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• In recent years, it has been realized that quantum 
condensed matter can exhibit unexpected properties 
associated with long range quantum entanglement

✄

✄

⊗

Trivial entanglement

non-trivial entanglement,
terminated by protected edge states



• In 1981 I unexpectedly discovered that a S=1 
chain on spins could have a novel state that is now 
understood as the simplest example of 
“topological matter”

previously expected state

AKLT model for the unexpected topological state

entanglement

no entanglement

free          spins at endsS = 1
2

• Surprise #1:  gapped spin-liquid state of spin-1 
antiferromagnetic chains



• Entanglement in its simplest form can be 
characterized by a bipartite (Schmidt) 
decomposition of a pure quantum state 
into products of states of two subsystems 
“Left” and “Right”

| i =
X

↵�

M↵� | L
↵i ⌦ | R

� i
L R

orthonormal basis of “Left” 
degrees of freedom

orthonormal basis of “Right” 
degrees of freedom

a (rectangular)
complex matrix



• Entanglement in its simplest form can be 
characterized by a bipartite (Schmidt) 
decomposition of a pure quantum state 
into products of states of two subsystems 
“Left” and “Right”

| i =
X

↵�

M↵� | L
↵i ⌦ | R

� i
L R

orthonormal basis of “Left” 
degrees of freedom

orthonormal basis of “Right” 
degrees of freedom

a (rectangular)
complex matrix



• Any matrix has a “singular value 
decomposition”
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• The “entanglement 
spectrum” is a 
“fingerprint” of the 
entanglement, 
analogous to energy 
levels
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• Bipartite Entanglement and the Schmidt 
Decomposition:

| i =
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• The normalization of the state is
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only the relative values are 
significant
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The absolute value of the levels 
is fixed by the normalization , but 

only the relative values are 
significant

The von Neumann entanglement 
entropy coincides with the 

thermodynamic entropy of the set of  
levels at temperature kBT = 1



• The entanglement spectrum contains 
information about the entanglement between 
two halves of a system across a cut.

• It plays a key role in analyzing topological 
order 

• The structure of the dominant terms in the 
Schmidt expansion is analogous to the low 
energy excitations of a many-body 
Hamiltonian.



• Edge states and Entanglement.

• Topological states characteristically have 
protected edge states at the boundary 
between trivial and non-trivial regions

• They arise inevitably to terminate 
entanglement in the bulk



• Topologically-trivial states of insulating matter 
can in principal be assembled by bringing their 
constituent atoms together, with all electrons 
remaining bound during the process

• Topologically non-trivial states of matter cannot 
be adiabatically connected to atomic matter.  At 
some point during their formation, bound 
electrons are liberated, then rebound in a state 
with non-trivial entanglement



• One of the striking characteristic properties of band 
topological insulators (or “Symmetry-Protected 
Topological States”)is their edge states

•  Tamm (1932), Shockley (1939)1D edge states  
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• If both edge states are occupied, there is one
extra electron, 50% at one edge, 50% at the other 
( half an electron at each edge)

• If both are empty there is half a hole at each edge 

•  Tamm (1932), Shockley (1939)1D edge states  
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• Quantum Spin chains have been very 
fruitful in developing understanding of  
entanglement in condensed matter systems

• The controversial and unexpected “Haldane 
gap” in the Spin-1 chain led to the 
development of tensor product states and 
DMRG techniques, which were 
subsequently clarified with ideas from 
quantum information theory 



• A simple model for an unentangled product 
state is the model

H = D

X

i

(Sz
i )

2

| 0i = . . .⌦ |0i ⌦ |0i ⌦ |0i ⌦ . . .

• The entanglement 
spectrum has a single level

�



• AKLT state (Affleck, Kennedy,Lieb,Tasaki) 

• regard a “spin-1”object as symmetrized product of two 
spin-1/2 spins, and pair one of these in a singlet state 
with “half” of the neighbor to the right, half with the 
neighbor to the left:

“half a spin”
left unpaired at 
each free end!
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• X-G Wen and collaborators X.Chen, Z.Gu 
have developed a classiffication of SPT states in 
general (not just free fermions) using powerful 
mathematical tools of cohomology theory

• Their starting point was to identify the 
fundamental example as the non-trivial spin-1 
chain that I identified may years ago using key 
ideas from Michael Berry’s geometrical phase.

• They realised that the symmetry analysis 
needed for the 1D chain was a simple example 
of a cohomology argument that works in 
higher dimensions too!



• This instructive example of an SPT state is the 
spin-1 chain “Haldane gap” state, 

• This exhibits fractionalization, topological 
order and entanglement, characterized by the 
entanglement spectrum (Li and FDMH 2008) 
which has become an important tool for 
investigating Topological Order.

A spin-1 degree of freedom can be 
represented as two spin-1/2 degrees of 

freedom, projected into a symmetric state. 

=
S = 1

2

S = 1
2S = 1



• In the presence of protective symmetries 
(spatial inversion and time-reversal)

H =
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Sn · Sn+1 S = 1

H
AKLT =

X
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Sn · Sn+1 +
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3
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 gapped (incompressible) state,unbroken symmetry
free spin-(1/2) states at free ends!
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• topological order = long-range entanglement
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Bipartite Schmidt-decomposition of 
ground state reveals entanglement

⇠�

“entanglement
gap”

doublet
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• a gapless “topological entanglement spectrum” separated 
from other Schmidt eigenvalues by an “entanglement gap” 
is characteristic of long-range topological order (Li + 
FDMH, PRL 2008)
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• Topological states of matter have been a 
major theme in the recent developments in 
understanding novel quantum effects.

• key questions are:  why do they occur,what 
features of materials favor such states, and 
how can we understand the energetics that 
drives their emergence.  

• I will principally discuss the fractional 
quantum Hall effect, but this is a general 
question



• Fractional Quantum Hall effect



• thirty years after its experimental discovery and 
theoretical description in terms of the Laughlin 
state, the fractional quantum Hall effect remains a 
rich source of new ideas in condensed matter 
physics.

• The key concept is “flux attachment” that 
forms “composite particles” and leads to 
topological order.

• Recently, it has been realized that flux attachment 
also has interesting geometric properties



• elegant wavefunction, describes topologically-
ordered fluid with fractional charge fractional 
statistics excitations

 =
Y
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(zi � zj)
3
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⇤
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• exact ground state of modified model keeping 
only short range part of coulomb repulsion

• Validity confirmed by numerical exact diagonalization

Laughlin 1983

30 years later:
unanswered question:
we know it works, but why?

my answer:
hidden geometry



• “it describes particles in the 
lowest Landau level”

• “It is a Schrödinger 
wavefunction”

• “Its shape is determined by 
the shape of the Landau 
orbit”

• “It has no continuously-
tunable variational 
parameter”

some widespread misconceptions about the Laughlin state

No Landau level was specified: all 
specifics of the Landau level are 
hidden in the form of U(r12)

Non-commutative geometry has no 
Schrödinger representation (this 
requires classical locality); it only has 
a Heisenberg representation.

