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The Cooper paper, 1956
Consider two interacting particles ;1 + ]52 =() III(;[/I _;lnz) — \P(llg)
r rr, r, r,
[p* /m—ET¥(p) =—[V(p.Y¥(Pd’p'/ 27)']

Let V(}l?,zl?') =}~ >with the notation lII(]l;) =D/[p°/m—-—E]=

CI)=—V(I)f

p“dp'dQ I . |
l.e., the integral converges at large p

rx) |\ p?/m-E
In 3D to form a bound state one needs a finite V' !
I Cooper: not so for two electrons near the Fermi surface

p dp'dQ 1 _ 1
=yl oy (p, _E) |V|<I>fv(EF)d§(2§+8

E=2E, &8 =vp(p-pp)e>0
lintegrated over & C {0, @} Onefinds: & =wexp{-{2/gV(E)]} (g <V

) |V /2| ®V(E,)In(@/ €)

The solution always exists! The Fermi surface is unstable with respect to pairing at
the arbitrary weak attractive interaction !
(BCS, 1958)



the e-e mteractlon

Z aB:Au (k k Na: k+q/2. aak+q/2 ﬁak +q/2, 20 /2,

(k T,-T,)=- {T (aka(k T)ak,/j(kafz))}

Now

2k <o, >#0: N/2
Ek<&,:,a&_+k,/5 >=(0: N/2

(Gor’kov, 1958)

The anomalous functions:
1 A
Fa,ﬁ (k;1,-7,) =T, (ak,a (71)51-1(,/5 (7,))}

FO:}J’(;(;TI -T,) = {T (a’, a(T1)d;,ﬁ(rz))}



In the equations for the new Green functions:

1

(i, - 5(12» (ko)A (b)F *(éw>— 5,
(i, + EG) L (ko 0,)+ AT (k)G (k,) = 0

the “gaps” A(l;), A* (llc) are the superconducting order parameters :

A 5(k) = -2 Ve (ks k) < (D), (7) >= _2 Ve (ks OV, (K, 04)
A (k)= -Z Vi sk <@, ()] (T) >= Z i (k,k F; (k',0+)

Definition of the transition temperature Tc from the linearized gap equation:

A, (k) =—T 2 V o5 ek YA (K {? + &2 (k)Y

43k - th(E, 1 2T)
Q) £,

~n T _ ~r r . r
TS VAK) <...>= V= (In(W / T) [V (k, K YA(K YR, .
c F.k
w, k'



Energy spectrum:  iw,=E

(0, - EGN Gk, @,) + ARV E* (k,@,) = 3,
(i, +EG)E* (k) + A ()G(k, ) =0

1. ~ 1 ( I is the unit spin matrix)
[E-ER) A(k)
Det =0

At (k) [E+&kN

Det |[E> - E(k))] - A(k)x A" (k) ||= 0



Strong spin-orbit coupling: S = P

P even: Aa/),(;() = i(ﬁz)aﬁf(l;) = f(—/;) = f(;C)

a“singlet”, S=0

P odd: Aa/),(llc) = i{((l;glz’(/;))(%z} = cll'(—/;) = —c;’(/é)

a “triplet”, S=1



the interaction V' expanded over representations of the point group:
Va,/j;,uﬂ, (kak,) = E Aj@j (k) ®¢] (k,)
J

1

Adk) = (7 T) [P kOAGNAR, , == A(k) < ¢ (k)

(Here in ( ")g'” g stands for an even and u- for an odd representations)

A ) | 1
A(k) o< @g’” (k) > Arises only as the solution for the gap at T=Tc
What is the gap structure?

?Strong coupling (say, higher order corrections in V)
? Non-linear corrections below Tc from other representations

? The multi-dimensional representation : what is the structure of the
order parameter just below Tc ? in the ground state ?



<Common Crystalline classes and the Space Group>

At SC pairing Q =0:

Search for the superconducting classes !
The total Symmetry Group in the normal phase:

GxRxU(1)

G —the point group of all rotations and reflections
U(1) -multiplication by a phase factor

R- the time reversal t>-t . Applying to a wave
function: corresponds to the complex conjugation

To warm up: how one builds the non-trivial magnetic classes?

