A Fuzzy Sphere Regularization of 3D CFT:
Lecture |

Yin-Chen He
({al EEIR)

Perimeter Institute

Tallahassee, 2026 January



Collaborators

Westlake University:VWei Zhu, Liangdong Hu, Chao Han

Perimeter Institute: Zheng Zhou,Yijian Zou, Davide Gaiotto, Chong Wang
Stony Brook: Zohar Komargodski, Tzu-Chieh Wei,Wenhan Guo

Johannes Hofmann (MPI-PKS), Emilie Huffman (Wake Forrest), Gabriel Cuomo
(SISSA)



Qutline

* Lecture |:Introduction: motivation and fuzzy sphere regularization

 Lecture |:3D Ising CFT
- State-operator correspondence
 Operators, correlators, OPEs, F-function

* Lecture 2: Recent progress:

 Chern-Simons-matter theories: phase transitions between quantum
Hall states

* Fermionic CFT and super-Ising

« Conformal defect



Quantum critical phenomena

\
\  Quantum /
\ oy
\ critical 7/
: \ . .
Domain-wall \ ,/Fllpped-spm
quasiparticles ,/ Quasiparticles

i
9e g

Order-disorder transition

) €N ¢
H b

/__/"

Gapless spin liquid

KA ux—A
N——N—
K— N
H—p— A

Deconfined phase transition

IIII

Phase transition of topological order



Critical phenomena in modern physics

* The study of critical phenomena gives birth to a number of fundamentally
important physics concepts/theories:

A. Universality.

B. Renormalization group.

C. Conformal field theory (CFT).

Conformal transformation | T
(angle preserving transformation)

Tt — bt
"1 —92b-x + b2x2

rH

: discovered the 2D Ising transition has an emergent conformal
symmetry, and conjectured it is also true for the 3D Ising transition.



Conformal field theories (CFTs)

Statistical mechanics

Example:
Ising model,
liquid-gas
transition

Quantum gravity, String theory

Example:
AdS/CFT

Quantum matter
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2D (1+1D) CFT

Many 2D CFTs are exactly solvable quantum field theories.

CET . ., Quantum Hall effect

CFT correlators

Exact algebraic (TTwe) = Pf( 1 )
, Ising i — Zj
structures ’

<Heim¢(zi)>[](l) =]z —2)™

i i<j

QH Wavefunctions

Pf(zi : Zj) TG — )"

1<j

Universal CFT data Scaling dimensions, Gapless chiral edges
central charge, etc.

Shift: scaling dimension of electron operator.



3D CFTs: a central open challenge

» Central to critical phenomena in statistical mechanics, quantum matter.

- Strongly interacting, no exact solutions (yet) — only a limited set of

complementary methods, each probing a corner of the CFT landscape:
|. Perturbative RG
2. Lattice simulations (mostly Monte Carlo).

3. Conformal bootstrap

What is missing: a versatile nonperturbative framework for 3D CFT.



In this lecture

Quantum Hall > > 3D CFT

The gift returns —
in an unexpected way.



State-operator correspondence

Radial quantization

of d-dimensional CET Eigenstates of the quantum Hamiltonian.

A

S xR
- ! One-to-one correspondence
ok, = E, — FEy = 54,
Scaling operators in the CFT.
05 i
(0i(21)0;(x2)) = 71 — ’ oA
Sd—l L1 ZE2‘
—

Quantum Hamiltonian on S¢~!



State-operator correspondence

Radial quantization
of d-dimensional CFT

g1 « R
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Quantum Hamiltonian on S¢~!

Eigenstates of the quantum Hamiltonian.
A

One-to-one correspondence

SE, = E, — Ey = LA,

\4

Scaling operators in the CFT.
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State-operator correspondence

Radial quantization

of d-dimensional CET Eigenstates of the quantum Hamiltonian.

A
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Scaling operators in the CFT.
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«—5 Primaries and descendants

Conformal O —> 0y, O—09,,,0,,,0 ---
Quantum Hamiltonian on St  multiplet A A+ 1 A —+ 2

There are infinite number of primary operators in any 3D CFT!

3D A, ~0.5184189(10) A~ 1.412625(10) A =~ 3.82968(23)
Ising n=2A,—1 v=1/(3—A) w=As —3



Radial quantization on a lattice

2D CFT:We can just study a quantum Hamiltonian on a circle.