The interaction potential U(r12) 
determines its geometry (shape)

Its geometry is a continuously-
variable variational parameter



• In a 2D Landau level, we apparently start 
from a Schrödinger picture, but end with a 
“quantum geometry” which is no longer 
correctly described by Schrödinger 
wavefunctions in real space because of 
“quantum fuzziness” (non-locality)

• It remains correctly described by the 
Heisenberg formalism in Hilbert space.



• Top-level model (Schrödinger):

H =
X

i

"(pi) +
X

i<j

V0(ri � rj)
rr ⇥A(r) = B

pi = �i~rr � eA(r)

not necessarily quadratic
(no Galilean invariance 

should be assumed)

bare Coulomb interaction
controlled by (possibly anisotropic) 
dielectric tensor of  medium
(no rotational invariance should be 
assumed)

• model has inversion symmetry if                , 
but even this need not be assumed

"(p) = "(�p)



• Two independent Heisenberg algebras:

ea · eb = �abr = raea pa = ea · p

displacement
(contravariant index)

orthonormal basis 
of tangent vectors 

of 2D plane: 
a = 1,2

Euclidean metric 
of 2D plane

dynamical momentum
(covariant index)

[pa, pb] = i~eB✏ab

[ra, pb] = i~�ab
[ra, rb] = 0

[R̄a, R̄b] = i`2B✏
ab

[Ra, Rb] = �i`2B✏
ab

[Ra, R̄b] = 0

R̄a = ~�1✏abpb`
2
B

Landau orbit 
radius vector

Landau orbit guiding-
center displacement

2⇡`2B = 2⇡~
eB > 0

quantum area
(per h/e flux quantum)

• Note: origin of guiding-center displacement has a 
gauge ambiguity under                       + constantA(r) 7! A(r)

Ra = ra � R̄a

antisymmetric (2D 
Levi-Civita) symbol

organize as



• Landau quantization "(p)| ni = En| ni

discrete spectrum of macroscopically-
degenerate Landau levels

• Project residual interaction in a single partially 
occupied “active” Landau level, all other dynamics 
is frozen by Pauli principle when  gap between 
Landau levels dominates interaction potential

H =
X

i<j

Vn(Ri �Rj)

[Ra, Rb] = �i`2B✏
ab

residual problem is non-
commutative quantum 

geometry!



• The potential Vn(x) is a very smooth (in fact entire) 
function that depends on the form- factor of the partially-
occupied Landau level

• The essential clean-limit symmetries are translation and 
inversion:

H =
X

i<j

Vn(Ri �Rj)

[Ra, Rb] = �i`2B✏
ab

We now have the final form of the problem:

Ri 7! a±Ri

x

(not smooth)

Vn(x)

V0(x)original

Identical quantum particles 
(fermions or bosons )



• the essential model Hamiltonian for a 
partially-filled 2D Landau level

H0 =
X

i<j

V2(Ri �Rj)

H = H0 +
X

i

V1(Ri)

[Rx
i , R

y
i ] = �i`2B

dominant 2-particle interaction 
with no kinetic energy

1-particle term as a small 
perturbation

non-commutative
geometry

the source of all
dynamics in this 

problem !



• Where did this come from?
pa = �i~ra � eAa(x)

[px, py] = i~eB

• Landau orbit radius vector

R̄ =
1

eB
(py,�px)

r = R+ R̄

• Landau orbit guiding center
[rx, ry] = 0
[R̄x, R̄y] = i`2B
[Rx, Ry] = �i`2B

after Landau-level quantization, only 
the guiding centers remain as 

dynamical variables

[Ra, R̄b] = 0

R = r � R̄

x

0

e-

r
R̄

R



• Rather than the commutation relation (here 
[Rx,Ry] = -i!B2), von Neumann pointed out 
that the fundamental presentation of the 
Heisenberg algebra was the exponentiated 
form  which here is  U(q) =exp(i qaRa)

• Let                be a polygonal path in q-space 
NX

i=1

qi = 0

q1

q2

q3
qN�1

qN
closed path-ordered product

U(q1)U(q2) . . . U(qN ) = e
1
2 iA`2B1

q-space area enclosed by closed path

A



• V2 must be an“ultra smooth function” in R2 (entire in 

C2) (this is required for it to be well-defined when it 

has a non-commutative argument)

H0 =
X

i<j

V2(Ri �Rj)

V2(x) =

Z
d2q`B
2⇡

Ṽc(q)|fn(q)|2eiq·x

e2

4⇡✏0✏

1

|q|
exp� 1

2 |q|
2`2B

landau level form factor

unsmooth
Coulomb interaction

V (R) = V (x+ (R� x)) has an absolutely convergent expansion in (R� x)�R =

�Ra�Rb . . . �Rc! {�Ra, �Rb, . . . , �Rc} (symmetrized product) 



• The two-body interaction potential is smooth because it is 
the bare unretarded Coulomb potential convoluted with the 
Landau-orbit form factor of the partially-filled level.

• For all r,V2(r +!r) has an analytic (entire) expansion in !r, 
because the form-factor fn(q) is a rapidly-decreasing function.

• It depends on the structure of the Landau orbits of the 
partially-filled level through the form factor fn(q).

V2(r ) = V2(−r )

r

V2 

0

real, even

non-singular
at r = 0

V2(r) =

Z
d2q`2

2⇡
eiq·rṼ (q)|fn(q)|2



• incompressible (gapped) translationally-invariant inversion-symmetric 
topologically-ordered fractional quantum Hall (FQH)states

• compressible (gapless) states with broken translational 
symmetry (stripe and bubble phases, Wigner crystal)

• gapless “Composite Fermi Liquid” (CFL) states with unbroken 
translational symmetry which can be argued to exhibit a 
neutral fermion Fermi surface

• Depending on V2, this 

H2 =
X

i<j

V2(Ri �Rj) [Rx
i , R

y
j ] = �i�ij`

2
B

The entire “clean limit” problem

Depending on the filling factor " and the form of the interaction potential 
V2(r), this problem is known to have the following types of ground states:

exhibits a gapless anomalous Hall effect (AHE)
 (like ferromagnetic metals)



• A quantum geometry does not support a 
Schrödinger representation 

H0 =
X

i<j

V2(Ri �Rj) [Rx
i , R

y
i ] = �i`2B

 (x) = hx| i hx|x0i = 0 x 6= x0

such a basis does not exist 
when coordinate components 
do not commute



Schrödinger vs Heisenberg

• Schrödinger’s picture describes the system by 
a wavefunction !(r) in real space
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Werner Karl Heisenberg
Da Wikipedia, l'enciclopedia libera.

