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Outline

* Quantum impurity problems couple
a local degree of freedom to a
gapless, noninteracting host:

H = Hhost + Hhost—imp + Himp

» Ken Wilson devised the numerical renormalization group
for controlled nonperturbative evaluation of equilibrium
thermodynamics of impurity models with fermionic hosts.

* The original NRG has been extended to ...
> dynamical properties
> multi-orbital impurities, multiple impurities, bosonic hosts
> impurity solution in dynamical mean-field methods
> non-equilibrium properties.
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NRG Strengths and Weaknesses

* NRG methods are non-perturbative in model parameters
> Can often map out the full phase diagram.

« Can accurately calculate properties over many decades of
temperature/frequency
> Important where there is a very small many-body scale,
e.g., in Kondo physics.
> Essential for studying quantum criticality.

* Not as flexible as QMC methods
> Cannot treat bulk interactions.
> Laborious to calculate higher-order correlation functions
or finite bias.

* NRG does not scale well with increasing number or
Impurities and/or bands
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Some References and Public Domain Codes

» Background on quantum-impurity problems:
Hewson, 7he Kondo Problem to Heavy Fermions
(Cambridge Univ. Press, 1997).

* NRG reviews:
> Wilson, Rev. Mod. Phys. 44, 773 (1975)
> Krishna-murthy et al., PRB 21, 1003, 1044 (1980)
> Bulla et al., Rev. Mod. Phys. 80, 395 (2008)

* Public-domain codes:
» NRG Ljubljana code (http://nrgljubljana.ijs.si)
A flexible implementation of “traditional” NRG
> Flexible DM-NRG (http://www.phy.bme.hu/~dmnrg)
Implements density-matrix NRG method described in
Toth et al., PRB 78, 245109 (2008).
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http://nrgljubljana.ijs.si/
http://www.phy.bme.hu/~dmnrg

Motivation for the NRG

 The NRG was developed for problems with fermionic
hosts, e.g.,
H Kondo — Hhost +J Simp *Shost (r' )’

imp

where
_ T
H host ~ Z gk Cka CkO' .

k,o
* With decreasing T, the impurity spin-¥2 is progressively
screened with a characteristic many-body scale
T. =Dexp(-1/p,J).

electron

T << Tk
impurity ﬂ gl
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What makes the Kondo model hard?

» The fundamental challenge of the Kondo model
H Kondo — Hhost +J Simp *Shost (rimp)’

Is the equal importance of spin-flip scattering of band
electrons on every energy scale € on the range -D <¢ <D.

* Poor man’s scaling (Anderson, 1970): Each decade of
band energies about the Fermi level contributes equally to
the renormalization of J toward J =o:

® = = = > J
0

@
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What makes the Kondo model hard?

» The fundamental challenge of the Kondo model
H Kondo — Hhost +J Simp *Shost (rimp)’

Is the equal importance of spin-flip scattering of band
electrons on every energy scale € on the range -D <¢ <D.

* Poor man’s scaling (Anderson, 1970): Each decade of
band energies about the Fermi level contributes equally to
the renormalization of J toward J =o:
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« Scaling is perturbative in the renormalized value of p,J
and thus limited to temperatures T > T, = Dexp(-1/ p,J).

 The NRG was conceived to reliably reach downto T = 0.
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Chain mapping of any host

* Any noninteracting host can be mapped exactly to a tight-
binding form on one or more semi-infinite chains:

J t ts ts Ly
\ .... PN ® o o — -
eo e1 eg e3 e4
» Start with f,) = host state entering Hy st imp
» Since |h%\\P> =HY¥),

reach only host states given by repeated action of H,
»Lanczos (1950): H, | f,) =€,/ fo)+t/f,)

host‘f> 1‘f>+tl‘f >+t2‘f >
host‘f > 2“ >+t2‘f>+t3‘f > etc
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Chain mapping of a conduction band

* Any noninteracting host can be mapped exactly to a tight-
binding form on one or more semi-infinite chains:
Joot Lt

N . . . *---
& & e e, e

* The conduction band in the Kondo model maps to

host ZZ[en fnTa fna +1 ( na fn 1,0 T HC)]

o n=0

* Since the basis grows by a factor of 4 for each chain site,
we would like to diagonalize H on finite chains. But ...

> Coefficients e, t. are all of order the half-bandwidth.

> No useful truncations: Ground state for chain length L is
not built just from low-lying states for chain length L — 1.

