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NRG methods and applications
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Before we begin …
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It looks beautiful … 

Physics Department

Lake Alice
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… but beware of the natives

A resident of Lake Alice

Residents of “The Swamp”

4NRG methods and applications- Tallahassee, 13 Jan 2017



NRG methods and applications- Tallahassee, 13 Jan 2017 5

Outline

• Quantum impurity problems couple

a local degree of freedom to a

gapless, noninteracting host:

• Ken Wilson devised the numerical renormalization group 

for controlled nonperturbative evaluation of equilibrium 

thermodynamics of impurity models with fermionic hosts.

• The original NRG has been extended to …

‣ dynamical properties

‣ multi-orbital impurities, multiple impurities, bosonic hosts 

‣ impurity solution in dynamical mean-field methods

‣ non-equilibrium properties.

impimphosthost HHHH  
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NRG Strengths and Weaknesses

• NRG methods are non-perturbative in model parameters

‣ Can often map out the full phase diagram.

• Can accurately calculate properties over many decades of 

temperature/frequency

‣ Important where there is a very small many-body scale, 

e.g., in Kondo physics.

‣ Essential for studying quantum criticality.

• Not as flexible as QMC methods

‣ Cannot treat bulk interactions.

‣ Laborious to calculate higher-order correlation functions 

or finite bias.

• NRG does not scale well with increasing number or 

impurities and/or bands



NRG methods and applications- Tallahassee, 13 Jan 2017 7

Some References and Public Domain Codes

• Background on quantum-impurity problems:

Hewson, The Kondo Problem to Heavy Fermions 
(Cambridge Univ. Press, 1997).

• NRG reviews:

‣ Wilson, Rev. Mod. Phys. 44, 773 (1975)

‣ Krishna-murthy et al., PRB 21, 1003, 1044 (1980)

‣ Bulla et al., Rev. Mod. Phys. 80, 395 (2008)

• Public-domain codes:

‣ NRG Ljubljana code (http://nrgljubljana.ijs.si)

A flexible implementation of “traditional” NRG

‣ Flexible DM-NRG (http://www.phy.bme.hu/~dmnrg)

Implements density-matrix NRG method described in 

Toth et al., PRB 78, 245109 (2008).

http://nrgljubljana.ijs.si/
http://www.phy.bme.hu/~dmnrg


• The NRG was developed for problems with fermionic 

hosts, e.g.,

where

• With decreasing T, the impurity spin-½ is progressively 

screened with a characteristic many-body scale
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Motivation for the NRG
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 ,imphostimphostKondo rsS  JHH

 ./1exp 0JDTK 



• The fundamental challenge of the Kondo model

is the equal importance of spin-flip scattering of band 

electrons on every energy scale  on the range –D    D.

• Poor man’s scaling (Anderson, 1970): Each decade of 

band energies about the Fermi level contributes equally to 

the renormalization of     toward           :
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What makes the Kondo model hard?

 ,imphostimphostKondo rsS  JHH

J *J



• The fundamental challenge of the Kondo model

is the equal importance of spin-flip scattering of band 

electrons on every energy scale  on the range –D    D.

• Poor man’s scaling (Anderson, 1970): Each decade of 

band energies about the Fermi level contributes equally to 

the renormalization of     toward           :

• Scaling is perturbative in the renormalized value of           

and thus limited to temperatures

• The NRG was conceived to reliably reach down to T = 0.
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What makes the Kondo model hard?

 ,imphostimphostKondo rsS  JHH

J *J

 ./1exp 0JDTT K 

J0

perturbative ?????



• Any noninteracting host can be mapped exactly to a tight-

binding form on one or more semi-infinite chains:

‣ Start with                               host state entering Hhost-imp

‣ Since

reach only host states given by repeated action of Hhost

‣ Lanczos (1950):

etc
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Chain mapping of any host

11000host ftfefH 

2201111host ftftfefH 

0f

, H
dt

d
i

3312222host ftftfefH 



• Any noninteracting host can be mapped exactly to a tight-

binding form on one or more semi-infinite chains:

• The conduction band in the Kondo model maps to

• Since the basis grows by a factor of 4 for each chain site, 

we would like to diagonalize H on finite chains. But …

‣ Coefficients en, tn are all of order the half-bandwidth.

