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We know the problem
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We know the answer...
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What’s there to do?



We would like to understand:

* Why gaps open at some fractional filling factors, and
do not open at others?

» What determines those filling factors?

* How are fractional charges realized? Other properties
of quasi-particles?

* Edge structure

* Magnitude of the gaps, dependence on type of
Interaction

* Response functions



Difficulties:
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Neglecting the interaction is not a good starting point for fractional fillings!
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Two dimensionless numbers in the problem
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1. Ratio of interaction energy to cyclotron energy

2. Filling fraction



Theoretical approaches:

* Guessing wave functions - Laughlin wave function
* Exact numerical diagonalization
* Wire constructions

* Flux attachment - Composite Fermion Theory



V= %: The Laughlin wave function in five easy step:

1. Lowest Landau level in the symmetric gauge

Y (z,2%) < zMe i Z=x+Iiy
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2. Filling all states with 0 < m < N. A Slater determinant wave function
* Adroplet of afull Landau level.

 The Slater determinantis van der Munde’s
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* The highest power is N, the size of the droplet ~N %



3. Adding a flux quantum atthecenterm - m + 1
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4. The Laughlin wave function - a droplet with three times the same size




5. The Laughlin quasi-hole
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As expected, 1/3 of the electron charge




Fractional statistics

What is the statistics of a quasi-particle?

* Construct a Hamiltonian with two quasi-particles at the ground state

H({ri}; Rl! RZ)
* Interchange R; and R, adiabatically

* The ground state acquires a geometric phase
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A geometric phase for a single quasi-hole
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In summary,
The virtues of Laughlin’s wave function:

1. Forasmall number of electrons — remarkable overlap with the

exact ground state

2. Exact ground state of a designer-made Hamiltonian

3. Gets the topological properties right

Estimate of an energy gap



Flux attachment and Composite Fermion Theory

Halperin, Lee, Read and many other works (1993)



Composite fermion theory
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Flux attachment
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x satisfies a Schrodinger equation with a different Hamiltonian,

where the kinetic energy changes to:
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At the mean field Hartree level, we map interacting electrons
(n,B) = (n,AB)
where

AB = B — 2¢on.

This changes the filling factor v = v

1 1
where —=—-=2
VCF 14

Fractions are mapped onto integers!
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Gaps appear “naturally”, but with wrong energy scale E; = hAw,

= heAB/mec.
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Fractional charge

Insert a composite fermion into a FQHE system:

 Acharge e isinserted

* « flux quanta are turned on, generating an azimuthal electric field,

leading to a radial current, reducing the local charge. The net

charge:
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Excitation modes
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An excitation mode - detp(q, w) = 0 (Remember that E = pJ).

(Simon and
Halperin, '93)




Low&B

Composite fermions in the Shubnikov deHaas regime

Pxy is not quite quantized

P OSCillates with magnetic field and chemical
potential, but does not get all the way to zero.
Oscillations originate from oscillating density of

states.



Sample A
T=03K

Herfort et al., 1994
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Magnealic Feid (T)

H. Stormer and JK Jain, private communication.



Even wedler

Do composite fermions exist semi-classically?

Geometric resonances

between cyclotron radius of
composite fermion cpg/eAB
and wavelength of a surface
acoustic wave e

AB (kG)

FIG. 1. Sound velocity shift versus magnetic field for

10.7 GHz surface acoustic waves near filling factor 1. Both
principle and secondary resonances are present, Temperature
15 130 mK. The dashed line shows the theoretical fit to the
data using parameters defined in the text.

(Willett 1993)



CPF

—— is a measurable quantit
eAB 9 Y

The cyclotron radius of composite fermions

even when their quantum Hall effect is not.

c c
Note, —& = =FF
eAB e*B

a fractional charge in the original, physical, field.




1

The smallégtossible- v = .

Do composite fermions exist even when AB = 07?
If so, how do they behave?

Electric dipoles moving in straight lines in a strong magnetic field

A Fermi surface of composite fermions?

|ldentifying a Fermi surface
* Cyclotron radius

e Anomalous skin Hall effect



Think the resistivity at non-zero g, in the direction perpendicular to q.

Drude resistivity at ¢ = 0is pyxy = pyy = ni = where T is the time for a current to decay in

62
the absence of a driving force.

Current decays even without impurities. Decay time ~1/qvg.

m 1 h q

Resistivity eyt completely geometric!
F



C;

>

»
©
3o
@
|
=
w
@
®
E
=
<
w

2 4 6
wave vector (um'1)

Willett, 1993



Does a Fermi surface imply a Fermi liquid?

 Composite fermions interact with a fluctuating magnetic
field, which is proportional to the fluctuating electron
density.

* Most “dangerous” — interaction with slow dynamics,

which is what we have here.
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The source of the slow dynamics — slow charge relaxation in a strong magnetic field.

The relaxation dispersion depends on the range of electron-electron interaction.

iw ~ q*V(q)o(q) ~ ¢°V(q)



Self energy = effective mass = cyclotron gap

Need to change an energy scale!

Small parameter is not the interaction scale, it is the
inverse of the number of filled composite fermions
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What other states can
composite fermions at
AB = 0 form?

Future will tell...



A concluding comment —

Charge fractionalization is manifest beyond the
limits in which it is “justified”.