Most conformal data can be extracted.

<. . >

3D CFT:We need to put a quantum Hamiltonian on a two-sphere.
But a regular lattice won't fit since two-sphere has a curvature...

Efforts along this line:



Our recipe: make it fuzzy

Sphere is a curved space.

Discretize Fuzzify

Lowest Landau
level projection

Spherical tiling fuzzy (non-commutative) sphere

Spherical rotation

is broken badly. Spherical rotation

is kept exactly.



Fuzzy sphere regularization of 3D CFTs

Quantum mechanical model realizations of 2+ 1D CFTs.

Spin-1/2 \T>) e (1 0) a <0 1)
] on each site <’ 1) 0 —1 1 0
attice .
model H = Z> ooy —h) o
(1] (
Spins point to +z or -z Spins point to +x .
241D Ising CFT
% Particles movijcg on sphere in the presence of a monopole.
& e
1
Fuzzy a H:%Z(pﬂrz‘l ° 4 ZU&:Z T;)
sphere =1 “I=1"|nteraction term
model

 The model is local if interactions are local.

o . 2+|D CFTs can be realized by tuning the interaction form.

This idea was firstly pursued on the torus.



Even 4 particles work

Gaps of ALL the excited states of the system with N=4 “spin”.

Op, 0
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CB
0.918
1.518
2.018
2.018
3.018
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0.530
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2.427
2.428
2.847
3.291
4.241
4.618

Errors
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1.382
2.337
3
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Errors
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4.8%
8.4%
1.4%
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2.9%

6 primaries and | | descendants in the fuzzy sphere model with 4 “spins”.



Landau level and non-commutative geometry

Particles moving in a strong magnetic field leads to non-commutative geometry.

Ba
c:%fz_m Q Q
Ai:—geijxj Q Q Q
2 /

Landau level: single particle states in the presence of magnetic field.

 Quantized energy: F,, = E(n +1/2)
M n =2 666660
- Complete flat. n — 1 c-6-6-6-6-9
» Massive degeneracy at each level: ]';3—“4 n=00066660
-

Restrict/Project to the lowest Landau level:
. - B .. o i
Lo=—2 A= Eewxzwj = [z', 2’] = Eé”



Spherical Landau levels

B-di=4drn-s

/ Landau levels (LLs)
Single particle

Electrons moving kinetic term

under a magnetic 1

monopole. SN2

(au‘l‘iAu)Q n=106666660
n=00—16—"16—-1©

nn+1)+ (2n+1)s
2Mr?
» The states (orbitals) in each LL form a spin-(n+s) SO(3) representation.

» Each LL has a level dependent quantized energy

- The wavefunctions of each LL are monopole Harmonics Y,,f‘i)s,m(@, Q) .

Lowest LL wavefunction m = —s,—s+1,--- s

YTS(,fv)z(Hv 90) — Ns,mezmgp cos® ™ <—) sin®~ ™ (—)




Lowest Landau level (LLL) projection
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LLL projection Landau levels
s n =2 0-6-6-6-6°90
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m=-—s n=16-6-6-06-9
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LLL projection and fuzzy sphere

On the LLL the sphere coordinates T2+ x5 + :13% — 1 become:

(Xi)ml,mz — /dfa?%?s(,i)u (f)Ys(,%Q (f)

3
1 S
X Xi| = ——1e;;1. X X; X, = 15,
[ g] S+1153k k ; S+12+1
3
Fuzzy two-sphere: z;, :?:j] = 1€k Tk, Z x;x; = const - 1
i=1

Yo (0,9) = Ny me™? cos™ ™ (;) s (9
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Fuzzy sphere model for the 2+1D Ising CFT
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Fuzzy sphere model for the 2+1D Ising CFT

B-di=4r-s A
/ Non-relativistic fermions o S sty o [ U1(D)
with an isospin. (m) (?’D (), 9,(%)) 0 ( T

H = /da: (W

LLL projection
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A closer look at the fuzzy sphere model

25 + 1-site fermionic model O ® ©® O O O O

2541 .= —g. —5+1.--- ‘s
Many-body H o 0) m; = S, =S JORRE —1 |
Hilbert space M spin-s rep of SO(3) b

Continuum limit; s — o0

1=1

Hamiltonian for the 2+1D Ising model Cjn = (C;rn - C],Ln i)
S ? ) S
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Fuzzy sphere model for the 2+1D Ising CFT
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Finite size scaling: order parameter
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State-operator correspondence

Radial quantization

of d-dimensional CET Eigenstates of the quantum Hamiltonian.
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Symmetries

2s + 1-site “fermionic chain” O © © O O O O
T (T f
Fermions are at half filling: N =2s+1  “m — (Cm,T’ Cm,i)
m=—-s,—s+1,---,s

N = 2s + 1 is the space volume, so vV N ~ R/J.