NRG methods and applications- Tallahassee, 13 Jan 2017 12




NRG’s key feature: Band discretization

- Wilson (~1974) logarithmically P
discretized the conduction band EEE T
via a parameter A >1. ERELAEE .-
-1 A AP A A AP A 1 /D
* The impurity couples to just
one state per bin: e

hostA ZZC{) ( Mo ma mabma)

o m=0

=11+ A)A™D | \\M/// "o

* Now apply Lanczos to the

Y

discretized band: @- é t é t é t 6_

Bulla et al. (2008)
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NRG iterative solution

- Wilson'’s artificial separation of bin energy scales o A™
gives exponentially decaying tight-binding coefficients:

T -n/2
hOSt/\ ZZ[en fnd fna +1 ( na 1:n 1,0 + HC)] ‘en ’tn < CDA

o n=0

hopping coefficient “n '

—1/2 A—1 _3/2 2 (nOt a A decay.)

\" 0 @ @ @ o — -
1 2 3 4
site index

* Allows iterative solution on chains of length L =1, 2, 3, ...
> Ground state for chain length L is mainly built from low-
lying states for chain length L — 1.

» Thus, can truncate the Fock space after each iteration to
cap the computational time.
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NRG iterative solution
* Start with HO =H imp host |mp(fOTa’ an')+ e0 fOTa an'

/ T \

e.g., Kondo 0 O (p-h symm.)
g Imp Z f002 00'

—‘I/2 -1 -3/2 -2

‘ A
\ o ® ® o o — -
1 2 3 4

+ Then Hy = AY2H,, + AV ey £ o+t (Frio fyso +H-C)

Diagonalize in a basis |Ey_ ) ®‘b(f|\]‘0, fNG.)> to find {|Ey )}

» Keep states 1 <s < N, of lowest energy E,., discard the
rest. Computational time ~ N?.
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NRG level flow

 lterate Hy > {Ex )= Hyy = -

until reach a scale-invariant RG fixed point where
low-lying solution of Hy = low-lying solution of Hy,,

4.0 ' | ' | | | '
* E.g., Anderson model I "y Bulla et al. (2008) |

With
> increasing N,
> decreasing energy
~DA N2,
observe two crossovers 0 20 N 60 80
free orbital - local moment — strong coupling (Kondo)
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What does NRG give?

* The solutions of H, » give the value X, of a bulk
thermodynamic property in the pure host (no impurity).

* Solutions of H Kondo — Hhost,A +J Simp 'Shost (rimp)
give the value X, in the full system with the impurity:

X0 (T) = ZﬁlZ<ENr ‘X‘ENr>e_ENr/T where T ~DA N2
-

* Both X, and X, vary strongly with the discretization A.

* But the value of
Ximp = Xtotal B Xhost

varies remarkably weakly with A.

« Can use 2 <A <10 to estimate the physical (A = 1) value.
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Examples of impurity thermodynamics

 Can reliably distinguish Fermi liquids & non-Fermi-liquids:

25 T 1 I | 1 1

- / eesme | [ J=0.05D ]
o b g - = -
2 s u 4T, 125 K kept 8100 states 1
L = A1
15 J=0.05D HTH"r'imp - 1__ “f
= %
- kept 400 states +aR, | 08 e 5N
1 '““““' 0.6} Tl | 7
05} 1 o4 \ ¢ Tl | -
EEEEEEEEEENENEEEE | {]2-— "‘ 4« R,/(8/3) h
10®  1w0* 10° 10 10° 10 Ol Tsssdyssnssignd
T 10 10 10 10 10 10
‘ Bulla et al. (2008) Ty
conventional (1-channel) overscreened (2-channel)
Kondo model Kondo model
Ximp» Cimp / T — CONSL. Ximp: Cimp /T o< IN(L/T)
Simp — 0 Simp —> IN2
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Dynamical properties
» Consider the Anderson impurity model
H = g4ng +Ung,ng, +V " (dfc, +H.C.)+ Hyoq
* Interested in the impurity Green’s function
G, (1) =-i0M){d, (1), d}(0)f) < A (0)=-1ImG, ()

- NRG solutions tracking M ,,. =(E,, |d]|E,,.) vield a
discrete approximation

_ 2( _ _
A0 T)=ZE3 My €5 +e 5 M) 5(wr—Eyp + Epye)
rr'
where |w|~ DA N2,

- Obtain a smooth A_(w,T) by replacing 6(w—,,.) by a
broadening function of width proportional to max(| @, |, T ).
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Calculation of transport properties

* Smoothed spectral function reveals the Kondo resonance:

30.0 , .
v —an7 ' Costi et al. (1994)
""""" k= 30,0
Al) —eeee T, =65

e T2, 20.0 |

20.0 | /T, = 1.92
—-—-TM=085 |50
—— TiT,=025

10.0 ¢

0.0 : : *
-10.0 -5.0 0.0 5.0 10.0

NRG methods and applications- Tallahassee, 13 Jan 2017 20




Calculation of transport properties

« Smoothed spectral function can be used to calculate
linear-response transport properties.

