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U(1) lattice gauge theory
(summary)



A U(1) gauge theory can be defined on any lattice, in any
number of dimensions.

Gauge (unphysical) variables Amn = — Amn live on links mn.
Physical variables are electric tluxes on links Emnand
magnetic fluxes through plaquettes @mnpa.

B = _Amn (I)mnpq = Amn + Anp "|‘qu + Aqn



H(AE) = Z Ej}” Z A €08 P npg

links plaquettes
Epn=0,%£1,£2,... ¢(A—|—27T) = w(A)

eti4mn lowering and raising operators for E,,,,
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H(A,E) = Z 2”}” Z A €08 Dynpg
links plaquettes
1 3
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eti4mn lowering and raising operators for E,,,,
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links plaquettes
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Quantum phase transition in d=3 spatial dimensions.
The order parameter is string tension for a pair of test charges.



H(A,FE) = Z 2"%'}” Z A €08 Pnpg

links plaquettes
1 3
Emn — I 5 ’ 1 5 9 o o e

M. Hermele's talk tomorrow.



/2 lattice gauge theory

The simplest gauge theory ever: uses binary arithmetics!

Relevant to some qguantum spin models: Heisenberg model
on the square and kagome lattices.

G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89, 137202 (2002).
H.C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424 (2012).

Y. Wan and O. Tchernyshyov, Phys. Rev. B 87, 104408 (2013).

H.J. Ju and L. Balents, Phys. Rev. B 87, 195109 (2013).



A Z> gauge theory can be defined on any lattice, in any
number of dimensions. We will specialize to d=2 here.

We will jump directly to the quantized version of the theory.

The main idea is to switch from integer arithmetics (Z) to
binary one (Z2) for the electric tlux through lattice links.




Compact U(1) gauge theory /2 gauge theory
E=0,%+1,+2, (—1)% 2 0% =41
0< A<27 e:ZA%O"Zzzzl
p= Y A O i 2 g — o7 = -
plaquette plaquette
ezz’iAEezziA — F+1 5 5T a7 — gt
0-x8 K| =]
star star
Addition Multiplication

Here =~ means “corresponds to.” o are Pauli operators.



Quantum Hamiltonian

® ®
Compact U(1) gauge theory:

H = Z Ej’[’“” Z A oS Dpnng Q‘ p.

links plaquettes

® @
m n

/2 gauge theory:

H:—FZUfnn—)\ Z Opn -+ Tagm

links plaquettes



Conserved charges

H=-T) op,~=A Y  Oip---Oim Peo

links plaquettes
=0, O O O o o »
Pm = mn- mp~ mq- mnr q m
_ Z z _zZ _Z
¢mnsp D O-mna-nsa-spo-pm r @

[,Oma ¢mnsp] = (
[pma H] =0

/o electric charges p are constants of motion.

States again separate into different charge sectors.
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Conserved charges
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/o electric charges p are constants of motion.
States again separate into different charge sectors.



Electric term dominates: [ > A

H:HO—|—H1, HO:—FZO'%R, le—)\ Z O-fizn"'o-gm

links plaquettes

Neglect the weak magnetic term.

R
No-charge sector: 0= +1 everywhere.
Sector with two probe charges p = —1:
ground state with an electric flux line
oX= -1 connecting the charges.
: =1

Energy grows linearly with the distance.
Electric charges are confined.
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links plaquettes

Treat the magnetic term as a perturbation. @ @

--------------

It induces quantum fluctuations of the u Do

electric string connecting the charges.

String tension is reduced. Confinement

remains.
o=2I"— \*/4 + ... T
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I\Aagnetic term dominates: A >» [

H=Hy+H, Ho=-\ ) o iy Hi=-TY oo,
plaquettes links

Neglect the weak electric term. The R S R

magnetic term is minimized ifall ¢ = +1. & & i

This condition is independent of the
charge sector (¢ and p commute). 77T
Energy of two charges does not depend AR U S .
on the distance between them.
Electric charges are not confined.




I\Aagnetic term dominates: A >» [

plaquettes links
Treat the electric term as a perturbation. A
't creates virtual excitations: pairs of Zz
vortices (¢ = -1).
Energy of two charges does not depend @ @ R

on the distance between them.
Electric charges are not confined.