Then the Group of Symmetry in the normal phase is:

GxR



General (formal) approach: single out a subgroup H of the group G

Take all elements Gl. %H and form all products
GH,GH,.GH
These termed the left classes. Similarly, form the right classes :

HG. ,HG,,..HG

N

If two manifolds coincide, [ is the invariant sub-group or the normal

la)

divisor of é .Let g be the number of elementsin (G and / in [:]

Then: g=h(i+]1) i+]1iscalledthe index of the sub-group

Multiplication of the classes = multiply as the elements constituting the classes:

GHxGH=(GG)H



The new group of i+1 elements is called the factor-group: £

e\

Two transformation (71, R) constitute the two elements forming the group: R

The method for building all non-trivial magnetic classes is now clear: first find a
sub-group of index 2 and distribute the remaining elements over its classes .
Next step, form the direct product :

FxR

In practice, the method is that all elements from each class, i.e., the elements of
the factor group,except the identical class formed by the sub-group / ltself,

appear combined with the time reversal transformation R: t>-t.

A couple of simple examples below !



Deh=Ds¢ x Ci

Dax Ci

Da4h

On=0x Ci




Da
U
T A
— —> U2
|

oty

| A2,z

|

|

|

|

|

Aee-t- B2

Ca

E C2 2Cs4 2U2 2U’2
A1 1 1 1 1 1
A2, 7 1 1 1 -1 -1
B 1 1 -1 1 -1
B2 1 1 -1 -1 1

E. xy 2 -2 0 0 0

D4(Cs4) (E C2 2Cs4 2RU2 2RU2) }

D4(D2) (E C2 2RCs4 2RU2 2U2)




Ce

De
E C2 2Cs 2Cs 3U2 3U2
0
\ / A1 1 1 1 1 1 1
a1 111
_ B1 1 -1 1 -1 1 -1
u2 B2 1 -1 1 -1 -1 1
E2 2 2 -1 -1 0
E1;x,y 2 -2 -1 1 0
A2 Ds(Cs) (E C2 2Cs 2Cs 3RU2 3RU)

B1: Ds(D3) (E RC2 2Cs 2RCs 3U2 3RU2)



Return to superconductivity and to the solutions for the gap at Tc

Vs kKN =S 4,6, ()®), (K
J
1

Atk = (7 T) [V (e, KYAK)AR,5, = Ak) & ¢ (k)

Symmetry Group in the normal phase:

GxRxU(])
For the crystal groups with the center of inversion one may write:
/
G=GxC

/
where G is the group of the rotations only and study cases of the even
and the odd parity separately

As one example, consider again D4 . In the normal state:

D, xRxU(l)



From the product R X U(l) one may construct the following groups:

(In applying to the pair function ->R means taking the complex
conjugate)

a) The only two groups with index 2 :/R and U = (1, e—iyr)

/2 _im —im/2
X
b)the productof(l e e ) R E Co 2Cs 2Uz 2U'»

a) Do as before:

At 11 11

A2,z D4(C4) (E C2 2Cs 2RU2 2RU2) A2, 2 1 1 1 -1 -1
Da(Cs) (E C2 2Cs 2 Uz 2€"U2) B 1 1 A4 4 -1
B2 1 1 -1 -1 1

B2 D4(D2) (E C2 2RCs4 2RU2 2U%2)
D4(D2) (E C2 2¢77Cs 27Uz 2U2)

E; xy 2 -2 0 0 0

I for one “gap” the magnetic superconducting phases in a) do not appear at Tc

b) !? Non- Abelian group(l il em _m/z)XR is isomorphic D (index 8 )

(See below)



The wave functions for the representations of the group D4

A (S =0): Symm. function A (S =1): aékz + b()[ckx + }ky)

I 1
A (S=0):kk (k; -k)) Ay (S =1): (xk, + yk,)(k; -k)
D,(C,):(E,C,,2C,,2¢"U,,2¢"U))

B(S=0):(k2—k2) B/(S=1:xk, —yk, -dwave’

B,(S = 0):k .k, B,(S =1):xk, + yk,
D,(D,)(E,C,,2¢"C,,2¢"U,,2U))
E(S =0):kk;k.k, E(S =1): zk; zk,

iJZ' m/ 2

b) 1?7 Non- Abelian group (l,e 2 )XR is isomorphic D (index 8 1)

(For the classes that can be constructed on basis of the two-dimensional
representation E———> see below)



Symmetry Class and positions of zeroes
AT AT ALl T AL AT
Ap(p) =y (Apy— Ad(p) = Ad(Ap)
Da(C4) (E, C2, 2Ca, 2 €7U2, 27 U2
S=0:

1[9= (x,0,p)
V() =607 V(D) = -7 V(D) = —v(r 0 -d) = -v(r' ') =0
p=(x,x, D. )
1 ir ’
A(p)=eU, . A(p)=-U, _ Mp)=-A@x,x,-p)=-Ax,x,p) =0

Gap is zero on intersections of FS with the vertical symmetry planes

ST
Dn—(OOD)d =(0.0.d.)

d(p) =e Uz(x)d(p) = _[U2(x)d(U2(x)p)] i dz (0909 _pz) = _d(po)

Gap is zero on FS at intersection with the 4-fold axis C4




1 1
Now let @, (k); @, (k)be two functions realizing the representation E. Then
the superconductlng order parameterl e., the “gap” can be presented as:

AG) = 1, (k)

i=1,2
Find Free energy minimum? Consider the second order transitions from the normal state

Near Tc - the Landau functional ©(7") has the following general form:

I' I's I' I'«

O(T) = (T =T )1 )+ B0V + B |07 P +B( . [ +1m, )

Depending on the coefficients, its minimization leads to the following solutions:

(1,0):kk.(or =k k)  (LD:k (k k)
S B =2,

B
(1,1)
E(S = 0): k.k ;K k,
E(S =1):ka;zky
) — _
r\ +)- 5, For instance (S=0):
\\ E
Lo
|
|



(1,i): . .
k. (k, +ik,) = k. exp(ig) z(k_+ ik,) = z exp(ig)

Superconducting class

D4(E): (E, emCz,ei”//2C4,e'm//2Cj,emRsz,RUzy,2eﬂ”//2RU£)
Magnetic class! (the moment is along the z-axis)
? 10mit the U(1)-elements (E C2 2Cs4 2RU2 2RU2)

and compare with Da4(Ca4):

D4(E) is the most symmetric class that can be constructed from this two-dimensional
representation without lowering symmetry of the lattice (of the crystalline class)

In fact, compare > (1,0):k_k (or =k k) (1) k_(k £k))

Two symmetric classes preserving the crystalline symmetry for the cubic lattices :



The cubic symmetry

v

D2

v



Two symmetric new classes that are possible  O(T), O(D2)

A2 (E,8C,,3C,,6¢"C,,6e"C,) O(T)

Another high symmetric class formed from E: O(D2) E 8C3s 3C2 6C2 6Ca
(Somewhat lengthy !)
O(Dy) = (E,3C,, 2U™*RCIR,2C) R, 2C2 R, aml 11 1 1 1
4C38 ’4C32892U§perp)xR,2U§perp)y€R’2U§perp)z 2R) Ao 1 1 1 1
Symmetry phases for representations E, F1, F2 E 2 -1 2 0O O
just below Tc - from the Landau functional Fs | 3 0 -1 1
! litati
Qualitative new results from F1and F2 Fixyz 3 0 -1 11

-> For the three dimensional representations there are three parameters in

1 1
AR = Y mg (k)
i=1,2,3
The Landau functional at T¢ is analogous to that one for the 2D representation of Da:

O(T) =T -T)077 )+ B0’ Y+ B |7 P+ (. |+, [+ 1)



The analysis leads to the phase diagram:

B )
. 5 n (e, ") € ="
(e,e%) Three components ( ) play role of the
1 ..1,,1. y
vector 77 in the 3D space of F1or F2.
2
10 B In the above case the components are complex:
(1,0,0) (1,1,0) Lo, |
N =n +117 and one may form the third vector
ﬂ} =_2ﬂ2 1 1 /

m=[n'xn"]

that has the meaning of a magnetic moment

Excitations to be found from

Det | [E* - & () - A(k)xA* (k) ||= 0



Det |[E* - E* (k)] - A(k)x A" (k) ||= 0

For P-even (“singlet”) E® = 52 (k)+|A(k) |2

For P-odd (“triplet”):

(k) =17/ (k) + i (k) and m(k) =17/ (k) x3" (k)]

1

with Ak = i{(5d ()6, ) using: (G- d)go+d ) = (d-d") +i(&-[dxd'])
5 det |[E* - £ (k)= | A(k) 1] = m(k) ||= 0

one finds that the excitations are split into the two and two branches

Ir 5 ' 5 ¥
Ex (k) = =&+ d(k) ] =] m(k)]