 E.g., for a quantum-dot setup

e ()G ¢

t dot t

zero-bias conductance is
2

G(T) :% 7AY [(~of [6w) A (@ T)do

where A =7 p,.4t° is the noninteracting level width.
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Application: Conductance of C4;, quantum dot

1.0 - on =  Even
= Odd
NRG S=1
- —--NRG 5=1/2

= | Roch et al. (2009) -
Roch et al. (2008) R —

01 1
/T,
* V, can drive Cgq, electron occupancy from odd to even.

« Comparison of measured G(T) with NRG suggests
> spin-Y2 Kondo for odd occupancy (Ty = 4.4 K)

> underscreened spin-1 Kondo for even (T, = 1.1 K)
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Application: Dynamical mean-field theory

* NRG has been used as the impurity solver in the DMFT
treatment of many lattice Hamiltonians.

* [t is especially useful if there is a vanishing energy scale,
e.g., the Mott transition in the Hubbard model.
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Application: Dynamical mean-field theory

* NRG has been used as the impurity solver in the DMFT
treatment of many lattice Hamiltonians.

 However, the NRG does not scale well for the multiband
models and cluster DMFT extensions that are of interest
for many correlated materials (cuprates, pnictides, ...).

» NRG basis grows at each iteration by a factor of 2,
where n; is the num. of distinct bulk fermionic species.
t, t, t,

Joo b
N ° o * > -
e e e, e, e

> Usually, n; = (2s+1) x (num. impurities) x (num. bands).

> As n. increases, so too must N, the number of retained
many-body states.

> Computational time per NRG iteration o (2”* Ns)g.
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Application: Kondo-destruction QPTs
YbRh,Si,

Effective Kondo temp. Ry oc1/Neg
/
T(K) Fomreomsemmmmemmmmsoeemmooemee, |
1ok Ty '-“‘ g\ YthZSIZ g
| 8 ue | §
5 5
1F H.:| 3 3
[ C c
[ O] O]
(@)] (@)]
(] (]
0.1} ) O
o o : BT 0 005 010 015 020
H(T) H(T)

« At the QPT, Kondo scale vanishes, Fermi surface jumps.

* Neutron scattering on CeCu,_Au, shows quasi-2D
magnetic critical fluctuations with /T scaling at generic q.

 Points to a local QPT outside the Landau framework.
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Extended dynamical mean-field theory

 EDMFT includes some spatial fluctuations (unlike DMFT).

« Lattice Kondo model maps to a Bose-Fermi Kondo
impurity model:
H =S5+ Hygg + 3 (0,5, (8g, +al, )+ Y 0gal,aq,.
a=X,Y,Z
* Fermionic band accounts for
local dynamical correlations.

* Dissipative baths represent
a fluctuating magnetic field
due to other local moments.

 Band and bath densities ormion ) 9
of states must be found bath @
self-consistently.
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EDMFT for Ising-symmetry Kondo lattice

« Two types of solution [Si + collaborators (2001,2003,2007)]:

T

i 3D magnetic fluctuations

paramagnet
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+ A 2D magnetic fluctuations

Ty T -

AFM / paramagnet

|
5:TK/|RKKY

5c 5:TK/|RKKY
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EDMFT for Ising-symmetry Kondo lattice
* Two types of NRG solution [Glossop and Kl (2007)]:

A PM:y, (0) A AFM: y, (0) O My X2
© PM: (@, 0)" © AFM: %(Q, 0)" /20
1.5'|'|'|'|I L — 1.5
(a) 3D | [(b) '
.AA/ 1
0.5
0 1 2 3 4 59
0 o :TK/ | RKKY
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EDMFT for Ising-symmetry Kondo lattice

* Locally critical NRG solution [Glossop and Kl (2007)]:
0.8

5:TK/|RKKY
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EDMFT for Ising-symmetry Kondo lattice

« Two types of solution [Si + collaborators (2001,2003,2007)]:

T

i 3D magnetic fluctuations

paramagnet

|
5:TK/|RKKY

+ A 2D magnetic fluctuations

Ty

AFM
/

/
/

7
7

/7
NFL / paramagnet

0,

C

|
5:TK/|RKKY

* Locally critical QPT in the 2D case is consistent with ...

» Jumps in the Fermi-surface volume, carrier conc’n.

> A divergence of the Gruneisen ratio #/C .