I\Aagnetic term dominates: A >» [

H = Hy+ Hi, 0= —A Z T g le_rzgf’m
plaquettes links
Treat the electric term as a perturbation. ’
. . . QiR
t creates virtual excitations: pairs of Zo
vortices (¢ = —1).
Energy of two charges does not depend ‘

on the distance between them.
Electric charges are not confined.




I\Aagnetic term dominates: A >» [

plaquettes links
Treat the electric term as a perturbation. A
't creates virtual excitations: pairs of Zz
vortices (¢ = -1).
Energy of two charges does not depend @ @ R

on the distance between them.
Electric charges are not confined.




I\Aagnetic term dominates: A >» [

H = Hy+ Hi, 0= —A Z T g le_rzgf’m
plaquettes links

Treat the electric term as a perturbation. ’

't creates virtual excitations: pairs of Zz

vortices (¢ = —1). i 9

A

Energy of two charges does not depend L ‘

on the distance between them.
Electric charges are not confined.




I\Aagnetic term dominates: A >» [

plaquettes links
Treat the electric term as a perturbation. A
't creates virtual excitations: pairs of Zz
vortices (¢ = -1).
Energy of two charges does not depend @ @ R

on the distance between them.
Electric charges are not confined.




String tension in d=2

O A

21

confinement free charges
0 (A/T)e AT
Two distinct phases of matter: confined and deconfined.

String tension can be used as an order parameter whose
presence or absence determines which phase we are in.




lopological degeneracy

The confined phase of a lattice gauge
theory, where electric field dominates, has = &---t---i---i--3
a simple ground state that is a direct

oroduct of individual link states:

The state is explicitly specified and is
unigue, not degenerate.



lopological degeneracy

In the deconfined phase, the ground state
's described in terms of fluxes through
plaguettes of the lattice:

® = (0 on every plaguette

This is an implicit description: we do not
know the states of individual links.

We shall see that all states of the system ~ :==r--i===i--3
are degenerate in this phase and that the = =---t---i-naeens
degeneracy depends on the topology of

the sample.



lopological degeneracy

In the deconfined phase of the Z2 gauge theory, all
states have the degeneracy 4 where g is the genus of
the two-dimensional surface (the number of handles).



The genus of a surface is related to its Euler characteristic,
which can be calculated for a discrete (lattice) surface:

2—2g=x=V —-FE+ F
A Z> gauge theory has E qubits (one per edge).

A charge sector is specified by V-1 independent charges
(one per vertex minus the condition of net neutrality).

A tlux state is specified by F— 1 independent fluxes (one
per face minus the condition of net zero flux).

The number of qubits remaining is
E—- (V-1 —(F—-1)=2—-x=2g

Hence the degeneracy 229.



Each elementary plaguette has zero flux. What is the
flux through the big loop?
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Each elementary plaguette has zero flux. What is the
flux through the big loop?

------------------------------------------------------------

® = 0 if the loop Is contractible to a point.



lopological degeneracy

209 Is the number of topologically distinct non-contractible
loops of a surface. Their flux is not specitied when we set
the fluxes of contractible loops to zero.

Thus there remain 2g degrees of freedom, global tluxes.



Periodic boundary conditions = torus (genus 1)
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Periodic boundary conditions = torus (genus 1)
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Periodic boundary conditions = torus (genus 1)

® m, n— sites of original lattice; O a, B - sites of dual lattice
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Periodic boundary conditions = torus (genus 1)

® m, n— sites of original lattice; O a, B - sites of dual lattice
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Global gubits

---r ------------- I----I----h
1 1 1 1 1
1

X creates a pair of vortices, moves one of them around
the system and annihilates them, returning the system
to a ground state. This process occurs spontaneously
with an amplitude of the order of

AT/ NE =Xe /¢ 1/¢ =1In(\/T)

Degeneracy is observed only in large systems, L > €.




Dual variables

Original Pauli operators:
oX = +1 measures the Zo electric field on a link.
oZ alters the value of the electric field.
Labeled by link (mn).

Dual Pauli operators:
™ = +1 measures the Z2 magnetic flux on a plaguette.
TZ alters the value of the magnetic flux.
Labeled by plaguette (dual site B).