UV model IR Ising transition
Cyy, — 0 Cpy Z2 |Ising symmetry
SO(3): Cm=-s,-,s spin-s irrep SO(3) Lorentz rotation

Particle-hole

c,, — icYc)
symmetry

o Space-time parity symmetry



State-operator correspondence

Energy gaps with quantum numbers: N=15 electrons (spins)
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State-operator correspondence

Energy gaps with quantum numbers: N=15 electrons (spins)
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State-operator correspondence

Energy gaps with quantum numbers: N=15 electrons (spins)
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State-operator correspondence

Energy gaps with quantum numbers: N=15 electrons (spins)
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State-operator correspondence

descendents: 9, ---9,,10"0, n,7>0 (A+2n+j,7)

J

o multiplet 16 electrons e multiplet
o i’ | T o o
6— > 6,
O —_— . O —_—
(o] o
D — D —
—O— el O O o
A4- 4 -
-0 o —O— o
3— 3 —
O ~O- -O-
2- 2-
-o- —o-
1-— 1
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0— | | | — O0— | | | |



State-operator correspondence

* We identified |5 primary operators, the numerical errors of all
primaries are within 1.6%.

* We looked at 70 lowest lying states with L<5, all of them match
theoretical expectations with small errors~3%.

Bootstrap data from

CB 16 spins Error CB 16 spins  Error

o 0.518 0.524 1.2% € 1.413 1.414 0.07%

o' 5291  5.303  0.2% ¢ 3.830  3.838  0.2%

O 111 o 4.180 4 914 0.8% € 6.896 6.908 0.2%
o) . 6987  T.048  0.9% L 3 3 -

Tpinans 4638 4.609  0.6% T 5.509 5583 1.3%

Opypapsps 0-113  6.069 0.7% Eiiwwgm ZZ? Z;Zi 1(23?

A %:;lim S 1001 - |




TABLE VI. Conformal mulitplet of €., usp5u4-

Operator Quantum Number CB data N =16 Errors
{=4 5.022665(28)  5.1029942  1.599%

(=4,P=-1  6.022665(28) 6.17684693 2.560%
6.022665(28) 6.19439341 2.851%

€pipopzpa

EnaprOp€uy papspa

=3

O €pr pops s

TABLE VIII. Conformal multiplet of o’.

Operator Quantum number  CB data N =16 Errors
! £=0 5.2906(11) 5.30346641 0.243%

' £=1 6.2906(11) 6.27713785 0.214%
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Even 4 electrons work!!!

Gaps of ALL the excited states of the system with N=4 electrons.

6 primaries are found!!

CB 4 spins Errors CB - dspms - Krrors
s 0550 289 € 1.413  1.382  2.2%

o) . . . 0
0, € 2413 2337 3.1%

0,0 1.518 1522  0.3%
T, 3 3 NA

o 2518  2.427  3.6%
0,0, € 3.413 3.126  8.4%
0,,0,,0 2518 2428  3.6% si13 3err 48y

€ . . .

00 00 3518 2847 20% O
s T i A 3.663  8.4%

0, 0o 3518 3.291  6.5%
Lis0 o 15 EroprOpThy 4 1.054  1.4%

o) 1 149 . . . 0
e ¢ 3.830 4.019  4.9%

Opipans 4638 4618  0.4%
S 5 1856  2.9%
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Let us continue with fuzzy journey

The core of the story is the State-Operator correspondence.

*  We have explored the energy gaps of the states.

A lot of information ready for exploration:

A. Wave-functions of the states.

B. Operators.



From orbital space to real space

All the computations are done in the orbital space o

25 + 1-site “fermionic chain” © ©®© ©®© O O O O

25+1 I £ 4
Many-body H o 0) m; N §, =38 Ty S a; =11
Hilbert space M, i spin-s rep of SO(3) ’

1=1

Real space is continuous (NOT discrete like lattice models).

