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® Novel entanglement properties of “Topological Quantum
States of Matter”

® |ntroduction using Spin Chains

® Quantum Hall effect, Laughlin states, and non-Abelian
generalizations.



® |n recent years, it has been realized that quantum
condensed matter can exhibit unexpected properties
associated with long range quantum entanglement

Trivial entanglement

non-trivial entanglement,
terminated by protected edge states
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® Surprise #1: gapped spin-liquid state of spin-|
antiferromagnetic chains

® |n 1981 | unexpectedly discovered that a S=1
chain on spins could have a novel state that is now
understood as the simplest example of
“topological matter”

previously expected state : no entanglement
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free S = splns at ends entanglement
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AKLT model for the unexpected topological state




® Entanglement in its simplest form can be
characterized by a bipartite (Schmidt)
decomposition of a pure quantum state
into products of states of two subsystems
“Left” and “Right”
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a (rectangular) orthonormal basis of “Left” orthonormal basis of “Right”
complex matrix degrees of freedom degrees of freedom
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® Any matrix has a “singular value

decomposition”

0

diagonal

(real positive)
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“entanglement spectrum”
eigenvalues orthonormal basis of “Left” orthonormal basis of “Right”
degrees of freedom degrees of freedom



Schmidt decomposition
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4 ® The “entanglement
spectrum’ is a
“fingerprint” of the
entanglement,
analogous to energy
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maximally
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singlet state



® Bipartite Entanglement and the Schmidt

Decomposition:
basis of states of L
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real positive

® [he normalization of the state is
D W) =) e P
1,] o

® The probability of a component is
_Boz
Pa = ZS/ "y analogy with.
A B, thermodynamics

“ Entangl ement SPeCtru m” The absolute value of the levels

is fixed by the normalization , but
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significant




analogy with
thermodynamics

o Entanglement SPeCtI"U m” The absolute value of the levels

is fixed by the normalization , but

(I i I(e ene rgy Ieve I S) only the relative values are

0
8
significant

The von Neumann entanglement
entropy coincides with the
thermodynamic entropy of the set of
levels at temperature kgT = |



® [he entanglement spectrum contains
information about the entanglement between
two halves of a system across a cut.

® |t plays a key role in analyzing topological
order

® The structure of the dominant terms in the
Schmidt expansion is analogous to the low
energy excitations of a many-body
Hamiltonian.



® Edge states and Entanglement.

® Jopological states characteristically have
protected edge states at the boundary
between trivial and non-trivial regions

® They arise inevitably to terminate
entanglement in the bulk



® TJopologically-trivial states of insulating matter
can in principal be assembled by bringing their
constituent atoms together, with all electrons
remaining bound during the process

® TJopologically non-trivial states of matter cannot
be adiabatically connected to atomic matter. At
some point during their formation, bound
electrons are liberated, then rebound in a state
with non-trivial entanglement




One of the striking characteristic properties of band
topological insulators (or “Symmetry-Protected
Topological States”)is their edge states
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® |f both edge states are occupied, there is one

extra electron, 50% at one edge, 50% at the other
( half an electron at each edge)

® |f both are empty there is half a hole at each edge



® Quantum Spin chains have been very
fruitful in developing understanding of
entanglement in condensed matter systems

® The controversial and unexpected “Haldane
gap’ in the Spin-1 chain led to the
development of tensor product states and
DMRG techniques, which were
subsequently clarified with ideas from
quantum information theory



® A simple model for an unentangled product
state is the model

H=D) (S)°
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® The entanglement
spectrum has a single level




o AKLT state (Affleck, Kennedy,Lieb, Tasaki)

® regard a “‘spin-1"object as symmetrized product of two
spin-1/2 spins, and pair one of these in a singlet state

with “half” of the neighbor to the right, half with the
neighbor to the left:
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‘half a spin” :
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left unpaired at entangled

each free end! 0 — (2) singlet state




plgrEr Fm

Ising FM

. planar
[ | .

» Nematic
I

Trivial singlet




® X-G Wen and collaborators X.Chen, Z.Gu
have developed a classiffication of SPT states in
general (not just free fermions) using powerful
mathematical tools of cohomology theory

Their starting point was to identify the
fundamental example as the non-trivial spin-|

chain that | identified may years ago using key
ideas from Michael Berry’s geometrical phase.