Open electric string X .,
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Open electric string X .,




Open electric string X, deformed




Open electric string X, deformed




Open electric string X, deformed




O

‘erence

|

----F----

--------r---

-------‘-------

|



Difference

----F----
-

|
|

----'----
|
----l----

- emmmm o wm ke EEEEE s eTEEEEEEE " EEEE .=,



Difference

§ TN BN BN BN BN BN BN BN, BN BN BN BN BN BN BN BN W BN BN BN BN BN BN BN Ny BN BN BN BN BN B .

| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
le e e e == - - e .
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| 1 | 1 1
i 1 T T
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
1 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
[ | wll & wll
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
1 | | 1 1
" IIIIIIII - IIIIIIII - IIIIIIII“ IIIIIIII -
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
- IIIIIII J IIIIIIII 1 IIIIIII ‘ IIIIIII J
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
lee e e == e e e - -- e e s s sm= Leemmmm- o

Haa;zl

star



Difference

Haa;zl

star



Difference

1
1 1
1 1
1 1
1 1
1 1
1 1
L i Leccmmmm e R - !
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
r ------- 1 ----------------- r ------- 1 ----------------- r ------- ‘
1 1
1 1
1
1
1
1
1
I I IR R I IR TR R R IR R R R R Rl R R R |
1
1
e T L Lecees e == R . g e e s s === !



Open electric string X .,




The ends are fixed, the path is arbitrary
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Dual Hamiltonian

H=-T Z Onp — AZ H 0.5 lsing gauge theory

(apB) @ B(a)
H=-I)Y 715-\) 78 Ising ferromagnet
(afB) e
O A

tension of an electric string
tension of a domain wall

original: confined deconfined
dual: ferromagnet paramagnet

0 (A/T)e A/T




An electric strmg N the orlgmal theory
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An electric string In the orlgmal theory




An electric string in the original theory




An electric string in the original theory

A domain wall in the dual theory



Helsenberg model:
square lattice

0.3 o—m_(k,) oA 0.3

Phenomenology |
of Heisenberg 0ol

0 wn 02_|D
models interms € =
of a Z»> gauge

0.1F 0.1
theory.
0.0~ =~ = e s 1 0.0
0.0 0. 0.4 J2/J1 0.6 0.8 1.0

R. Moessner, S.L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2001).
H.C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424 (2012).



Helsenberg model:
square lattice

i

T '

Dimers represent pairs of spins in a singlet state.
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Dimers represent pairs of spins in a singlet state.



Helsenberg model:
square lattice

/2 gauge theory with static charges



Helsenberg model:
square lattice

3 dimers at a site are allowed by these constraints.



Helsenberg model:
square lattice

Suppress 3-dimer configurations with a —I'o™ term.



Helsenberg model:
square lattice

links plaquettes



Quantities Aag(TaTs) = (0as)
are non-uniform on cylinders with odd circumference.
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ﬁ]:—FZAaﬁTéTg—)\ZTg, )\aﬁzzzl

Quantities Aag(TaTs) = (0as)
are non-uniform on cylinders with odd circumference.



Odd circumference

B(xz) = (S(z,y) - S(z +a,y))

-0.2 -

(@) J2=0.5, Ly=5




Even circumference

/ B(xz) = (S(z,y) - S(z +a,y))

/
\ / 02l (b)J2=05, Ly=6
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Helsenberg model:
kagome lattice
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Helsenberg model:
kagome lattice

H=-T Z ¢a—|—)\20§5

plaquettes links \/‘\/
z

B(c)

Y. Wan and O. Tchernyshyov (2013).
H.J. Ju and L. Balents (2013). v \/




Helsenberg model:
kagome lattice

H=-T Z Ga + A Z 0030 5
plaquettes 3rd neighb \/‘\/
Do = H 0'3[3 1

B(c)

Y. Wan and O. Tchernyshyov (2013).
H.J. Ju and L. Balents (2013). v \/




Helsenberg model;
kagome lattice

H=-T } dat+X ) 03305

plaquettes 3rd neighb
¥ E : T E : 2 _z
Q 3rd neighb

Quantum Ising model with
4 iIndependent sublattices.




Odd circumference

“YC6” “YC9_2”

DMRG:

S. R-White, KITP 2010
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Y.Wan and OT, Phys. Rev. B (201 3)



Valence-bond correlations
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Z; gauge
theory:

Y.Wan and OT, Phys. Rev. B (201 3)