S

Pi0.0) = Y Y0, 9)

m=—s

VL) (0, 0) = Ny ™ cos®*™ (9) Jp— (Q)

Any observables can be computed in real space!



Numerical data of 2-point correlator

We get a function defined in the continuum:

0.6941 + 0.3724 cos 0 + 0.2840 cos® 0 + 0.2091 cos> 6 + - - -

e 9 _ O I ' | ' | ' | ' | i-
=Y i —— N =16 L
z |
(6 < —— N=24
7“6 — N=3
O (6 = ) (@)0) % o 3
22y _ A0In7(0 =0)n"(0)[0) & | ---- theoretical [I -
(n*n®) = o [\ ]
(0 = 0)]0)2
e E=00? 5[ )
1 !
CFT prediction: (2sin(0/2))75 o h..-!r_v.iyu“@.h‘ -
N 00 02 04 06 08 10

Operators and their correlators are sharp, continuous and conformal.



Four-point correlator
1.846 + 0.171 cos f + 0.152 cos? 0

+0.109 cos®> 0 + 0.109 cos* 6 + - - -

n*(6 =0)
4 T N=16
n(0) > —— N=24
N =40

(;JUUU<T

G(z = ew, z = e_w)

(o|n*(0 = 0)n*(0)|o) 00 02 04 06 08 10

(o]n*(0 = 0)[0)2 0 /2m
0.06% difference
Bootstrap N =40 N =32 N=24 N =16
0=m 1.76855 1.76742 1.76671 1.76549 1.76244
0=m/3 2.049 2.03921 2.03495 2.02470 2.01212




Numerical data: OPE coefficients

We have computed |3 OPE coefficients including a few new ones that have
not been computed by any approach.

Operators | Spin | Z2 | fapy (Fuzzy Sphere) | fo3, (Bootstrap)
o 0 | — | Froe~ 1.0539(18) f o ~1.0510
. 0 e A 1.5441(23) e A~ 1.5324
€ 0 fooer = 0.0529(16) fooe = 0.0530

focer A 1.566(68) fooer 7 1.5360
o’ 0 — foroe &= 0.0515(42) forge = 0.0572
Foroer 2 1.294(51) NA
foreor & 2.98(13) NA
T.. > | 4| foor ~0.3248(35) | foor = 0.3261
forer A —0.00007(96) foror =0
foor ~ 0.8951(35) foop = 0.8892
fror ~ 0.8658(69) NA
O 2 | = | fre,, ©0.400(33) | foeo,, ~ 0.3892
foero,, ~ 0.18256(69) NA




F-function of 3D Ising CFT

F = (tan 6’5’9 — 1)SA|9:7T/2
F(R) = Frging +aR™ +O(R™1)

Salt) = =Tr(palnpa)
R R/6 ~ VN =+2s+1
=q—snf—-F 0llm———m—————————
0 - — 0.097351 x"52%60 4+ 0.061377
(N =2s+1=28,9,---,15
Our estimates on fuzzy sphere: 0.107 T T
0.09}
log2  3((3) -
Fscatar = ~ 0.0638 _
l 8 1672 |
. 0.08}
€ expansion |
0.07}
Frsing = 0.957Fscq1qr =~ 0.0610 i
Frsing = 0.979Fscqiar = 0.0622 0.06}




Almost everything can be studied

A partial list of results in this new “fuzzy” world.

- Operators, OPE coefficients, correlators
- RG monotonic F-function
- Conformal generators

+ Conformal defect and boundaries
* Free boson and free fermion and Super-Ising CFT

- Gauged Ising, Majorana
- O(N) WF

 Deconfined phase transition and non-Abelian gauge theories
» 3D Yang-Lee non-unitary CFT

* Chern-Simons matter theories



Welcome to the era of fuzzy sphere

Simulating 3D (2+1D) CFT? Easier than ever!

Lattice model simulation

1000~100,000 spins

Millions of CPU hours

Very limited information

No access to conformal symmetry

Fuzzy sphere

4~20 spins

30 mins on a laptop

Almost everything

Fingerprint of conformal symmetry



Everything made easy by FuzzifiED

Numerical package (FuzzifiED): www.fuzzified.world Zheng Zhou

|Omins~ | hr coding, I min-1hr simulation on a laptop!


http://www.fuzzified.world

Can wavefunction be the hero once again?