® They realised that the symmetry analysis
needed for the |ID chain was a simple example
of a cohomology argument that works in
higher dimensions too!



® This instructive example of an SPT state is the
spin-1 chain “Haldane gap” state,

® This exhibits fractionalization, topological
order and entanglement, characterized by the
entanglement spectrum (Li and FDMH 2008)
which has become an important tool for
investigating Topological Order.

A spin-1 degree of freedom can be
represented as two spin-1/2 degrees of
freedom, projected into a symmetric state.




H=) S,-Su1  §=1 “Physical model”

[AKLT _ ZS’”  Spaq + %(Sn . Spi1)? “TO)’ model”
” Field theory with
“topological term”

L=g"0,0 0,04 E0e"Q-9,Q x 9,0

Topological term

® |n the presence of protective symmetries
(spatial inversion and time-reversal)

0 = O( mod 27’(’) integer S

0 = m( mod 2m) half-odd-integer
S
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valence bond picture (AKLT) spin -1
2x2 Matrix product state)
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gapped (incompressible) state,unbroken symmetry
free spin-(1/2) states at free ends!

H=Y% JS; Sit1+ D(5])

® Large D favours a state with Sz = 0, all i.



® topological order = long-range entanglement

“Left” ; “Right” ,
- ~ topologically
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Bipartite Schmidt-decomposition of P —=
ground state reveals entanglement “entanglement | |
gap”

® a gapless “topological entanglement spectrum” separated
from other Schmidt eigenvalues by an “entanglement gap”

is characteristic of long-range topological order (Li + doublet =
FDMH, PRL 2008) (S=1/2)
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® TJopological states of matter have been a
major theme in the recent developments in
understanding novel quantum effects.

® key questions are: why do they occur,what
features of materials favor such states, and
how can we understand the energetics that
drives their emergence.

® | will principally discuss the fractional
quantum Hall effect, but this is a general
question



® Fractional Quantum Hall effect



® thirty years after its experimental discovery and
theoretical description in terms of the Laughlin
state, the fractional quantum Hall effect remains a
rich source of new ideas in condensed matter
physics.

® The key concept is “flux attachment” that
forms “composite particles” and leads to
topological order.

® Recently, it has been realized that flux attachment
also has interesting geometric properties




U — H(Zz _ Zj)?’ H o~ 3% %  Laughlin 1983
1

1<J
® eclegant wavefunction, describes topologically-
ordered fluid with fractional charge fractional
statistics excitations

® exact ground state of modified model keeping
only short range part of coulomb repulsion

® Validity confirmed by numerical exact diagonalization

30 years later: my answer:

unanswered question: hidden geometry
we know it works, but why!?




some widespread misconceptions about the Laughlin state

No Landau level was specified: all

® “‘it describes particles in thespecifics of the Landau level are
lowest Landau level” hidden in the form of U(712)

Non-commutative geometry has no
L Schrodinger representation (this
wavefunction requires classical locality); it only has
a Heisenberg representation.

® “It is a Schrodinger

® “|ts shape is determined by

the shape of the Landau The interaction potential U(7i2)
orbit” determines its geometry (shape)

® “|t has no continuously-

tunable variational Its geometry is a continuously-
parameter” variable variational parameter



® |n a 2D Landau level, we apparently start
from a Schrodinger picture, but end with a
“quantum geometry’ which is no longer
correctly described by Schrodinger
wavefunctions in real space because of
“quantum fuzziness” (non-locality)

® |t remains correctly described by the
Heisenberg formalism in Hilbert space.



® TJop-level model (Schrodinger):

p; = —ihV, — eA(r)

H = ng@ +ZVO T —T;) Vi xAlr)=B

1<

1 bare Coulomb interaction

not necessarily quadratic controlled by (possibly anisotropic)
(no Galilean invariance dielectric tensor of medium
should be assumed) (no rotational invariance should be
assumed)

® model has inversion symmetry if <(p)=c(-p)
but even this heed not be assumed



Pa — €q - D

T — Taea ?CL ) eb — 5(1,13 T
dis |acement OrthonOI’ma| baS|S Euclidean metric dynamical momentum
. plac € g of tangent vectors of 2D plane (covariant index)
(contravariant index) of 2D plane:
a=1,2 antisymmetric (2D

