions. Extra approximation. 

ˆ ' ( ) ( ') ( ) (cos( '))e core local l l
l
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Summary of  T=0 methods: 
 

Variational(VMC), Fixed-node(FN), Released-node(RN) 
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Problems with projector methods 
•  Fixed-node is a super-variational method 
•  DMC dynamics is determined by Hamiltonian 
•  Zero-variance principle allows very accurate calculation of 

ground state energy if trial function is good. 
•  Projector methods need a trial wavefunction for accuracy. 

They are essentially methods that perturb from the trial 
function to the exact function. (Note: if you don’t use a trial 
function, you are perturbing from the ideal gas) 

•  Difficulty calculating properties other than energy. We must 
use “extrapolated estimators” or “forward walking”. 

•  Bad for phase transitions and finite temperature, complex 
systems.   

•  Path Integral MC (reptation MC)  solves some of these 
problems. 
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