Two wavefunctions reshaped condensed matter physics:

Superconductors H(uk + Ui CLT Ciki) ‘O>
Fractional RN
t L m
ractional quantum H(Z@ — 2))™ exp ' Z 22
Hall oy W

A wavefunction ansatz for 3D Ising on fuzzy sphere:

2s £ — = + .+

1 2(1 — A)E—l—l m eme —m T Ty

exp (Z 7 log ( w, > (-1 5 1 ©0)
/=0

m=—Y/

| . Power law correlation function.
2. High wavefunction overlap with the Ising CFT.

N=12 N=16 N=20 N=24 N=28 N =32
Ising CFT  0.9967 0.9951  0.9935 0.9918  0.9902  0.9885




Thank you!
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Fuzzy sphere regularization of 3D CFTs

Quantum mechanical model realizations of 2+1D CFTs.
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 The model is local if interactions are local.

o . 2+|D CFTs can be realized by tuning the interaction form.

This idea was firstly pursued on the torus.



State-operator correspondence

Radial quantization

of d-dimensional CET Eigenstates of the quantum Hamiltonian.

A

Sl xR
- t One-to-one correspondence
ok, = E, — Ey = 54,
Scaling operators in the CFT.
;i
<Oz($1)03($2)> — ‘xl _ ;Q‘QA
d—1

«—5 Primaries and descendants

Conformal O —> 0y, O—09,,,0,,,0 ---
Quantum Hamiltonian on St  multiplet A A+ 1 A —+ 2

There are infinite number of primary operators in any 3D CFT!

3D A, ~0.5184189(10) A~ 1.412625(10) A =~ 3.82968(23)
Ising n=2A,—1 v=1/(3—A) w=As —3



State-operator correspondence

* We identified |5 primary operators, the numerical errors of all
primaries are within 1.6%.

* We looked at 70 lowest lying states with L<5, all of them match
theoretical expectations with small errors~3%.

Bootstrap data from

CB 16 spins Error CB 16 spins  Error

o 0.518 0.524 1.2% € 1.413 1.414 0.07%

o' 5291  5.303  0.2% ¢ 3.830  3.838  0.2%

O 111 o 4.180 4 914 0.8% € 6.896 6.908 0.2%
o) . 6987  T.048  0.9% L 3 3 -

Tpinans 4638 4.609  0.6% T 5.509 5583 1.3%

Opypapsps 0-113  6.069 0.7% Eiiwwgm ZZ? Z;Zi 1(23?

A %:;lim S 1001 - |




Welcome to the era of fuzzy sphere

Simulating 3D (2+1D) CFT? Easier than ever!

Lattice model simulation

1000~100,000 spins

Millions of CPU hours

Very limited information

No access to conformal symmetry

Fuzzy sphere

4~20 spins

30 mins on a laptop

Almost everything

Fingerprint of conformal symmetry



Outline

- Application of fuzzy sphere scheme to study open problems:

 Chern-Simons-matter theories: phase transitions between quantum
Hall states

* Fermionic CFT and super-Ising

« Conformal defect

* Conclusion and outlook



Fractional quantum Hall state

Classical

Ry, =1/0yy ~ B

62

Quantum Ozy — V h

k
TQFT —ada
4

Jain sequence: |/3, 2/5,..., 3/5,2/3

Phase transition?



Fractional quantum Hall on the lattice

Fractional Chern Insulators (FCI)

Lattice + Magnetic field No magnetic field

A Gates C 05 C/Chrr 10 D 0.5 C/Crs 10

vvvvvvvvvvvvvvvv

New opportunities for studying quantum phase transitions (CFTs) in experiments.



Phase transition between FCI/FQH

n=0¢+s

» Disorder is not necessary

- Lattice symmetry

New family of quantum critical points

Ny
o K »
[ — ; Dr(id 4+ ¢ — m)br + Eada + ... Transition between

Jain QH states.

Chern-Simons-matter theories



Confinement transition of chiral spin liquid

Kalmeyer-Laughlin chiral spin liquid Trivial phase: gapped, no SSB,
a.k.a. 1/2 bosonic Laughlin state ) no topological order
O

Candidate theories: gapless boson/fermion coupled to CS field

. 2 1
One boson with U(1)2  [(9, — a,u)¢|2 — 4—ada + §m2\gb\2 + u|g|*
s

One fermion with U(1)_3 /5 Uy (10, + a, ) + ;ada + map)
T

“Simplest” interacting CS-matter theory

Is this a CFT, or is it even a continuous transition?