‣ No useful truncations: Ground state for chain length L is 

not built just from low-lying states for chain length L – 1.
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Chain mapping of a conduction band

  




 




0

,1

††

host H.c.
n

nnnnnn fftffeH



• Wilson (~1974) logarithmically

discretized the conduction band

via a parameter

• The impurity couples to just

one state per bin:

• Now apply Lanczos to the

discretized band:
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NRG’s key feature: Band discretization
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Bulla et al. (2008)
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• Wilson’s artificial separation of bin energy scales

gives exponentially decaying tight-binding coefficients:

(not a       decay!)

• Allows iterative solution on chains of length L = 1, 2, 3, ...

‣ Ground state for chain length L is mainly built from low-

lying states for chain length L – 1.

‣ Thus, can truncate the Fock space after each iteration to 

cap the computational time. 
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NRG iterative solution
m
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• Start with

e.g., Kondo

• Then

Diagonalize in a basis                                     to find

• Keep states 1  s  Ns of lowest energy ENs, discard the 

rest. Computational time
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NRG iterative solution
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• Iterate

until reach a scale-invariant RG fixed point where

low-lying solution of HN = low-lying solution of HN-2

• E.g., Anderson model

With

‣ increasing N,

‣ decreasing energy

observe two crossovers

free orbital  local moment  strong coupling (Kondo)
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NRG level flow

   1NNrN HEH

Bulla et al. (2008)

,2/ND 



• The solutions of Hhost,Λ give the value Xhost of a bulk 

thermodynamic property in the pure host (no impurity).

• Solutions of

give the value Xtotal in the full system with the impurity:

where

• Both Xhost and Xtotal vary strongly with the discretization Λ.

• But the value of

varies remarkably weakly with Λ.

• Can use 2 Λ  10 to estimate the physical (Λ = 1) value.
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What does NRG give?

hosttotalimp XXX 

 imphostimphost,Kondo rsS   JHH
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• Can reliably distinguish Fermi liquids & non-Fermi-liquids:
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Examples of impurity thermodynamics

Bulla et al. (2008)

conventional (1-channel) 

Kondo model

overscreened (2-channel) 

Kondo model

)/1ln(/, impimp TTC const./, impimp TC
0imp S 2lnimp S

J = 0.05D

kept 400 states

J = 0.05D

kept 8100 states



• Consider the Anderson impurity model

• Interested in the impurity Green’s function

• NRG solutions tracking                                    yield a 

discrete approximation

where

• Obtain a smooth                by replacing                  by a

broadening function of width proportional to 
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Dynamical properties
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• Smoothed spectral function reveals the Kondo resonance:
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Calculation of transport properties

)(A

/

KT/

Costi et al. (1994)

2
0 V

d Ud 



• Smoothed spectral function can be used to calculate 

linear-response transport properties.

• E.g., for a quantum-dot setup

zero-bias conductance is

where                      is the noninteracting level width.
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Calculation of transport properties
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• Vg can drive C60 electron occupancy from odd to even.

• Comparison of measured G(T) with NRG suggests

‣ spin-½ Kondo for odd occupancy (TK = 4.4 K)

‣ underscreened spin-1 Kondo for even (TK = 1.1 K)
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Application: Conductance of C60 quantum dot

Roch et al. (2008)
Roch et al. (2009)



• NRG has been used as the impurity solver in the DMFT 

treatment of many lattice Hamiltonians.

• It is especially useful if there is a vanishing energy scale, 

e.g., the Mott transition in the Hubbard model.
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Application: Dynamical mean-field theory

Bulla (1999)



• NRG has been used as the impurity solver in the DMFT 

treatment of many lattice Hamiltonians.

• However, the NRG does not scale well for the multiband 

models and cluster DMFT extensions that are of interest 

for many correlated materials (cuprates, pnictides, …).

‣ NRG basis grows at each iteration by a factor of      , 

where nf is the num. of distinct bulk fermionic species.

‣ Usually, nf = (2s+1) x (num. impurities) x (num. bands).

‣ As nf increases, so too must Ns, the number of retained 

many-body states.

‣ Computational time per NRG iteration
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Application: Dynamical mean-field theory

fn
2

  .2
3
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• At the QPT, Kondo scale vanishes, Fermi surface jumps.

• Neutron scattering on CeCu1-xAux shows quasi-2D 

magnetic critical fluctuations with /T scaling at generic q.

• Points to a local QPT outside the Landau framework.

Effective Kondo temp.

25

Application: Kondo-destruction QPTs
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T(K)

H(T)

HFL
AF

YbRh2Si2 eff1 nRH 

RH

H(T)



• EDMFT includes some spatial fluctuations (unlike DMFT).

• Lattice Kondo model maps to a Bose-Fermi Kondo 

impurity model:

• Fermionic band accounts for

local dynamical correlations.