Lecture Il:

 Reminder of the first lecture

 Composite fermion theory and Jain’s wave functions
e Bi-layer systems in the quantum Hall regime

e Stripe states in a partially filled Landau level



In the first lecture —
1. Laughlin’s wave function

2. Composite fermion theory
1. FQHE of electrons =IQHE of composite fermions

2. Shubnikov deHaas regime of composite fermions
3. Semiclassical physics of composite fermions
4. v = 1/2 state



Wave functions




Wave functions
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Multiply the mean field wave
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2 Clarifies how electrons are kept away
Y from one another



Generalization — Jain’s wave functions:

2
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Trial wave function = e 4®o Zl-zj |p filled LLs at AB)

projected to the electronic lowest Landau level.
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Bi-layer qguantum Hall systems



Bi-layers in the quantum Hall regime

Important parameters:

Inter-layer tunneling

Inter-layer Coulomb coupling
(depends on distance d)
Densities in both layers kg ¢, kg,
The usual suspects — magnetic
field, temperature



Bi-layers in the quantum Hall regime

Measurements:

* Tunneling resistance

e “conventional” resistance
 Coulomb drag

* Counterflow

Naively, just a big resistance.
Voltage dependence gives much information on the two layers



Bi-layers in the quantum Hall regime

Measurements:

* Tunneling resistance

* “conventional” resistance
e Coulomb drag

e Counterflow




Bi-layers in the quantum Hall regime

Measurements:

* Tunneling resistance

e “conventional” resistance
 Coulomb drag

e Counterflow

Naively, resistance due to friction




Bi-layers in the quantum Hall regime

Measurements:

* Tunneling resistance

e “conventional” resistance
e Coulomb drag
 Counterflow

Naively, resistors in series




Bi-layeratvy = 1

* Assume very weak tunneling,
strong magnetic fields.

 The only dimensionless
parameter - d /¢
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Inter-layer tunneling counter-flow resistance Coulomb drag

(Lilly et al.)



Large d /£ - weakly coupled layers

Two disconnected v = 1/2 states are mapped onto two weakly
coupled Fermi liquids of composite fermions.
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Tunneling: typically, tunneling between two identical Fermi liquids is “easy”
: dl .
Either - independent of V or peak at zero voltage.
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Here strong suppression of the tunneling.

The reasons:
* the tunneling object is an electron, not a composite fermion.
 The tunneling charge needs to disperse away to the edges of the system, and charge

relaxation is slow.



Small krd — strongly Coulomb-coupled layers

* Cancelling the magnetic field by a different flux attachment —
attaching one flux quantum to each electron, with the electrons
interacting with flux quanta of both layers.

e Said differently-a =1

* Mapping thev = %EB% state to two coupled superfluids

* Wave function
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Consequences:
* For symmetric current — quantized Hall state

* For anti-symmetric current - superfluidity

e Large zero bias tunneling peak (Josephson-like)

Goldstone mode which is a Plasma mode of anti-
symmetric density

BKT transition when vortices proliferate
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The transition between the two limits

The longitudinal drag resistance develops a very large peak at the transition



The peak at the transition and transport in a mixed system

Consider a system made of two phases, each one with its own resistivity
matrix p4, p>.

If transport is governed by a local Ohm relation
VXE =0

V-] =0
E() =p®]()

Then the macroscopic resistivity satisfies

pa%x + (pxy - pxy,O)Z = Pxx,0



pX.X'

Pxy

pa%x + (pxy — ny,o)z = Pxx,0

When the two phases are on the two sides of the semi-circle, a
transition between them involves a peak in dissipation



And now for something completely different...
Breaking of translation symmetry

Half filled Landau level:

1 3 :

atv = =5 @ compressible state
57 . :

atv = S5 an incompressible quantum Hall state
9 11 ) .

atv = e Reallt breaking of translation symmetry



Experimental indication —
* large anisotropy in the longitudinal resistivity
* Non-monotonic Py, .

.‘. eoee @ 1100

(Eisenstein group, Stormer group)



The picture — a different way interactions break the ground state
degeneracy of a partially filled Landau level

The tool — Hartree-Fock analysis of the projected Coulomb
interaction (Fogler et al. Moessner et al.)

The Hamiltonian H = Y., V(q)p(q)p(—q)

(k|eT|k') = 8iriq, 1] dxd(x + klE)e = p(x + k'IE)



(k|e™T|k') = 8iryq, 1] dxg®(x + ki)e' P @ (x + k'IF)

Oscillations with gR, decay for glg > 1.

The projected Coulomb interaction

V(q) = Vo(@)|Fy(@)|* with Fy(q) o Jo(qR,).

Transforms the Hamiltonian from real space density p(q) to “guiding center”

space density  p(g) o Y, e tdx¥ c;rq_y C__dy.
2 2



The Hartree Fock energy

 Hartree: always positive, charging energy due to non-uniform
charge density

The Hartree potential Vo (q)|Fyn (@) ]%{p.(—q))
May be minimized to zero

* Fock: always negative

* The key — make the charging energy vanish. Possible due to the
oscillations of Fy (q)



At half filled levels — a striped phase (g, = 0)
14¢9

N

Edge states pattern leads to anisotropy



Beyo N d H a rt ree- FOC k’ fl N Ite te m p e rat ure ¢ Anisotropic Wigner crystal * Smectic

e Nematic o [sotropic liquid

(Fogler)

Away from the half-filled level — insulating bubble phases.






Before going off stage, | will go off topic...

Electron hydrodynamics (together with Scaffidi, Reuven, and the llani group)
« Drude theory — momentum loss to impurities R« L

* Landauer-Sharvin theory — resistivity with no impurities

» Scattering of electrons off one another — spread and erase R «x 1/L

A magnetic-field-free setup to create 1D topological superconductivity (with Lesser and Oreg)




Using symmetries to flatten Dirac cones (with Sheffer and Queiroz)
* Making the Dirac velocity vanish for a Dirac cone on the surface of a 3D
topological insulator

e Constructing new models for chiral-limit-based perfectly flat bands




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68