Duality conjectures

Confinement transition of Chiral spin liquid (1/2 bosonic Laughlin state)

Conjecture: a SO(3) CFT with four dual Lagrangians

One boson with U(1)) {One fermion with U(1) 3!
A CFT with i
SO(3) symmetry?

5 2 Y i @ i x - \@ St = X Y
0 P S ON 27 PO A ROR PR e O3 T Wy PN
v 4
°)

iOne fermion with SU

One boson with SU(2);

2)-1/2

—1/2



Duality conjectures

Confinement transition of Chiral spin liquid (1/2 bosonic Laughlin state)

Conjecture: a SO(3) CFT with four dual Lagrangians

One boson with U(1)2

ACFTwith «
SO(3) symmetry?

{ One boson with SU (2)1 \ One fermion with SU |

Doping leads to superconductors!!

v

Anyon Superconductivity from Topological Criticality in a Hofstadter-Hubbard Model

Stefan Divic,! Valentin Crépel,> Tomohiro Soejima (8l &% X),®> Xue-Yang
Song,* Andrew Millis,>°® Michael P. Zaletel,>® and Ashvin Vishwanath?3



Superconductors from quantum criticality?

Hofstadter-Hubbard model

H = — Z(em’ij C]L-LUCJ'U + hC) +U Z(C,}LTCZ'T + C,LCQ)Q

]

C=?2 Chern Chiral spin liquid
insulator Semions @1’

® >
Koy — 2 / Koy = 1

Single electron gap: AE, > 0
Cooper pair gap: AF =0

At phase transition:
C1C|

Key question: Is it really a continuous phase transition?



Superconductors from quantum criticality?

Hofstadter-Hubbard model
H ==Y ("l cio+he)+ U (chei +clyeiy)?
N i

Superconductor

Doping
C=?2 Chern Chiral spin liquid
insulator Semions @

Single electron gap: AE, > 0

At phase transition:
Cooper pair gap: AFE =0

CTC¢

Key question: Is it really a continuous phase transition?



Make it fuzzified

Boson-fermion mixture system

Relevant to Feshbach resonance in cold atom systems.

Two flavours of fermions One flavour of boson

b’/ f2 + h.c.
©--0- : -®-

Electric charge Q Electric charge Q=2

RAN BAER RAN RITN
& . 0 . & . 0 .
— — — — — — — — — —
R e . . g
“as? “as? “as?
-w
-
— f— f— f— — —- — — .—: —
. . °, . g
Cens® “as?® s’ “as?®
-w -w -e -e -w -w -n
SRR SRR ot 0 ot 0 0% ot 0 0%

a ORI 0 PR CE . 4 CE . - - ‘s
— — —r — — —r —r — — d —
. T T . ", o . ", o . - - .

3 3 3 . .
s’ s’ s’ s’ *ns® s’ *ns®

SU(2 1W1th(I)
(2) ,u)

v = 2 Fermionic Integer QH v = 1/2 Bosonic Laughlin state
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H = /d277[(nb +2ns)? — %(beflf2 + h.c.)+ png|,
te = 0.312

Two relevant S: tuning operator for the transition Ag = 1.52(18)

operators: j . SO(3) conserved current, A = 2

a. S b. J
6 I
i o i
’ o sy ° *RCAy em,,y
4 OHOAY 4" OmCAY ~
< 3 omOAY ONCAV a 3 ORCAY o AV
2 erAY 2 on AY
i T e9 w8 o7 1 ©9 m8 7
0 A6 V5o ) AG Vv5H

This transition is continuous and conformal.



More evidence

» Conformal correlators of local operators

- Robustness of the scaling dimensions at different parameter points.

* Conformal generators.

il 0,0 PH z
< '/i +K

level




Qutline

- Application of fuzzy sphere scheme:

 Chern-Simons-matter theories: phase transitions between quantum
Hall states

Fermionic CFT and super-Ising

« Conformal defect

* Conclusion and outlook



Fermionic CFT

» CFTs with local fermionic operators.