Levi-Civita) symbol

® [wo independent Heisenberg algebras:/
'Ra Rb' _ 82 ab

_paapb] — ih@Beab
_ _ . organize as "pa pbl
r®, py| = thoy - | [, 7] =0
el =0 R, R’] = —ilpe™
_ ] 5 _
R*=h'e"ply R =r"—R" 2l = 25 > 0
Landau orbit Landau orbit guiding- quantum area

(per h/e flux quantum)

radius vector center displacement

® Note: origin of guiding-center displacement has a
gauge ambiguity under A(r) = A(7) + constant




® | andau quantization e(p)|Vn) = l*;‘n|‘I’n>

discrete spectrum of macroscopically-
degenerate Landau levels

® Project residual interaction in a single partially
occupied “active” Landau level, all other dynamics
is frozen by Pauli principle when gap between
Landau levels dominates interaction potential

residual problem is non-
commutative quantum
geometry!




original 1/, (a;)
‘/(not smooth)
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|dentical quantum particles : j
(fermions or bosons )

We now have the final form of the problem:

® The potential V,(x) is a very smooth (in fact entire)

function that depends on the form- factor of the partially-
occupied Landau level

® The essential clean-limit symmetries are translation and

Inversion:

R, — a=+ R,




® the essential model Hamiltonian for a
partially-filled 2D Landau level

Hy =) Va(R; — R;)
1<)
dominant 2-particle interaction
with no kinetic energy

H=Hy+)Y Vi(R;)

1
1-particle term as a small
perturbation

[Rfv Rf] — _Z€2B

non-commutative
geometry

\

the source of all
dynamics in this
problem !
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® Where did this come from? /\< 's
—1hV, — eA,(x) 04

Pa
P, Dy] = theB
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® | andau orbit radius vector

_ 1
R =— — D
5 (Pys —Dz)
® | andau orbit guiding center
R=r—R

after Landau-level quantization, only
the guiding centers remain as
dynamical variables




® Rather than the commutation relation (here
[Rx,RY] = -i’s2), von Neumann pointed out

that the fundamental presentation of the
Heisenberg algebra was the exponentiated
form which hereis U(q) =exp(i q.R%)

N
® |et quj = 0 be a polygonal path in g-space
1=1

: AN-1/
U(ql)U(qg)U(qN) :6%7’“46231 N‘Zél qs
closed path-ordered product \ 9 /q) qz
1

g-space area enclosed by closed path



® V; must be an“ultra smooth function” in R2 (entire in

C2) (this is required for it to be well-defined when it

has a non-commutative argument)

Hy =Y Va(R; — R;)

1<J

2 Vo ~ .

2 \
e 1
unsmooth eXp — % |q ‘ QZQB
Coulomb interaction 47-‘- 6() € ‘ q ‘

landau level form factor

V(R) =V(z+ (R —-x)) has an absolutely convergent expansion in 0R = (R — x)

SR R...6R— {0R*,6R’,... ,6R}  (symmetrized produc



® The two-body interaction potential is smooth because it is
the bare unretarded Coulomb potential convoluted with the
Landau-orbit form factor of the partially-filled level.

Va(r) :/d T TV (q)| fr(@))?

2T

® |t depends on the structure of the Landau orbits of the
partially-filled level through the form factor f,(q).

o For all r, Vo(r +67) has an analytic (entire) expansion in o7,

because the form-factor f,(q) is a rapidly-decreasing function.

| Vo
non-singular

aty—-\

()

Vz(’l”‘) — VQ(_T‘)
real, even



Hy =) Va(R; — R;) [Rf, RY] = —id (5

1<

The entire “clean limit” problem

Depending on the filling factor v and the form of the interaction potential

Va(7), this problem is known to have the following types of ground states:

incompressible (gapped) translationally-invariant inversion-symmetric
topologically-ordered fractional quantum Hall (FQH)states

compressible (gapless) states with broken translational
symmetry (stripe and bubble phases,Wigner crystal)

gapless “Composite Fermi Liquid” (CFL) states with unbroken
translational symmetry which|can be argued to exhibit a
neutral fermion Fermi surface

exhibits a gapless anomalous Hall effect (AHE)
(like ferromagnetic metals)



Hy = ZVZ(Ri — R;) [R},R}] = —il3
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® A gquantum geometry does not support a
Schrodinger representation

U(x) = (2V) |(@fz))=0 @ #

such a basis does not exist
when coordinate components
do not commute




® Schrodinger’s picture describes the system by
a wavefunction y(7) in real space

® Heisenberg’s picture describes the system by a

state | v) in Hilbert space

® They are only equivalent if the basis ) of
states in real-space are orthogonal:

p(r) = (rlp)

requires

(rlr') =
r A1)

this fails
<€—in a quantum
geometry



Q: | When is a “wavefunction”
NOT a wavefunction?