» Anomalous @/T scaling of dynamical spin susceptibility.
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Locally critical EDMFT solutions

» Dynamical spin susceptibility takes the form

|

x(q,w) = ;

where 0.72 < ¢ <0.78 from

102 10-1

Iy — 1q) + A(—iw)*W (w/T)

E/kgT

100 101

numerics compares with ... 10—

a~ 0.75 from neutrons

S (kBT) 0.75 (ﬂ% mev—0.25)

Schroder et al (2000)
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Superconductivity near a Kondo-destruction QPT

CeRhing Jump in Fermi surface
/ p\ .
12— R g | |
e 1
Magnetically 5 l CeRnin
10 - Ordered (MO) Magnetically I B,
- Disordered : o8 o-0-@8®
8 a,
- ao
. [ ? a 03'12" oy
= 6 T 9% 0oee ¢ _  oomees S
m [ © g 4 E 4 HE o
4 = S ¢ & o ceo 000 ° 9
i o = a =
5 X Z 0 ® o o0 00 me 8
© A £
- o 2 - opacao| ¢
. b
0 - 0—00-0—0 0O @000
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—08-3—gH Tn00
P (GPa) 7 |
I] 1 1 1
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Superconductivity near a Kondo-destruction QPT

CeRhing Jump in Fermi surface
12 — T ; T - /
| CeRhlIng |
Magnetically
10| Ordered (MO) Magnetically
Disardered

Park (2006)
mf; ()
Shishido (2005)

1.4 1.6 1.8 2.0 2.2 2.4
P (GPa)

Pressure (GPa)
How does Kondo destruction affect superconductivity?

NRG methods and applications- Tallahassee, 13 Jan 2017 33




Cluster EDMFT approach

« EDMFT cannot describe non-s-wave superconductivity.

* For this, we apply a cluster extension of EDMFT [Pixley et
al. (2015)] to the Anderson lattice model:

H = Z LijClyCio + Z (egnpi + Ungirnyil)

1,9,0
+ 3 (vc;fg fio + h.c.) + 371,853
1,0 (i,7)
« Simplest approximation divides
the Brillouin zone into two patches:
one FM (‘+’) and one AFM ('-).
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Cluster EDMFT (cont.)

 Assume that

clk.a)= W= &y _:;‘(Kk’a))
1
29.0)= g+ M (Qq’a))

* This leaves an effective two-
impurity Bose-Fermi Anderson
model with two bosonic baths.

« Coupling g (5,,-S,,) - u_
to the ‘-’ bosonic bath

should dominate near QTP.
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Cluster EDMFT solutions

0.5

* Solve using
» Numerical RG at T = 0. 04 1\
» Continuous time QMC at T > 0. o3

» Again find two types of solution: **
0.1
» 2D spin fluctuations lead to
local criticality Y S ———
> 3D spin fluctuations yield a 0.4 - .
spin-density-wave 03 - d

(conventional) QPT

02 03 04 05 8.6 0.7 08 09
Tir®
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Cluster EDMFT solutlons

Focus on locally critical case:

 Spin susceptibility again

has anomalous exponent,

here oo~ 0.81

cf. a = 0.75 from neutrons.

15 l |
14 L 00017 —m— |
0.011 —@—
13 |- 0.0083 —¥—
0.0056
12
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O
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N _ .
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7 | | 1 | 1 ]
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06 0.4 02 0 0.2 0.4
ol
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Singlet pairing correlations
are strongly enhanced near
a Kondo-destruction QPT.
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Correcting a technical flaw of Wilson’s NRG

« Having to calculate a property using the iteration N where
T ~DA V2 and/or |w|= DA™N'? creates problems:

> edge effects where switch from using N to N+1 (or N+2)

> or overcounting if blend ) o oN
information from multiple | Mﬂﬂ | ‘ ) |
iterations. D O
» Leads to NRG violations of N42
exact relations, e.g., : ) ‘l M L 1]
[A (@, T)do=1 JL

‘ ‘ up to N+2
| IJJI m ||| | | I ‘
'Eﬂ
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Complete basis (or density matrix) NRG

* These problems are fixed in the complete-basis NRG
(Anders & Schiller, 2005):

Dhizcarded states

Szalay et al. (2015)

Kept states

> NRG uses the kept states at one or a few iterations N.
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Complete basis (or density matrix) NRG

* These problems are fixed in the complete-basis NRG
(Anders & Schiller, 2005):

Dhizcarded states

Szalay et al. (2015)

Kept states

> NRG uses the kept states at one or a few iterations N.

> CB-NRG also accounts for every state at the largest N,
although it has to approximate discarded state energies.
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Complete basis (or density matrix) NRG

* CB-NRG yields exact conservation of spectral weight:
jAG(a),T)da):l

 Also opens the way for treatment of non-equilibrium
problems:

> Time evolution after a sudden perturbation (quantum
guench) — reasonably successful.

> Steady state — still in its infancy.

NRG methods and applications- Tallahassee, 13 Jan 2017 41




Summary: NRG Strengths and Weaknesses

* NRG methods are non-perturbative in model parameters

e Can accurately calculate properties over many decades of
temperature/frequency

* Not as flexible as QMC methods

* NRG does not scale well with increasing number or
Impurities and/or bands

« Some of the weaknesses can be overcome using matrix
product state methods to be described in the next talk.
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