Werner Karl Heisenberg (Würzburg, 5
dicembre 1901 – Monaco di Baviera, 1º febbraio
1976) è stato un fisico tedesco. Ottenne il Premio
Nobel per la Fisica nel 1932 ed è considerato uno
dei fondatori della meccanica quantistica.
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Meccanica quantistica
Quando era studente, incontrò 
Gottinga nel 1922. Ciò permise lo sviluppo di una
fruttuosa collaborazione tra i due.

Heisenberg ebbe l'idea della , la prima formalizzazione della
meccanica quantistica, nel principio di indeterminazione, introdotto nel 1927,
afferma che la misura simultanea di due variabili coniugate, come posizione e quantità di
moto oppure energia e tempo, non può essere compiuta senza un'incertezza ineliminabile.

Assieme a Bohr, formulò l'  della meccanica quantistica.

Ricevette il Premio Nobel per la fisica  "per la creazione della meccanica
quantistica, la cui applicazione, tra le altre cose, ha portato alla scoperta delle forme
allotrope dell'idrogeno".

Il lavoro durante la guerra
La fissione nucleare venne scoperta in Germania nel 1939. Heisenberg rimase in
Germania durante la seconda guerra mondiale, lavorando sotto il regime nazista. Guidò il
programma nucleare tedesco, ma i limiti della sua collaborazione sono controversi.

Rivelò l'esistenza del programma a Bohr durante un colloquio a Copenaghen nel
settembre 1941. Dopo l'incontro, la lunga amicizia tra Bohr e Heisenberg terminò
bruscamente. Bohr si unì in seguito al progetto Manhattan.

Si è speculato sul fatto che Heisenberg avesse degli scrupoli morali e cercò di rallentare il
progetto. Heisenberg stesso tentò di sostenere questa tesi. Il libro Heisenberg's War di
Thomas Power e l'opera teatrale "Copenhagen" di Michael Frayn adottarono questa
interpretazione.

Nel febbraio 2002, emerse una lettera scritta da Bohr ad Heisenberg nel 1957 (ma mai
spedita): vi si legge che Heisenberg, nella conversazione con Bohr del 1941, non espresse
alcun problema morale riguardo al progetto di costruzione della bomba; si deduce inoltre
che Heisenberg aveva speso i precedenti due anni lavorandovi quasi esclusivamente,
convinto che la bomba avrebbe deciso l'esito della guerra.
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• Heisenberg’s picture describes the system by a 
state｜!" in Hilbert space

• They are only equivalent if the basis      of  
states in real-space are orthogonal: 

|ri

 (r) = hr| i hr|r0i = 0
(r 6= r0)

requires
this fails
in a quantum
geometry



When it describes a 
“quantum geometry”

Q:

• In this case space is “fuzzy”(non-commuting  components of the 
coordinates), and the Schrödinger description in real space (i.e., 
in “classical geometry”) fails, though the Heisenberg description 
in Hilbert space survives

• The closest description to the classical-geometry Schrödinger 
description is in a non-orthogonal overcomplete coherent-
state basis of the quantum geometry.

A:

When is a “wavefunction” 
NOT a wavefunction?



• but the most famous result in FQHE was presented 
as a “lowest Landau level wavefunction”

 (x1,x2 . . . , xN ) =
Y

i<j

(zi � zj)
m
Y

i

e�
1
4 |xi|2/`2B

z = x+ iy

• lowest Landau level states of                       have 
wavefunctions of the form

Laughlin 1983

H1 =
1

2m
(p2x + p

2
y)

 (x) = f(z)e�
1
4 |x|

2/`2B

holomorphic function



• For m = 1, this is the Slater determinant describing 
the uncorrelated filled lowest Landau level

• for m > 1 it is a highly correlated state exhibiting 
“flux attachment”

• It was initially proposed as a “trial wavefunction” 
with no continuously-adjustable  variational 
parameter, that gave a lower energy that all other 
proposed states

 (x1,x2 . . . , xN ) =
Y

i<j

(zi � zj)
m
Y

i

e�
1
4 |xi|2/`2B



• The essential problem
But:

H0 =
X

i<j

V2(Ri �Rj) [Rx
i , R

y
i ] = �i`2B

is an “any Landau level” problem, not a 
“lowest Landau level” problem and does not
reference

• The Laughlin-like FQHE state occurs in the 
second Landau level, as well as the lowest. 

H1 =
1

2m
(p2x + p

2
y)

• “quantum geometry” is not described by 
Schrodinger wavefunctions 

We need to reinterpret the “Laughlin wavefunction”



• In fact, the Laughlin state does have a 
hidden variational parameter, its geometry

a† =
Rx + iRy

p
2`B

[a, a†] = 1

Heisenberg algebra of 
guiding centers

ā† =
px + ipyp
(2|~eB|

[ā, ā†] = 1

Heisenberg algebra of Galileian-
invariant Landau orbits

H1 =
1

2m
(p2x + p

2
y)

| i =
Y

i<j

(a†i � a†j)
m|0i ai|0i = 0

Heisenberg form of Laughlin state
no longer 

references any 
particular Landau 

level

two independent Heisenberg algebras:



• the original form of      was inherited from 
the shape of the Landau orbits

• Instead, it should be determined by the 
shape of the interaction potential

a† =
Rx + iRy

p
2`B

| i =
Y

i<j

(a†i � a†j)
m|0i

H0 =
X

i<j

V2(Ri �Rj)H1 =
1

2m
(p2x + p

2
y)

a†i

1
2`2B

gabR
aRb = 1

2 (a
†a+ aa†) det g = 1

a metric



• The “Laughlin state” is a family of states 
continuously parametrized by a 
“unimodular” (unit determinant) metric

| (g)i =
Y

i<j

(a†i � a†j)
m|0(g)i

1
2`2B

gabR
aRb = 1

2 (a
†a+ aa†)

H0 =
X

i<j

V2(Ri �Rj)

• The metric characterizes the shape of the 
correlation hole formed by “flux attachment” 
and should be chosen to minimize the 
correlation energy of

ai|0(g)i = 0

• The uncorrelated filled Landau level state is 
left invariant*  by a change of metric
*when periodic boundary conditions are imposed



• As well as being a variational trial 
wavefunction, the Laughlin state is the 
true ground state of a certain short-
range interaction potential



This is the entire problem: 
nothing other than this matters!