1_,. 1 I _. _ A
L = 5)2@7“8#))( L= 5(60)2 T 5?@7%)#9( T %UXX +
Free Majorana fermion Gross-Neveu-Yukawa CFT, super-Ising

* More relevant for materials and has cleaner experimental diagnostics.

» Challenging for fuzzy sphere approach.

% Magnetic spatial symmetries forbids microscopic
7 particles (fermions) to be be a part of CFT.
Y

or CFT operators are charge neutral.
O T o
o= T T (2 e wT(CE’)
¥ n (x):(wT(z)va(aj))a (A -
f ' 1, (Z)

4—!0'

4



Fermionic CFT on fuzzy sphere

Boson-fermion mixture

H = /de [(nb + nf)2 + 1 (bTbe(D@ +1iDy)f + h.C.) + ,unf}

)_‘_‘_‘_‘_‘_‘_
-nw -nw -nw -nw -n
b PY » PY » PY » PY » . >
* * * * *
o - o - o - o - & -
. . . .
L2 L2 L2 L2 L2
* * * *
* “an® “an® “an® as

Local fermion f1b,b' f

Angular momentum
of boson and fermion

0.5
0.4
0.3
0.2

0.1

0.0

has 1/2 mismatch*.

|

Spin-statistics theorem

*Wen-Zee shift




Operator spectrum

H = /dzf [(nb + nf)2 + 1 (bTbe(DQ +1iDgy) f + h.C.) + ,me]

For t € (0.2,0.5) the free Majorana CFT appears at u = 0.

A"\O
-“’o a2 : iy o 7
o
" ) %
© O
(*"o « O ‘t'o n
A « &0 ]
« &0 _
e 13 = 12 11 a 10
I\ ]
v9 o8 7 ¢ 6
«AO | | | | | | | i
00 05 10 15 20 25 3.0 35 4.0

!

Two-component
Fermionic spinor

X1/2 ™ be

X—-1/2 ™ fTb

H = /dQ:z_?’ (XTw”aux)



Super-Ising

Emergent supersymmetry  Majorana fermion coupled to critical scalar (Ising)

a. Critical real scalar

f EN?’Z1

@
f T ~ 1 f‘ff
-0~ ~0-0-@-

1 g A 4

1
_ "
L = 2(80) + zxw X + 20x><+ 4'

Potential realization on the surface of
3+ 1D topological superconductor.

Fuzzy sphere realization

c. Super-Ising

b. Free Majorana ; e,
SR 7 Jat — @ L H L
L @n— ey e

TX~(b‘rf, £7b) = HIH A H A A e -
! f RN

.w
5 °
.
— d‘ — — — — N DR
L4 L4
Yenss _._, ‘._._._._._‘_- :_._
. .
¥ ¥
* *
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H=H{+ H>
Hy - / B [02(7) + t ((F) D7) + hoc.) + Uny (7F)V200(7) + gna (7F)ny(7)]

Fermi kinetic term Scalar interaction Yukawa

o 5 s s [uning of 3 relevant
Ho = 2 —hn, — — U &
2 /d r( " (T) ,ulnl(r) bnb(r)) perturbation.

300 1 o2l *™a Y0 Reg emeaT | t=15U=025g=1
- ® ]
250 L0 oW 4 Oc @N AG om) 4 OWOA OO0 ]
2.0 yoy emeh- gemea 5
915 cemia 00 omoA *
1.0 y oA §
: e 9 7
0.5 o ®F A N, q 65
: @ A6
0.0- nrem A l l l l - Bootstrap data

00 05 1.0 1.5 2.0



a. Super-multiplet of «
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Conformal defect and boundary

Classical system

Quantum system

-~

Kondo impurity Surface criticality

Line defect Surface criticality

Bulk conformal Defect conformal
symmetry symmetry

SO(d+1,1) - SO(p+1,1) x SO(d — p)

- New operators living on the defect.

 Non-trivial interplay between bulk and defect.