A: When it describes a
“quantum geometry”

® In this case space is “fuzzy’(non-commuting components of the
coordinates), and the Schrodinger description in real space (i.e.,
in “classical geometry”) fails, though the Heisenberg description
in Hilbert space survives

® The closest description to the classical-geometry Schrodinger
description is in 2 non-orthogonal overcomplete coherent-
state basis of the quantum geometry.



® but the most famous result in FQHE was presented
as a ‘lowest Landau level wavefunction”

|| Il _ 112 /p2
\Ij(m17m2°°~7$N): (ZZ—ZJ)m e 4|CB%| /EB
1< 1
Laughlin 1983 2=+ iy

® |owest Landau level states of #i=5-(:+r,) have

wavefunctions of the form )(x) = f(z)e—i|x|2/523

/

holomorphic function
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® For m = 1, this is the Slater determinant describing
the uncorrelated filled lowest Landau level

® for m > 1 itis a highly correlated state exhibiting
“flux attachment”

® |t was initially proposed as a “trial wavefunction”
with no continuously-adjustable variational

parameter, that gave a lower energy that all other
proposed states



But:
® The essential problem

I”

is an “‘any Landau level” problem, not a
“lowest Landau level” problem and does not

reference 7, = ' ()2 1 p?)

2m

® The Laughlin-like FQHE state occurs in the
second Landau level, as well as the lowest.

® “quantum geometry’ is not described by
Schrodinger wavefunctions

We need to reinterpret the “Laughlin wavefunction”



® |n fact, the Laughlin state does have a
hidden variational parameter, its geometry

two independent Heisenberg algebras:

x DY :
aT:R —I_ZR C—LT_p:U—_Zpy
V2(p V(2|heB]
a,a"] =1 a,a'] =1
Heisenberg algebra of Heisenberg algebra of Galileian-
guiding centers invariant Landau orbits
1
Hy = ——(p; +py)

2m

0) =] (a] —a))™0)  a;[0) =0

no longer
references any
particular Landau
level

i<j
Heisenberg form of Laughlin state




. % ) = [](a] — a0

leﬁ(pi+p§) Ho :ZVZ(Ri_Rj)

1<J

® the original form of a! was inherited from
the shape of the Landau orbits

® |nstead, it should be determined by the
shape of the interaction potential

ﬁgabRaRb = %(aﬁa + aa") detg =1

™~ a metric



_1 b apb _ 1 aTa aaT
|\Ij(g)> — H(CLI _ aj;)m‘o(g» 207, Ya R'R’ = 5(a'a+ aa’)
' ai[0(g)) = 0

® The “Laughlin state” is a family of states
continuously parametrized by a
“unimodular” (unit determinant) metric

® The metric characterizes the shape of the
correlation hole formed by “flux attachment”
and should be chosen to minimize the
correlation energy of 7 — Z Va(R; — R;)
i<j
® The uncorrelated filled Landau level state is
left invariant™ by a change of metric

*when periodic boundary conditions are imposed



® As well as being a variational trial
wavefunction, the Laughlin state is the
true ground state of a certain short-
range interaction potential



This is the entire problem\
nothing other than this matters! /\

® H has translation and H = Z UR; — R,)

Inversion symmetry i1<j ,
R* R7| = —i/l

(RY + B5), (RY — B3| = 0 | f | 5

like phase-space,
has Heisenberg

uncertainty principle
® generator of translations and want to avoid
electric dipole moment! this state

[Hv ZZRZ] =0

NN
(R* — R%),(RY — RY)] = —2it%, > _/ <_ 8P
\

® relative coordinate of a pair of ' c

particles behaves like a single .
particle two-particle energy levels




® Solvable model! (“short-range pseudopotential”)

Bl

symmetric %(A—I—B)