• generator of translations and
electric dipole moment!

H =
X

i<j

U(Ri �Rj)

[Rx, Ry] = �i`2B

[(Rx
1 �Rx

2), (R
y
1 �Ry

2)] = �2i`2B

• relative coordinate of a pair of 
particles behaves like a single 
particle

• H has translation and 
inversion symmetry

[(Rx
1 +Rx

2), (R
y
1 �Ry

2)] = 0

[H,
P

iRi] = 0

two-particle energy levels

like phase-space, 
has Heisenberg 
uncertainty principle

gap

want to avoid
this state



• Laughlin state

U(r12) =
⇣
A+B

⇣
(r12)

2

`2B

⌘⌘
e
� (r12)2

2`2
B 0

E2 symmetric

antisymmetric

• Solvable model! (“short-range pseudopotential”) 1
2 (A+B)

1
2B

rest all 0

| m
L i =

Y

i<j

⇣
a†i � a†j

⌘m
|0i

ai|0i = 0 a†i =
Rx + iRy

p
2`B

EL = 0

maximum density null state

• m=2: (bosons): all pairs 
avoid the symmetric state 
E2 =  ½(A+B)

• m=3: (fermions): all pairs 
avoid the antisymmetric 
state E2 =  ½B[ai, a

†
j ] = �ij



• The key idea for understanding both the 
Fractional Quantum Hall and Composite 
Fermi Liquid states is “Flux attachment”



Entanglement spectra 
and “dominance”

• Schmidt decomposition of  
Fock space into N and S 
hemispheres.

• Classify states by Lz and N 
in northern hemisphere, 
relative to dominant 
configuration. Lz always 
decreases relative to this 
(squeezing)



Laughlin FQHE state

• ν = 1/m Laughlin state

• “occupation number”-like representation in 
orbitals zm, m = 0,1,..., NΦ  = m(N-1) 
orbitals

⇥ = �(z1, z2, . . . , zN )
N�

i=1

e��(ri)

�2⇥(r) = 2�B(r)/�0
N-variable (anti)symmetric polynomial

�(z1, z2, . . . , zN ) =
�

i<j

(zi � zj)m

1001001001001001001...1001 (m=3)

lowest 
Landau level

This is the “dominant” configuration of the Laughlin state
m=0 orbital



“Dominance”

• convert occupation pattern to a partition 
λ, “padded” with zeroes to length N:

• 1001001 → λ = {λ 1,λ2,λ3} = {6,3,0}

• λ dominates λ′ if   
• |λ| ≡ (∑i λi )= |λ′| = M 

• (∑j≤i  λ′j )≤  ( ∑j≤i  λj ) for all i = 1,2,..N-1



“dominance” and “squeezing”

• (pairwise) squeezing:  move a particle from  orbital m1-1 to m1 

and another from m2+1 to m2 where m1 ≤ m2.

• dominance is a partial ordering: if A > B and 
B > C, then A > C.

1001001001001001001...1001
1000101001001010001...1001

A dominates B     ( A > B)

A
B



Fermionic 2/4=1/2 Moore-Read state

1100110011001100110011001100110011

uniform vacuum state on sphere:

even fermion number -e/2 double quasihole (h/e vortex) at North Pole:

odd fermion number -e/2 double quasihole  (h/e vortex) at North Pole:

01100110011001100110011001100110011

100110011001100110011001100110011
fractionalization:  one -e/4 quasihole  (h/2e vortex) at North Pole, one  near equator.

101010101010101001100110011001100110011

These translate into explicit wavefunctions that can 
be calculated in finite-size systems 



Represent bipartite Schmidt 
decomposition  like an excitation 

spectrum (with Hui Li)

• like CFT of edge states.

• A lot more information than 
single number (entropy)

• many zero eigenvalues 

|�⇥ =
�

�

e�⇥�/2|�N�⇥ � |�S�⇥

2

(a) N = 10, Nφ = 27

(b) N = 12, Nφ = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N = 10, m = 3, Nφ = 27 and N = 12, m = 3, Nφ =
33. Only sectors of NA = NB = N/2 are shown.

have a single element and their singular values are de-
generate.

These features are indeed expected from the special
form of ψN . Arbitrarily divide the subscripts in Eq. (2),
i.e., l in ul and vl, into two subsets, say I and J . Let |I|
be the number of elements in I and similarly |J |, note
that |I| + |J | = N . Re-write Eq. (2) as

ψN = ψI · ψJ ·
∏

i,j
(uivj − ujvi)

m (3)

where ψI =
∏

i<i′(uivi′ − ui′vi)m, ψJ =
∏

j<j′ (ujvj′ −
uj′vj)m, and i, i′ ∈ I, j, j′ ∈ J . The first two terms in
the product in Eq. (3), ψI and ψJ , describe two Laugh-
lin droplets that consist of particles in subsets I and J ,
respectively. Expanding the third term, we get

ψN = ψ(0)
I ψ(0)

J + m · ψ(1)
I ψ(1)

J + · · · (4)

where

ψ(0)
I = ψI ·

∏

i
um|J|

i (5)

ψ(0)
J = ψJ ·

∏

j
vm|I|

j (6)

ψ(1)
I = ψI ·

∏

i
um|J|

i ·
∑

i

vi

ui
(7)

ψ(1)
J = ψJ ·

∏

j
vm|I|

j ·
∑

j

uj

vj
(8)

and · · · represents other terms that are not of our con-
cern here. Equation (4) indicates that the sectors at the
greatest two Lz

A’s each contains only one singular value.
In order to explain the degeneracy of the two singular
values, we need to show that the norms of the above four
states are related by

∥ψ(0)
I ∥∥ψ(0)

J ∥ = m∥ψ(1)
I ∥∥ψ(1)

J ∥ (9)

Note that the total angular momentum operators of

subset I are Lz
I = 1

2

∑

I∈I

(

ui
∂

∂ui
− vi

∂
∂vi

)

, L+
I =

∑

i∈Iui
∂

∂vi
, L+

I =
∑

i∈Ivi
∂

∂ui
. It is easy to show that

Lz
Iψ

(0)
I = m

2 |I||J |ψ
(0)
I , L+

I ψ(0)
I = 0, L−

I ψ(0)
I = m|J |ψ(1)

I ,

which means that ψ(0)
I and ψ(1)