Solving conformal defect using fuzzy sphere

(a) R® Line defect (b) S2 xR

-----
————————
- -~ -
- -~ -
_____

_ T = —00 =0 T = 00
Wely transformation

State-operator correspondence — @ Sir=0
still works for conformal defects.

|r

0

Magnetic line defect of 3D Ising: H = Hyuk + Haefect
Hgetect = _hNnZ(N) - hsnz(S)

Defect operators | Defect creation Defect changing /
1
hy = hg >0 hny > 0,hs =0 I hxy > 0,hg <0 Cusp anomalous

dimension



State-operator correspondence

H = Hbulk + Hdefect
Hdefect — _hNnZ(N) — hsnz(S)

Defect conformal symmetry: SO(2, 1)

Defect operators iy = hg > 0 Defect creation hy > 0,hg =0

-5:-0 Ov 5:: =R 5 5
e | || A
| | 4 ownv o |4 owny | Lo Notb
o~ L0137 | | | I ] .
| | | 3| 1 3 . 10
- { 3po%av o {3}, | ]
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ooTY | | [v 20 2f ';2f
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g-function (defect central charge)

function; g = £dCFT
5 ' ZCFT

« 2D bulk:

« 3D bulk:

* General dim bulk:

Our results: g = 0.602(2)

Bootstrap confirms our prediction
g = 0.605(32)

e expansion: g = 0.57 + O(e?)

Monotonic under RG flow of defect

0.62
06l 0600 0.001 0.088
61 g=0.602 + N,
060 - e
I ‘..“*"0.
0.59 T
058
0.0 0.1 0.2 0.3 0.4



Conformal boundary

1/g

a b
K disorder

special surface CFT

2d Ising CFT

surface order
bulk disorder

ordinary surface CFT extraordinary surface CFT

order

»\}U
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A lot to explore in this fuzzy world

Direction |

A numerical tool to solve open problems of CFTs/QFTs:

» Ceritical gauge theories: QED3, QCD3, Chern-Simons
matter theories, etc.

- 2+|D CFT at finite temperature, Cardy formula
- Conformal defect

* Non-equilibrium dynamics, quantum chaos

- Complex fixed point, complex CFT

» Landscape of CFTs,new CFTs
- Higher dimensional generalizations

Direction |l

Unreasonable effectiveness of mathematics (fuzzy geometry):
- Regulating QFTs using non-commutative geometry?!
- Exact solution or hidden structure of 3D CFTs!?!



Non-commutative geometry

P2

»
[xi,pj] — iﬂ5ij I > [$7;, $j] = 7’6)@] m
non-commutativity non-commutativity P_y
in phase space in real space 0
m
Heisenberg’s original idea in 1930s: to cure the
infamous UV divergence in quantum field theory ]
P1
A PhD
A letter to project
1930 1947
Heisenberg Peierls Pauli Oppenheimer Snyder

Mathematical foundation was developed
by Connes during 1970s-1980s.



0.9

0.8 |

0.7 1

0.6 |

0.5+

0.4 1

0.3

Ground state is little entangled

Entanglement entropy with the system cut into two halves.

2+1D Ising Fuzzy
2+1D Free Fuzzy
==14+1D Ising CFT

10

20

40

50

| +1D Transverse Ising model
1 N
S=-1
6 n{

} - 0.478558014(5)

T

2+1D CFT on fuzzy sphere

S=aVN+7p



Can wavefunction be the hero once again?

Two wavefunctions reshaped condensed matter physics:

Superconductors H(uk + Ui CLT Ciki) ‘O>
Fractional RN
t L m
ractional quantum H(Z@ — 2))™ exp ' Z 22
Hall oy W

A wavefunction ansatz for 3D Ising on fuzzy sphere:

2s £ — = + .+

1 2(1 — A)E—l—l m eme —m T Ty

exp (Z 7 log ( w, > (-1 5 1 ©0)
/=0

m=—Y/

| . Power law correlation function.
2. High wavefunction overlap with the Ising CFT.

N=12 N=16 N=20 N=24 N=28 N =32
Ising CFT  0.9967 0.9951  0.9935 0.9918  0.9902  0.9885




Summary

Thank you!

* We proposed a new scheme called fuzzy sphere regularization to study
3D CFTs by making use of the quantum Hall physics and non-
commutative geometry.

A major surprise is that it miraculously works for a very small system
size, i.e. N=4~16 spins.

A wealth of information (e.g. operator spectrum, OPE coefficients, F-
function) as well as different CFTs (e.g. Wilson-Fisher, SO(5) deconfined
phase transitions, defect CFTs, QED3-Chern-Simons theory, Majorana
fermion, super-Ising) can be computed efficiently in this scheme.

Let’s explore the fuzzy world!
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