1
antisymmetric 5 B

U(riz) = (A—I— B ((“2)2)) e 20%

O L— restall0

® [aughlin state

i) =11 (af = a}) " 10

i<
. R®+iRY
V205

CL@|O> =0 a; =
Er =0 a;,a ] = 0;;

maximum density null state

® m=2:(bosons): all pairs
avoid the symmetric state
E, = 2(A+B)

® m=3: (fermions): all pairs
avoid the antisymmetric
state E, = 2B



® The key idea for understanding both the
Fractional Quantum Hall and Composite
Fermi Liquid states is "Flux attachment”




Entanglement spectra
and “dominance”

® Schmidt decomposition of WA
: ~— N
Fock space into N and S e \
hemispheres. — \
T4
® Classify states by Lz and N - - — =
in northern hemisphere, _ 77T
relative to dominant - fZ

configuration. Lz always
decreases relative to this
(squeezing)



Laughlin FQHE state

—o(r lowest
\P:(I)(Zl,ZQ,...,ZN)HG p(Ti)
Pl \ Landau level

N-variable (anti)symmetric polynomial V2p(r) = 2rB(r) /®g

® v =1/m Laughlin state

(I)(Zla L2y e ey ZN) — H(ZZ _ Z])m
. €¢ o ”l:’<'].. o .
occupation number”-like representation in

orbitals z», m = 0,1,..., N¢ = m(N-1)
orbitals

1001001001001001001...1001 (m=3)

m=0 orbital -

This is the “dominant” configuration of the Laughlin state




“Dominance”

® convert occupation pattern to a partition
A, ‘padded” with zeroes to length NV:

® 1001001 = X ={X1,x2,x3} = {6,3,0}
® ) dominates X\’ if
® \=(2iN)=N|=
® O i<i NVj)< (Xj<i \j) foralli=1,2,..N-1



“dominance” and “squeezing”

¢ (paiI’Wise) SqueeZing: move a particle from orbital mi-1 to m;

and another from ms+1 to m» where m; < mo.

! !
1001001001001001001...1001 A

1000101001001010001...1001 B

! !
A dominates B (A > B)

® dominance is a partial ordering: if A > B and
B>C,thenA>C.




Fermionic 2/4=1/2 Moore-Read state

uniform vacuum state on sphere:

1100110011001100110011001100110011

even fermion number -e/2 double quasihole (h/e vortex) at North Pole:

**01100110011001100110011001100110011

odd fermion number -e/2 double quasihole (h/e vortex) at North Pole:

"00110011001100110011001100110011
fractionalization: one -e/4 quasihole (h/2e vortex) at North Pole, one near equator.

*101010101010101001100110011001100110011

These translate into explicit wavefunctions that can
be calculated in finite-size systems



Represent bipartite Schmidt :;
decomposition like an excitation |

spectrum (with Hui Li) =

W) =) e P2 Un,) @ [Ugq) il

87

® like CFT of edge states.

® A lot more information than -

single number (entropy)

(b) N =12, Ny = 33

FIG. 1: Entanglement spectrum for the 1/3-filling Laughlin
states, for N =10,m =3, Ny, =27 and N =12, m = 3, Ny =
33. Only sectors of Na = Ng = N/2 are shown.

® many zero eigenvalues

6_6(1 —



Look at difference between Laughlin state,entanglement spectrum
and state that interpolates to Coulomb ground state.

FIG. 2: Entanglement spectrum for the ground state, for a system of N = 10 electrons in the lowest Landau level on a sphere
enclosing N, = 27 flux quanta, of the Hamiltonian in Eq. (12) for various values of z.

x=0 is pure
Laughlin

Can we identify topological order in “physical as opposed to model
wavefunctions from low-energy entanglement spectra?

H=xH_.+ (1 —CE)Vl
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® Hall viscosity gives “thermally excited”

momentum density on entanglement cut,
relative to “vacuum’”, at von Neumann
temperature T =1



Yeje Park, Z Papic, N Regnault
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Matrix-product state calculation on cylinder with circumference L
(“plevel” is Virasoro level at which the auxialliary space is truncated)



“fuzzy continuum” vs Lattice

® orbital vs “real space” cut

wavefunction of
Landau level orbital

/1IN

® The fundamental problem is in the projected
space, not its extension to “real space”



® The quadratic expansion of this even function around
the origin defines a natural “interaction metric”

® The problem is often simplified by giving it a continuous
rotation symmetry that respects this metric, but this is
non-generic, and not necessary.