I belong to the same ir-

reducible representation of which L⃗2
I = S(S + 1) where

S = m
2 |I||J |. Thus using L−

I |lz,S⟩ = [S(S + 1) − lz(lz −

1)]1/2|lz − 1,S⟩ and lz = S, we get

∥ψ(1)
I ∥2 =

1

m2|J |2
∥L−

I ψ(0)
i ∥2 =

|I|

m|J |
∥ψ(0)

I ∥2 (10)

Similarly we have

∥ψ(1)
J ∥2 =

|J |

m|I|
∥ψ(0)

J ∥2 (11)

Therefore Eq. (9) is obtained.
The alert readers may argue that partitioning sub-

scripts as done in Eq. (3) is not equivalent to partition-
ing of Landau-level orbitals. However, the first two terms
in Eq. (4) are in fact equivalent to what we would get
from partitioning Landau-level orbitals, even though the
rest [those represented by · · · in Eq. (4)] are generally

TABLE I: The multiplicity M(∆L) versus ∆L for electronic
Laughlin states of different sizes, for ∆L ! N/2. N is the
numbers of electrons, 1/m is the filling fraction.

∆L 0 1 2 3 4 5 6

N = 6, m = 5 1 1 2 3

N = 8, m = 5 1 1 2 3 5

N = 8, m = 3 1 1 2 3 5

N = 10, m = 3 1 1 2 3 5 7

N = 12, m = 3 1 1 2 3 5 7 11

e��� = 0



Look at difference between Laughlin state,entanglement spectrum 
and state that interpolates to Coulomb ground state.

3

(a) x = 1 (b) x = 1/3 (c) x = 1/10

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Nφ = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

not. By setting |I| = |J | = N/2, we see that the first two
terms in Eq. (4) indeed correspond to the Lz

A = max(Lz
A)

and Lz
A = max(Lz

A) − 1 sectors in Fig. 1. This not only
explains why these two sectors each has only one singu-
lar value and why the two singular values are degenerate,
but also explicitly gives max(Lz

A) = mN2/8.

The most interesting feature of the spectra shown in
Fig. 1 may be the counting structure. We define a new
symbol ∆L := max(Lz

A) − Lz
A to label the sectors, and

M(∆L) be the multiplicity of the sector, i.e., the number
of singular values in the sector. In Table I we list a few
values of M(∆L) for several small ∆L, for systems of
different sizes. Interestingly, M(∆L) listed there seems
to be the number of integer partitions of ∆L. We spec-
ulate that in the thermodynamic limit where N → ∞,
M(∆L)is exactly the number of integer partitions for any
∆L. Our numerical study also indicates that this is a

FIG. 3: The gap in various sectors of the entanglement spec-
trum of the ground state of the Hamiltonian in Eq. (12) for
a system of N = 10 electrons in the lowest Landau level on
a sphere enclosing Nφ = 27 flux quanta. At x ≪ 1, the gap
appears to be linear in − log x.

unique feature for all states in the Laughlin sequence,
independent of filling fraction.

This can be understood when we further review the
form of Laughlin wave-functions in Eq. (3). Even
though it is not explicitly about partitioning Landau-
level orbitals, it reveals the origin of the entanglement in
Laughlin states, correlated quasi-hole excitations in the
two blocks. Thus the multiplicity M(∆L) is simply the
number of linearly-independent quasi-hole excitations in
block A that have total Lz angular momentum equal to
∆L, which, in a sufficiently large system, is exactly the
number of ways that the integer ∆L can be partitioned.
For any finite system, as soon as ∆L > N/2, some of
the partitions of ∆L may contain parts that are greater
than N/2. Since no quasi-hole can carry angular momen-
tum larger than N/2, multiplicity of such a ∆L will be
smaller than the number of partitions. Indeed, this is in
full consistency with our numerical analysis.

Now we turn to the entanglement spectrum of true
ground states of Coulomb interaction. The system we
will be interested in has N = 10 electrons in the lowest
Landau level on the sphere that contains Nφ = 28 flux
quanta. This system has the same size of one that sup-
ports an N = 10, m = 3 Laughlin state. We will study
the numerically obtained ground state of the following
Hamiltonian [9]

H = xHc + (1 − x)V1 (12)

where x ∈ [0, 1] is the tuning parameter, Hc is the Hamil-
tonian of Coulomb interaction in the lowest Landau level,
while V1 is the pseudo-potential that gives unit energy
whenever the relative angular momentum of a pair of
electrons is 1. For a few typical values of x, the spectra
are presented in Fig. 2.

For the ground state of the unmodified Coulomb inter-
action in the lowest Landau level (x = 1), the spectrum
shows a clear gap near max(Lz

A) which in our case here is
75
2 , which gradually closes as Lz

A decreases to ∼ 30. The
gap becomes clearer for all Lz

A ! max(Lz
A) at x = 1/3,

3

(a) x = 1 (b) x = 1/3 (c) x = 1/10

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing Nφ = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of x.

not. By setting |I| = |J | = N/2, we see that the first two
terms in Eq. (4) indeed correspond to the Lz

A = max(Lz
A)

and Lz
A = max(Lz

A) − 1 sectors in Fig. 1. This not only
explains why these two sectors each has only one singu-
lar value and why the two singular values are degenerate,
but also explicitly gives max(Lz

A) = mN2/8.

The most interesting feature of the spectra shown in
Fig. 1 may be the counting structure. We define a new
symbol ∆L := max(Lz

A) − Lz
A to label the sectors, and

M(∆L) be the multiplicity of the sector, i.e., the number
of singular values in the sector. In Table I we list a few
values of M(∆L) for several small ∆L, for systems of
different sizes. Interestingly, M(∆L) listed there seems
to be the number of integer partitions of ∆L. We spec-
ulate that in the thermodynamic limit where N → ∞,
M(∆L)is exactly the number of integer partitions for any
∆L. Our numerical study also indicates that this is a

FIG. 3: The gap in various sectors of the entanglement spec-
trum of the ground state of the Hamiltonian in Eq. (12) for
a system of N = 10 electrons in the lowest Landau level on
a sphere enclosing Nφ = 27 flux quanta. At x ≪ 1, the gap
appears to be linear in − log x.

unique feature for all states in the Laughlin sequence,
independent of filling fraction.