• Dissipative baths represent

a fluctuating magnetic field

due to other local moments. 

• Band and bath densities

of states must be found

self-consistently.

26

Extended dynamical mean-field theory
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• Two types of solution [Si + collaborators (2001,2003,2007)]:

27

EDMFT for Ising-symmetry Kondo lattice
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3D magnetic fluctuations 2D magnetic fluctuations

c cRKKYK IT RKKYK IT



• Two types of NRG solution [Glossop and KI (2007)]:

28

EDMFT for Ising-symmetry Kondo lattice
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RKKYK IT



• Locally critical NRG solution [Glossop and KI (2007)]:

29

EDMFT for Ising-symmetry Kondo lattice
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RKKYK IT



• Two types of solution [Si + collaborators (2001,2003,2007)]:

• Locally critical QPT in the 2D case is consistent with …

‣ Jumps in the Fermi-surface volume, carrier conc’n.

‣ A divergence of the Gruneisen ratio          .

‣ Anomalous /T scaling of dynamical spin susceptibility.

30

EDMFT for Ising-symmetry Kondo lattice
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3D magnetic fluctuations 2D magnetic fluctuations

pC/

c cRKKYK IT RKKYK IT



• Dynamical spin susceptibility takes the form

where 0.72 ≤  ≤ 0.78 from

numerics compares with …

  0.75 from neutrons

Schröder et al (2000)
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Locally critical EDMFT solutions
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Superconductivity near a Kondo-destruction QPT

.
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Jump in Fermi surfaceCeRhIn5
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Superconductivity near a Kondo-destruction QPT

.
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Jump in Fermi surface

*
eff 1 Tm 

CeRhIn5

How does Kondo destruction affect superconductivity?
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Cluster EDMFT approach

• EDMFT cannot describe non-s-wave superconductivity.

• For this, we apply a cluster extension of EDMFT [Pixley et 

al. (2015)] to the Anderson lattice model:

• Simplest approximation divides

the Brillouin zone into two patches:

one FM (‘+’) and one AFM (‘’).
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35

Cluster EDMFT (cont.)

• Assume that

• This leaves an effective two-

impurity Bose-Fermi Anderson

model with two bosonic baths.

• Coupling  g (S1z  S2z)  u
to the ‘’ bosonic bath

should dominate near QTP. 
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Cluster EDMFT solutions

• Solve using

‣ Numerical RG at T = 0.

‣ Continuous time QMC at T > 0.

• Again find two types of solution:

‣ 2D spin fluctuations lead to

local criticality

‣ 3D spin fluctuations yield a

spin-density-wave

(conventional) QPT
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Focus on locally critical case:

• Spin susceptibility again

has anomalous exponent,

here   0.81

cf.   0.75 from neutrons.
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Cluster EDMFT solutions
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Singlet pairing correlations 

are strongly enhanced near 

a Kondo-destruction QPT.



• Having to calculate a property using the iteration N where       

.   and/or                       creates problems:

‣ edge effects where switch from using N to N+1 (or N+2)

‣ or overcounting if blend

information from multiple

iterations.

• Leads to NRG violations of

exact relations, e.g.,
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Correcting a technical flaw of Wilson’s NRG

2/|| ND 2/NDT 

 1),(  dTA

Bulla et al. (2001)



• These problems are fixed in the complete-basis NRG 

(Anders & Schiller, 2005):

‣ NRG uses the kept states at one or a few iterations N.
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Complete basis (or density matrix) NRG

Szalay et al. (2015)



• These problems are fixed in the complete-basis NRG 

(Anders & Schiller, 2005):

‣ NRG uses the kept states at one or a few iterations N.

‣ CB-NRG also accounts for every state at the largest N, 

although it has to approximate discarded state energies.
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Complete basis (or density matrix) NRG

Szalay et al. (2015)

x 4

x 8

x 2



• CB-NRG yields exact conservation of spectral weight:

• Also opens the way for treatment of non-equilibrium 

problems:

‣ Time evolution after a sudden perturbation (quantum 

quench) – reasonably successful.

‣ Steady state – still in its infancy.
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Complete basis (or density matrix) NRG

 1),(  dTA
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Summary: NRG Strengths and Weaknesses

• NRG methods are non-perturbative in model parameters

• Can accurately calculate properties over many decades of 

temperature/frequency

• Not as flexible as QMC methods

• NRG does not scale well with increasing number or 

impurities and/or bands

• Some of the weaknesses can be overcome using matrix 

product state methods to be described in the next talk.