® This metric and a rotation symmetry are important in
model FQH wavefunctions based on cft, which have a
stronger conformal invariance property.



® |t is straightforward to solve the two-body
Hamiltonian: Ri2 = R1 — R,

S
a b 1_ o:p2 _ab
| RYy, Ri5] = 2il5e // E,
equivalent to a one- = E,
particle problem H = Vn(R12) efC.

® |f there is a rotational symmetry, the energy
levels (called “pseudopotentials™) completely
characterize the interaction potential.

® a large gap between energy levels favors flux

attachment with a shape close to that of
the “interaction metric”




® Flux attachment is a gauge condensation that removes the
gauge ambiguity of the guiding centers, giving each one a
“natural” origin, so they define a physical electric dipole
moment of the “composite particle” in which they are
bound by the “attached flux”.

® This is analogous to how the “the vector potential
becomes an observable” (in a hand-waving way) in the
London equations for a superconductor.

)@ <~ (fuzzy) region from which
— particles other that those making
up the “composite particle” are
center of flux-attachment excluded

»*
»

a »

-------



® quantum solid

® unit cell is
correlation hole

® defines geometry

® repulsion of other particles make an attractive

potential well strong enough to bind particle

solid melts if well is not strong enough to contain
zero-point motion (Helium liquids)



® |n Maxwell’s equations, the momentum
density is

i = epD’ B, D'=€dVEj + P

® [The momentum of the condensed matter is

p=dx B
\

electric dipole moment

® in 2D the guiding-center momentum then is
Pa — €B€ab5Rb

® The electrical polarization energy of the dielectric
composite particle then gives its energy-momentum
dispersion relation, with no involvement of any
“Newtonian inertia” involving an effective mass




® The Berry phase generated by
motion of the “other particles”
that “get out of the way” as the
vortex-like “flux-attachment”
moves with the particle(s) it
encloses can be formally-
described as a Chern-Simons
gauge field that cancels the
Bohm-Aharonov phase, so that
the composite object propagates

like a neutral particle.
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® |[f the composite particle is a boson, it condenses into the
zero-momentum_(Zzero electric dipole-moment)
inversion-symmetric state, giving an incompressible-fluid
Fractional Quantum Hall state, with an energy gap for
excitations that carry momentum or electric dipole
moment (“‘quantum incompressibility”’, no transmission of
pressure through the bulk).

® AIl FQH states have an elementary unit (analogous to the unit
cell of a crystal) that is a composite boson under exchange.

® |t may be sometimes be useful to describe this boson as a a
bound state of composite fermions (with their own preexisting
flux attachment) bound by extra flux (Jain’s picture)
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® momentum 7k of a quasiparticle-quasihole pair is
proportional to its electric dipole moment pe

hka — Eabeg

gap for electric dipole excitations is a MUCH stronger
condition than charge gap: fluid does not transmit
pressure through bulk!



® Anatomy of Laughlin state

lect ith “fl : ' '
electron with "Tux Chiral edge mode with chiral anomaly

attachment” .
to form a “composite and Virasoro anomaly

boson”

geometric
edge dipole moment
determined by Hall
viscosity

______
-
- S

(Wen-Zee term)

~ g
-~ -
------

fractionally-charged

Topological and geometric bulk properties e/3 quasiholes obeying
(Abelian) fractional

revealed by entanglement spectrum of cut R
statistics



® the essential unit of the |/3 Laughlin state is the
electron bound to a correlation hole corresponding
to “units of flux”, or three of the available single-

particle states which are exclusively occupied by the
particle to which they are “attached”

® In general, the elementary unit of the FQHE fluid is a

“composite boson” of p particles with q “attached
flux quanta”

® This is the analog of a unit cell in a solid....



® The Laughlin state is parametrized by a unimodular metric:
what is its physical meaning?

correlation holes
in two states with
different metrics

® Inthe v =1/3 Laughlin state, each electron sits in a

correlation hole with an area containing 3 flux quanta.
The metric controls the shape of the correlation hole.

® |nthev =1 filled LL Slater-determinant state, there is no

correlation hole (just an exchange hole), and this state
does hot depend on a metric



but no broken symmetry
® similar story in FQHE:

-- -y
- L

® “flux attachment” creates

________ . i 7.  correlation hole
By .~ ® defines an emergent
e Thml geometry
—— ; i e potential well must be
% " strong enough to bind
"""""""" electron

S -7
.......