This can be understood when we further review the
form of Laughlin wave-functions in Eq. (3). Even
though it is not explicitly about partitioning Landau-
level orbitals, it reveals the origin of the entanglement in
Laughlin states, correlated quasi-hole excitations in the
two blocks. Thus the multiplicity M(∆L) is simply the
number of linearly-independent quasi-hole excitations in
block A that have total Lz angular momentum equal to
∆L, which, in a sufficiently large system, is exactly the
number of ways that the integer ∆L can be partitioned.
For any finite system, as soon as ∆L > N/2, some of
the partitions of ∆L may contain parts that are greater
than N/2. Since no quasi-hole can carry angular momen-
tum larger than N/2, multiplicity of such a ∆L will be
smaller than the number of partitions. Indeed, this is in
full consistency with our numerical analysis.

Now we turn to the entanglement spectrum of true
ground states of Coulomb interaction. The system we
will be interested in has N = 10 electrons in the lowest
Landau level on the sphere that contains Nφ = 28 flux
quanta. This system has the same size of one that sup-
ports an N = 10, m = 3 Laughlin state. We will study
the numerically obtained ground state of the following
Hamiltonian [9]

H = xHc + (1 − x)V1 (12)

where x ∈ [0, 1] is the tuning parameter, Hc is the Hamil-
tonian of Coulomb interaction in the lowest Landau level,
while V1 is the pseudo-potential that gives unit energy
whenever the relative angular momentum of a pair of
electrons is 1. For a few typical values of x, the spectra
are presented in Fig. 2.

For the ground state of the unmodified Coulomb inter-
action in the lowest Landau level (x = 1), the spectrum
shows a clear gap near max(Lz

A) which in our case here is
75
2 , which gradually closes as Lz

A decreases to ∼ 30. The
gap becomes clearer for all Lz

A ! max(Lz
A) at x = 1/3,

x=0 is pure
Laughlin

Can we identify topological order in “physical as opposed to model 
wavefunctions from low-energy entanglement spectra?



• Hall viscosity  gives “thermally excited” 
momentum density on  entanglement cut,  
relative to “vacuum”,  at von Neumann 
temperature T = 1
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• orbital vs “real space” cut

çççç çççç ç çççç

wavefunction of
Landau level orbital

“fuzzy continuum” vs Lattice

• The fundamental problem is in the projected 
space, not its extension to “real space”



• The quadratic expansion of this even function around 
the origin defines a natural “interaction metric”

• The problem is often simplified by giving it a continuous 
rotation symmetry that respects this metric, but this is 
non-generic, and not necessary.

• This metric and a rotation symmetry are important in 
model FQH wavefunctions based on cft, which have a 
stronger conformal invariance property.

H =
X

i<j

Vn(Ri �Rj)

[Ra, Rb] = �i`2B✏
ab Vn(x)



• It is straightforward to solve the two-body 
Hamiltonian:

H = Vn(R12)

R12 = R1 �R2

[Ra
12, R

b
12] = 2i`2B✏

ab

Vn(x)

etc. E4
E3

E2

E1

• If there is a rotational symmetry, the energy 
levels (called “pseudopotentials”) completely 
characterize the interaction potential.

• a large gap between energy levels favors flux 
attachment with a shape close to that of  
the “interaction metric”

equivalent to a one-
particle problem



• Flux attachment is a gauge condensation that removes the 
gauge ambiguity of the guiding centers, giving each one a 
“natural” origin, so they define a physical electric dipole 
moment of the “composite particle” in which they are 
bound by  the “attached flux”.

• This is analogous to how the “the vector potential 
becomes an observable” (in a hand-waving way) in the 
London equations for a superconductor.

×
�R

center of flux-attachment

(fuzzy) region from which
particles other that those making 
up the “composite particle” are 
excluded



• quantum solid

• repulsion of other particles make an attractive

potential well strong enough to bind particle

• unit cell is 
correlation hole

• defines geometry

solid melts if well is not strong enough to contain 
zero-point motion  (Helium liquids)



• In Maxwell’s equations, the momentum 
density is 

⇡i = ✏ijkD
jBk Di = ✏0�

ijEj + P i

• The momentum of the condensed matter is 
p = d⇥B

electric dipole moment

• in 2D the guiding-center momentum then is
pa = eB✏ab�R

b

• The electrical polarization energy of the dielectric 
composite particle then gives its energy-momentum 
dispersion relation, with no involvement of any 
“Newtonian inertia” involving an effective mass



×�R

• The Berry phase generated by 
motion of the “other particles”  
that “get out of the way” as the 
vortex-like “flux-attachment” 
moves with the particle(s) it 
encloses can be formally-
described as a Chern-Simons 
gauge field that cancels the 
Bohm-Aharonov phase, so that 
the composite object propagates 
like a neutral particle. 

v



• All FQH states have an elementary unit  (analogous to the unit 
cell of a crystal) that is a composite boson under exchange.

• It may be sometimes be  useful to describe this boson as a a 
bound state of composite fermions (with their own preexisting 
flux attachment) bound by extra flux (Jain’s picture) 

• If the composite particle is a boson, it condenses into the 
zero-momentum (zero electric dipole-moment) 
inversion-symmetric state, giving an incompressible-fluid  
Fractional  Quantum Hall state, with an energy gap for 
excitations that carry momentum or electric dipole 
moment (“quantum incompressibility”, no transmission of 
pressure through the bulk). 
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• momentum ħk of a quasiparticle-quasihole pair is 
proportional to its electric dipole moment pe ~ka = �abBpbe

k�B

gap for electric dipole excitations is a MUCH stronger 
condition than charge gap: fluid does not transmit 
pressure through bulk!

Topologically-degenerate FQH state



•Anatomy of Laughlin state

e-

e-

fractionally-charged
e/3 quasiholes obeying 

(Abelian) fractional 
statistics

electron with “flux 
attachment”
to form a “composite 
boson”

Chiral edge mode with chiral anomaly
and Virasoro anomaly

geometric
edge dipole moment
determined by Hall 

viscosity

Topological and geometric bulk properties 
revealed by entanglement spectrum of cut 

(Wen-Zee term)



• the essential unit of the 1/3 Laughlin state is  the 
electron bound to a correlation hole corresponding 
to  “units of flux”, or three of the available single-
particle states which are exclusively occupied by the 
particle to which they are “attached”

• In general, the elementary unit of the FQHE fluid is a 
“composite boson” of p particles with q “attached 
flux quanta”

• This is the analog of a unit cell in a solid....



• The Laughlin state is parametrized by a unimodular metric: 
what is its  physical meaning?

• In the  ν  = 1/3 Laughlin state, each electron sits in a 
correlation hole with an area containing 3 flux quanta.  
The metric controls the shape of the correlation hole.