(compare with two directions of spin for the “s-wave” superconductors)



The basis functions:

3 (‘singlet’): [k k, (k? —k);[k.k (kI = kDL k k(K = k)]

(“triplet”): [)I)kz — éky]; [ékx — )[ékz]; [)Iéky — )I)kx]

F2 (“singlet”): kykz ; kzkx ; kxky
N I I, I L, LI I
(“triplet”): vk, +zk ;zk +xk_; xk, + vk,
By
. _ B
Symmetry zeros versus the point zeroes: 1,1,1)
“singlet” gaps may have zeroes on the symmetry (1, ¢, &
elements of the group (unstable at perturbations)
“triplet” gaps may have zeroes at the symmetry \\ B
S /3)1

points on the Fermi surface. In the magnetic classes
zeroes correspond to the non-zero magnetic moments:
hence, are topologically stable

(1,0,0)



What is achieved by the above methods?

a) Knowing the symmetry class allows to identify the positions of the
gap zeroes without model assumptions concerning the basis functions

b) Lines of zeroes possible for “singlet” phases; “triplet” phases may possess
zeroes only at the points on the Fermi surface. T-square or T-cube dependence
of the specific heat at low T, correspondingly.

c) Topologically stable magnetic moments in some “triplet” phases

d) For two-and three-dimensional representations the phase transitions at T¢
can be split by external perturbations (? UBe1z and UPt3)

e) Ordinary impurities decrease Tc and may result in "gapless” SC.Lines of zeroes
are absolutely unstable at the arbitrary small impurity concentration-> nonzero DOS

f)The upper critical field can be anisotropic for some symmetry
directions directly at T ¢ in the cubic and tetragonal lattices - ch (@)

g) Non-trivial (phase-sensitive) boundary conditions with significant
implications to the Josephson effect £, W(A A +c.0)
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Appendix : Impurities

rr,
v v(p, P

The Green function’s self-energy: / . >

dp' rr, ., r,
—=n, v(p, ImG(E;
Sy VP PON IMGLE; )

Why MUST Tc decrease?

\%« r r rr I, L r”!\% Lyo Ln
Apdp' + [V(p,p)dp' Vip,p). (p"dp"| +...
A+ [V (p Py / 4

A(p) = fV(z‘S,z‘S'{

"]

r, 1‘ r
V A( D" = () If gap belongs to any non-identical representation!
— [V(p\p)) / p

Density of states (DOS): Vg /vy = 4T2A(2) exp (— 274,)



Appendix : Symmetry Class and positions of zeroes
AT AT ALl T AL AT
Ap(p) =y (Apy— Ad(p) = Ad(Ap)
Example Da4(Cs) (E, C2, 2C4, 2 €Uz, 27 U2 )
S=0:

1[9= (x,0,p)
V() =607 V(D) = -7 V(D) = —v(r 0 -d) = -v(r' ') =0
p=(x,x, D. )
1 ir ’
A(p)=eU, . A(p)=-U, _ Mp)=-A@x,x,-p)=-Ax,x,p) =0

Gap is zero on intersections of FS with the vertical symmetry planes

ST
Dn—(OOD)d =(0.0.d.)

d(p) =e Uz(x)d(p) = _[U2(x)d(U2(x)p)] i dz (0909 _pz) = _d(po)

Gap is zero on FS at intersection with the 4-fold axis C4




Appendix: Multi band SCs

Three X points in a cubic lattice.

2 2ywp
Nag=NOupt (1 — 84p). AxZT A ( |
p=Napt (1~ Sap W~ % Nap fln| —
— _2ywp 272
(=Bt At As)/3 L= poh T 200)
UIZ(A1+GA2+62.'53)/\,"“5_
_ _2y(uD 272
m=(Ar+ ey +eds)/\3. Ler= 7 P mpo(N—p)
27t T-T.g
SF=——"2(|m|*+| |+ (T /T, y)|I|?
— 7, P+ +In(Te g/ Tl
7((3)

+————(Iml*+[ml*+ 4| *| ]+ FT3).
BT, g



\
g I, <1.;

Eg Representation of the cubic group

AW
0
U

1, =017, = 0= O(D,)

_ O(D,)= (E,3C,,23U""*RC:R,2C eR,2C R,

4C,e% ,4C €, 2U PP R 2UPY eR, 2U P £ R)

I?lron pnictides: “1111”