® continuum model, but

similar physics to Hubbard ® new physics: Hall viscosity,
model geometry............



3
® composite boson: if the central P2 ) = H (aj — a]L-) 0)
orbital of a basis of eigenstates of i<
L(g) is filled, the next two are empty L(9)[thm) = (m 4+ )[thm)

® this correlation hole is equivalent to
“attachment of three flux quanta” or
vortices that travel with the particle,
generating a Berry phase that cancels
the Bohm-Aharonov phase and
transmutes Fermi to Bose exchange
statistics.

different

® this shape of the corelation hole - and metrics
hence its correlation energy - varies T
with the metric g




® Origin of FQHE incompressibility is analogous to origin
of Mott-Hubbard gap in lattice systems.

® There is an energy gap for putting an extra particle
in a quantized region that is already occupied

® On the lattice the “quantized
region” is an atomic orbital with a % ---- .

fixed shape e ‘
¢ In the FQHE only the area of | ™
the “quantized region” is fixed. energy gap prevents
The shabe ¢ adiust t additional electrons
,e, , pe musta j.US © from entering the
minimize the correlation energy. region covered by the

composite boson



1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
e, has inversion symmetry
TR about its center

-~ »
------

It has a “spin”

1 3 5
2 2 2

1 ()‘() ..... L=1

_ 3

- |4 %H ..... - L=23

s=—1

the electron excludes other particles from a
region containing 3 flux quanta, creating a
potential well in which it is bound



2/5 state

1 3 5
2 2 2
1 1‘0 olo ] -5
_| 2 z‘z 2 [2]... —L=5
51 5 5155 5

Q= [ drititiotr) = st

second moment of neutral
composite boson
charge distribution



hopping of a “composite fermion” (electron + 2 flux quanta
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Jain’s “pseudo Landau levels”




® The composite boson behaves as a neutral
particle because the Berry phase (from the
disturbance of the the other particles as its
“exclusion zone” moves with it) cancels the
Bohm-Aharonov phase

® |t behaves as a boson provided its statistical spin
cancels the particle exchange factor when two
composite bosons are exchanged

p particles  (—1)P7 = (—1)F fermions

gorbitals  (—1)P? =1 bosons
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® The metric (shape of the composite boson) has a
preferred shape that minimizes the correlation energy, - \

but fluctuates around that shape _ .9
0F o (distortion)

® The zero-point fluctuations of the metric are seen as
the O(¢*) behavior of the “guiding-center structure

factor” (Girvin et al, (GMP), 1985)

® |ong-wavelength limit of GMP collective mode is
fluctuations of (spatial) metric (analog of “graviton™)

FDMH, Phys. Rev. Lett. 107, 116801 (201 1)



® Furthermore, the local electric charge
density of the fluid with v = p/q is

determined by a combination of the
magnetic flux density and the Gaussian
curvature of the intrinsic metric

@) = 5o (P57 ok (a))

"~ 21¢q h/s

Topologically quantized “guiding center spin” Gaussian curvature of the metric




® |n fact, it is locally determined, if there is an
inhomogeneous slowly-varying substrate
potential

H=Y v,(Ri)+» Vu(R; — R;)
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® “skyrmion’-like “cone”-like structure
moves charge away from quasihole by
introducing negative Gaussian curvature
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® |n the standard incompressible FQH
states, the bulk interior of the fluid is
described by a gapped topological field
theory (TQFT).

® The gapless edge degrees of freedom are a
direct sum of unitary representations of
the Virasoro algebra.

® Can there be continuous second order
transitions between FQH states at which
the bulk gap collapses!?



® The (fermion) “Gaffnian” model (Steve Simon et al)
® This is a model 2/5 state that (a) is an exact

zero-energy state of a (three-body)
interaction (b) has a non-unitary
representation of the Virasoro algebra on its
edge and (c) as a consequence is believed to
have bulk gapless neutral excitations (Read).