• In the ν  = 1 filled LL Slater-determinant state, there is no 
correlation hole (just an exchange hole), and this state 
does not depend on a metric

correlation holes
in two states with 
different metrics



• similar story in FQHE:

• “flux attachment” creates 
correlation hole

• potential well must be 
strong enough to bind 
electron 

• defines an emergent 
geometry

• new physics:  Hall viscosity,  
geometry............

e-

• continuum model, but 
similar physics to Hubbard 
model

but no broken symmetry



• composite boson: if the central 
orbital of a basis of eigenstates of 
L(g) is filled, the next two are empty

e-

e-

L(g)| mi = (m+ 1
2 )| mi

| 3
Li =

Y

i<j

⇣
a†i � a†j

⌘3
|0i

• this correlation hole is equivalent to 
“attachment of three flux quanta” or 
vortices that travel with the particle, 
generating  a Berry phase that cancels 
the Bohm-Aharonov phase and 
transmutes Fermi to Bose exchange 
statistics.

• this shape of the corelation hole - and 
hence its correlation energy - varies 
with the metric gab

different
metrics



• Origin of FQHE incompressibility is analogous to origin 
of Mott-Hubbard gap in lattice systems.

• There is an energy gap for putting an extra particle 
in a quantized region that is already occupied

• On the lattice the “quantized 
region” is an atomic orbital with a 
fixed shape

• In the FQHE only the area of 
the “quantized region” is fixed.  
The shape  must adjust to 
minimize the correlation energy.

e-

energy gap prevents 
additional electrons 
from entering the 

region covered by the 
composite boson



e

the electron  excludes other particles from a 
region containing  3 flux quanta, creating a 
potential well in which it is bound

1/3  Laughlin state If the central orbital is filled, 
the next two are empty

The composite boson
has inversion symmetry

about its center

It has a “spin”
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Z
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ab

second moment of neutral 
composite boson

charge distribution



2/5

2/5

2/5

1/3

1/3

hopping of a “composite fermion” (electron + 2 flux quanta)

e e eee e

Jain’s “pseudo Landau levels”

2/5 boson is quasiparticle of 1/3 state 1/3 boson is quasihole of 2/5 state



• The composite boson behaves as a neutral 
particle because the Berry phase  (from the 
disturbance of the the other particles as its 
“exclusion zone” moves with it) cancels the 
Bohm-Aharonov phase

• It behaves as a boson provided its statistical spin 
cancels the particle exchange factor when two 
composite bosons are exchanged

(�1)pq = (�1)p

(�1)pq = 1

fermions
bosons

p particles
q orbitals



• The metric (shape of the composite boson) has a 
preferred shape that minimizes the correlation energy, 
but fluctuates around that shape

• The zero-point fluctuations of the metric are seen as 
the O(q4) behavior of the “guiding-center structure 
factor” (Girvin et al, (GMP), 1985)

• long-wavelength limit of GMP collective mode is 
fluctuations of (spatial) metric (analog of “graviton”) 

�E / (distortion)2

FDMH, Phys. Rev. Lett. 107, 116801 (2011)



• Furthermore, the local electric charge 
density of the fluid with   ν = p/q  is 
determined by a combination of the 
magnetic flux density and the Gaussian 
curvature of the intrinsic metric

J0
e (x) =

e

2⇡q

✓
peB

~ � sKg(x)

◆

Gaussian curvature of the metricTopologically quantized “guiding center spin”



• In fact, it is locally determined, if there is an 
inhomogeneous slowly-varying substrate 
potential

H =
X

i

vn(Ri) +
X

i<j

Vn(Ri �Rj)

vn(x)

deformation
near edgey

x



• “skyrmion”-like  “cone”-like structure 
moves charge away from quasihole by 
introducing negative Gaussian curvature 

fluid density

distance
from center

in an effective theory, 
core of quasihole may collapse
into a cone singularity of the metric.



• In the standard incompressible FQH 
states, the bulk interior of the fluid is 
described by a gapped topological field 
theory (TQFT).  

• The gapless edge degrees of freedom are a 
direct sum of unitary  representations of 
the Virasoro algebra.

• Can there be continuous second order 
transitions between FQH states at which 
the bulk gap collapses?



• The (fermion)  “Gaffnian” model (Steve Simon et al)

• This is a model 2/5 state that (a) is an exact 
zero-energy state of a (three-body) 
interaction (b) has a non-unitary 
representation of the Virasoro algebra on its 
edge and (c) as a consequence is believed to 
have bulk gapless neutral excitations (Read). 

• It is a Jack polynomial with a  “root 
configuration exclusion statistics rule” of 
“not more than two particles in five 
consecutive orbitals”



• The “Gaffnian” interaction penalizes three-
body states

(z1 � z2)(z2 � z3)(z3 � z1)

(z1 � z2)(z2 � z3)(z3 � z1)⇥
�
(z1 � z2)

2 + (z2 � z3)
2 + (z3 � z1)

2)
�

11100
11001

H = V0P111 + V2P11001



• On the torus, the 2/5 Gaffnian zero-energy 
states has a 10-fold degeneracy 
corresponding to the two sets of 5 “motifs”

11000 01100 00110 00011 10001

10100 01010 00101 10010 01001

lowest weight (most to left)

• A degeneracy beween two  internal states 
of the 2/5 “composite boson” with different 
parity.



• In higher Landau levels the “10100” pattern 
may replace 11000 as the stable 2/5 pattern 
because of competition between the 
“vacancy potential” that favors putting the 
second particle in the second orbital, and 
repulsion from the first particle, which 
pushes it outwards

1    1    0     0    0 1    0    1     0    0
+ + ++ ++−−− −

different paritiesS = �3 S = �2

different intrinsic spin



• Domain wall between states with different Wen-
Zee term carries momentum density (electric 
dipole moment) but no chiral modes (no U(1) or 
Virasoro anomaly)

11000

10100

negative weight primary field 
of non-unitary CFT ???

• gapless bulk if domain wall 
energy is zero or negative

• sliding of domain wall attachment point removes 
momentum from edge (non-unitary virasoro on edge)

transmits pressure!



• Many open questions about the gapless 
critical state (e.g. what is the dynamical 
critical exponent z  (1or 2?))

• does charge gap exist for all ratios of the 
two parameters?

• develop a Full interpretation of the non-
unitary Virasoro representation.