® |tis aJack polynomial with a “root
configuration exclusion statistics rule” of
“not more than two particles in five
consecutive orbitals™



® The “Gaffnian” interaction penalizes three-
body states

(21 — 22)(22 — 23)(23 — 21) | 1100
(21 — 22)(22 — 23)(23 — 21) X ((21 — 22)2 + (ZQ — 2’3)2 + (2’3 — 21)2)) I I OO I

H = VP11 + VaPiioo1



® On the torus, the 2/5 Gaffnian zero-energy
states has a |0-fold degeneracy
corresponding to the two sets of 5 “motifs”

11000 01100 00110 OO0O0IT 10001
10100 OI0I0 00101 10010 OIOQOI

T lowest weight (most to left)

® A degeneracy beween two internal states
of the 2/5 “composite boson” with different
parity.



In higher Landau levels the “10100” pattern
may replace | 1000 as the stable 2/5 pattern
because of competition between the
“vacancy potential” that favors putting the
second particle in the second orbital, and
repulsion from the first particle, which
pushes it outwards

O 0 O
-+

= —3 \dlfferent parltles/ 5 =

different intrinsic spin



® Domain wall between states with different VWen
Zee term carries momentum density (electric
dipole moment) but no chiral modes (no U(I) ¢
Virasoro anomaly)

negative weight primary field
A/Ofnon-unitary CFT 2

® gapless bulk if domain wall
energy is zero or negative

transmits pressure!

® sliding of domain wall attachment point removes
momentum from edge (non-unitary virasoro on edge)



® Many open questions about the gapless
critical state (e.g. what is the dynamical
critical exponent z (lor 2?))

® does charge gap exist for all ratios of the
two parameters!

® develop a Full interpretation of the non-
unitary Virasoro representation.



® Any matrix has a “singular value

decomposition”

0

diagonal

(real positive)

) =D ez Ul @ [vf)

=

“entanglement spectrum”
eigenvalues orthonormal basis of “Left” orthonormal basis of “Right”
degrees of freedom degrees of freedom



One of the striking characteristic properties of band
topological insulators (or “Symmetry-Protected
Topological States”)is their edge states

Shockley 1939

({( |
St TO \_! _l S S f ;/
f TN
il e _ (b)
E
I D | Fermi level pinned
Tg- WldEI)’ to edge state if neutral
,,,,, | charge +1/2 electron if
Clpse T i S eparated full , -1/2 if empty, per
at |||S (|]2 a — C[]l atomS e(?.ge

protective symmetry: spatial inversion
s-p band-inversion

Z invariant: lp—o X Ip—p = %1 atk =




: TVnnaane
il o e
E =
I D | Fermi level pinned
WldEI)’ to edge state if neutral
CI( charge +1/2 electron if
separated full , -1/2 if empty, per
‘ d
at atoms ecge

® |f both edge states are occupied, there is one

extra electron, 50% at one edge, 50% at the other
( half an electron at each edge)

® |f both are empty there is half a hole at each edge



plgrEr Fm

Ising FM

. planar
[ | .

» Nematic
I

Trivial singlet




® Schrodinger’s picture describes the system by
a wavefunction y(7) in real space

® Heisenberg’s picture describes the system by a

state | v) in Hilbert space

® They are only equivalent if the basis ) of
states in real-space are orthogonal:

p(r) = (rlp)

requires

(rlr') =
r A1)

this fails
<€—in a quantum
geometry



This is the entire problem\
nothing other than this matters! /\

® H has translation and H = Z UR; — R,)

Inversion symmetry i1<j ,
R* R7| = —i/l

(RY + B5), (RY — B)] = 0 | f | 5

like phase-space,
has Heisenberg

uncertainty principle
® generator of translations and want to avoid
electric dipole moment! this state

[Hv ZZRZ] =0

NN
(R* — R%),(RY — RY)] = —2it%, > [ <_ 8P
\

® relative coordinate of a pair of ' c

particles behaves like a single .
particle two-particle energy levels




Entanglement spectra
and “dominance”

® Schmidt decomposition of WA
: ~— N
Fock space into N and S e \
hemispheres. — \
T4
® Classify states by Lz and N - - — =
in northern hemisphere, _ 77T
relative to dominant - fZ

configuration. Lz always
decreases relative to this
(squeezing)
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® Hall viscosity gives “thermally excited”

momentum density on entanglement cut,
relative to “vacuum’”, at von Neumann
temperature T =1



“fuzzy continuum” vs Lattice

® orbital vs “real space” cut

wavefunction of
Landau level orbital

/1IN

® The fundamental problem is in the projected
space, not its extension to “real space”



® “skyrmion’-like “cone”-like structure
moves charge away from quasihole by
introducing negative Gaussian curvature
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