• Any matrix has a “singular value 
decomposition”

= UL
UR

0
0

0

diagonal
(real positive)

M

| i =
X

⌫

e�
1
2 ⇠⌫ | L

⌫ i ⌦ | R
⌫ i

orthonormal basis of “Left” 
degrees of freedom

orthonormal basis of “Right” 
degrees of freedom

“entanglement spectrum” 
eigenvalues



• One of the striking characteristic properties of band 
topological insulators (or “Symmetry-Protected 
Topological States”)is their edge states

•  Tamm (1932), Shockley (1939)1D edge states  

1D solid

+ +

adjacent atoms

even parity
about site

edge
state

odd parity

“hopping”

widely
separated 

atoms

close 
atoms

Fermi level pinned 
to edge state if neutral
charge +1/2 electron if 
full , -1/2 if empty, per 

edge

fractionalization
is typical in topological 

states

Shockley 1939

protective symmetry: spatial inversion

Z2 invariant: Ik=0 ⇥ Ik=⇡ = ±1
s-p band-inversion

at k = !



• If both edge states are occupied, there is one
extra electron, 50% at one edge, 50% at the other 
( half an electron at each edge)

• If both are empty there is half a hole at each edge 

•  Tamm (1932), Shockley (1939)1D edge states  

1D solid

+ +

adjacent atoms

even parity
about site

edge
state

odd parity

“hopping”

widely
separated 

atoms

close 
atoms

Fermi level pinned 
to edge state if neutral
charge +1/2 electron if 
full , -1/2 if empty, per 

edge

fractionalization
is typical in topological 

states
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Schrödinger vs Heisenberg

• Schrödinger’s picture describes the system by 
a wavefunction !(r) in real space
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Werner Karl Heisenberg

 per la fisica 1932

Werner Karl Heisenberg
Da Wikipedia, l'enciclopedia libera.

Werner Karl Heisenberg (Würzburg, 5
dicembre 1901 – Monaco di Baviera, 1º febbraio
1976) è stato un fisico tedesco. Ottenne il Premio
Nobel per la Fisica nel 1932 ed è considerato uno
dei fondatori della meccanica quantistica.
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Meccanica quantistica
Quando era studente, incontrò 
Gottinga nel 1922. Ciò permise lo sviluppo di una
fruttuosa collaborazione tra i due.

Heisenberg ebbe l'idea della , la prima formalizzazione della
meccanica quantistica, nel principio di indeterminazione, introdotto nel 1927,
afferma che la misura simultanea di due variabili coniugate, come posizione e quantità di
moto oppure energia e tempo, non può essere compiuta senza un'incertezza ineliminabile.

Assieme a Bohr, formulò l'  della meccanica quantistica.

Ricevette il Premio Nobel per la fisica  "per la creazione della meccanica
quantistica, la cui applicazione, tra le altre cose, ha portato alla scoperta delle forme
allotrope dell'idrogeno".

Il lavoro durante la guerra
La fissione nucleare venne scoperta in Germania nel 1939. Heisenberg rimase in
Germania durante la seconda guerra mondiale, lavorando sotto il regime nazista. Guidò il
programma nucleare tedesco, ma i limiti della sua collaborazione sono controversi.

Rivelò l'esistenza del programma a Bohr durante un colloquio a Copenaghen nel
settembre 1941. Dopo l'incontro, la lunga amicizia tra Bohr e Heisenberg terminò
bruscamente. Bohr si unì in seguito al progetto Manhattan.

Si è speculato sul fatto che Heisenberg avesse degli scrupoli morali e cercò di rallentare il
progetto. Heisenberg stesso tentò di sostenere questa tesi. Il libro Heisenberg's War di
Thomas Power e l'opera teatrale "Copenhagen" di Michael Frayn adottarono questa
interpretazione.

Nel febbraio 2002, emerse una lettera scritta da Bohr ad Heisenberg nel 1957 (ma mai
spedita): vi si legge che Heisenberg, nella conversazione con Bohr del 1941, non espresse
alcun problema morale riguardo al progetto di costruzione della bomba; si deduce inoltre
che Heisenberg aveva speso i precedenti due anni lavorandovi quasi esclusivamente,
convinto che la bomba avrebbe deciso l'esito della guerra.

Werner Karl HeisenbergMeccanica quantistica
Quando era studente, incontrò 
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moto oppure energia e tempo, non può essere compiuta senza un'incertezza ineliminabil

Sito web per questa immagine
Werner Karl Heisenberg
it.wikipedia.org

Dimensione intera
220 ! 349 (Stesse dimensioni), 13KB
Altre dimensioni

Ricerca tramite immagine

Immagini simili

Tipo: JPG

Le immagini potrebbero essere soggette a
copyright.

Risultato della ricerca immagini di Google per http://upload.wikimedia.org/wikiped... http://www.google.it/imgres?imgurl=http://upload.wikimedia.org/wikipedia/comm...

1 of 1 5/21/12 12:27 AM

• Heisenberg’s picture describes the system by a 
state｜!" in Hilbert space

• They are only equivalent if the basis      of  
states in real-space are orthogonal: 

|ri

 (r) = hr| i hr|r0i = 0
(r 6= r0)

requires
this fails
in a quantum
geometry



This is the entire problem: 
nothing other than this matters!

• generator of translations and
electric dipole moment!

H =
X

i<j

U(Ri �Rj)

[Rx, Ry] = �i`2B

[(Rx
1 �Rx

2), (R
y
1 �Ry

2)] = �2i`2B

• relative coordinate of a pair of 
particles behaves like a single 
particle

• H has translation and 
inversion symmetry

[(Rx
1 +Rx

2), (R
y
1 �Ry

2)] = 0

[H,
P

iRi] = 0

two-particle energy levels

like phase-space, 
has Heisenberg 
uncertainty principle

gap

want to avoid
this state



Entanglement spectra 
and “dominance”

• Schmidt decomposition of  
Fock space into N and S 
hemispheres.

• Classify states by Lz and N 
in northern hemisphere, 
relative to dominant 
configuration. Lz always 
decreases relative to this 
(squeezing)



• Hall viscosity  gives “thermally excited” 
momentum density on  entanglement cut,  
relative to “vacuum”,  at von Neumann 
temperature T = 1
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the Landau orbit degrees of freedom and their
form factor to be included

ORBITAL CUT

signed conformal
anomaly (chiral stress-

energy anomaly)
chiral

anomaly

virasoro level
of sector

“CASIMIR MOMENTUM” term



• orbital vs “real space” cut

çççç çççç ç çççç

wavefunction of
Landau level orbital

“fuzzy continuum” vs Lattice

• The fundamental problem is in the projected 
space, not its extension to “real space”



• “skyrmion”-like  “cone”-like structure 
moves charge away from quasihole by 
introducing negative Gaussian curvature 

fluid density

distance
from center

in an effective theory, 
core of quasihole may collapse
into a cone singularity of the metric.




