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Part 1: Topological phases and response protected by discrete
translation, inversion, and rotation symmetries

Part 2: Bound states on geometric defects in point-group
protected topological phases

Part 3: Response of a time-reversal breaking, free-fermion
topological phase to geometric deformations



Part 1:Topological Phases and
Response Protected by Discrete
Spatial Symmetries



Historical Reference List

Precursor of Spatial-Symmetry Protected Topological Phases:
* Zak, J. "Berry’s phase for energy bands in solids." Physical review letters 62, 2747 (1989).
-Wannier center locations are quantized in inversion symmetric crystals, i.e., polarization is quantized.

Modern Inception of Field:

* Fu, L, Kane, C. L., & Mele, E. J. (2007). Topological insulators in three dimensions. Physical review letters, 98(10),
106803.

* Moore, J. E., and Leon Balents. "Topological invariants of time-reversal-invariant band structures." Physical Review B
75.12 (2007): 121306.

-Introduction of weak topological insulators protected by time-reversal and translation symmetry.

* Fu, Liang, and Charles L. Kane. "Topological insulators with inversion symmetry." Physical Review B 76, 045302
(2007).
-TIs with time-reversal and inversion symmetry are classified in 2D and 3D. First discrete eigenvalue formula.

* Teo, Jeffrey CY, Liang Fu, and C. L. Kane. "Surface states and topological invariants in three-dimensional topological
insulators: Application to Bi_ {1- x} Sb_ {x}." Physical Review B, 78, 045426 (2008).

-Introduction of mirror Chern number in 3D materials. Call for a complete topological band theory including all point-

group symmetries.



Historical Reference List

Resulting Classification:

Fu, Liang. "Topological crystalline insulators." Physical Review Letters 106.10 (2011): 106802.

Hughes, Taylor L., Emil Prodan, and B. Andrei Bernevig. "Inversion-symmetric topological insulators." Physical
Review B 83.24 (2011): 245132.

Turner, Ari M., et al. "Quantized response and topology of magnetic insulators with inversion symmetry." Physical
Review B 85.16 (2012): 165120.

Fang, Chen, Matthew J. Gilbert, and B. Andrei Bernevig. "Bulk topological invariants in noninteracting point group
symmetric insulators." Physical Review B 86.11 (2012): 115112.

Jadaun, Priyamvada, et al. "Topological classification of crystalline insulators with space group symmetry." Physical
Review B 88.8 (2013): 085110.

Slager, Robert-Jan, et al. "The space group classification of topological band-insulators." Nature Physics 9.2 (2012):
98-102.

Teo, Jeffrey CY, and Taylor L. Hughes. "Existence of Majorana-Fermion Bound States on Disclinations and the
Classification of Topological Crystalline Superconductors in Two Dimensions." Physical review letters 111.4 (2013):
047006.

Chiu, Ching-Kai, Hong Yao, and Shinsei Ryu. "Classification of topological insulators and superconductors in the
presence of reflection symmetry.” Phys. Rev. B 88, 075142 (2013).

Zhang, Fan, C. L. Kane, and E. J. Mele. "Topological Mirror Superconductivity.” Phys. Rev. Lett. 111, 056403 (2013).

Material Prediction and Experimental Confirmations

Hsieh, Timothy H., et al. "Topological crystalline insulators in the SnTe material class." Nat. Comm. 3, 982 (2012).
Tanaka, Y., et al. "Experimental realization of a topological crystalline insulator in SnTe." Nat. Phys. 8, 800 (2012).
Dziawa, P., et al. "Topological crystalline insulator states in Pb1- xSnxSe." Nat. Mat. 11, 1023 (2012).

Xu, Su-Yang, et al. "Observation of a topological crystalline insulator phase and topological phase transition in Pb1-
xSnxTe." Nat. Com. 3, 1192 (2012).



Periodic Table of Free Fermion Topological
Phases

0 | x_
2 2 0 Z 0

(0+1)d Z 0 0 Z Z 0
(1+1)d Z Z2 Z2 0 Z 0 0 0 0 Z
(2+1)d 0 VA Z2 Z2 0 Z 0 0 Z 0
(3+1)d 0 0 VA Z2 22 0 Z 0 0 Z
(4+1)d 0 0 0 Z /2 /2 0 Z VA 0
(5+1)d VA 0 0 0 VA Z2 Z2 0 0 Z
(6+1)d 0 VA 0 0 0 VA 22 Z2 Z 0

(7+1)d Z2 0 Z 0 0 0 Z Z2 0 Z

The non-zero entries represent “strong” topological invariants of the bulk that distinguish
gapped phases from a trivial atomic limit.

Does not include unitary symmetries. Important to consider spatial symmetries such as

translation, reflection, (discrete) rotation.
Schnyder,Ryu,Furusaki,Ludwig: PRB (2008)
Kitaev: Adv. in Theoretical Phys. 2009
Qi, Hughes, Zhang: PRB(2008)



Example: Su-Schrieffer-Heeger model in 1D

Class D insulator in 1+1-d with (fine-tuned) particle-hole symmetry. Strong invariant: Z,.

Given:  H(k) 3 CH(IC)C_I = —HT(_k)
Construct: Amn(k') — _Z<um(k)|8k|un(k»

T/a
Calculate: 0 =/ dk Tr [A(k)]

—7/a



Electromagnetic Response in 1D

__________________

w2 &0 60 060 060 O 0 i\

Connection between topological invariant and EM response—
the charge polarization.

P, = <0 mod Ze
27
At half filling there are bound charges on the ends when 0=n
which illustrate the bulk charge polarization. Example of a
connection between a ‘strong’ topological invariant and an
observable.



Weak Invariants due to Translation Symmetry

Preserving translation invariance introduces a new series of invariants
generically called “weak” topological invariants.

- C & Translation mwmle strong invariants

are isotropic, the weak

(0+1)d
invariants are
(1+1)d 22 Z2+2> G+G0 anisotropic.
(2+1)d Z Z+222+2> G+G_+G,
(3+1)d 0 0+32+3Z2+2> 0+G,+G_ +G,
K-theory
classification
on torus
instead of
sphere

Strong+Weak+Secondary Weak+Global
Electromagnetic



Example: Weak Invariants from SSH
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Weak vs. Strong in 2D

Class D in 2d: Z+2Z, I
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First Chern Number: C,

If only the weak invariant is non-zero, breaking translation symmetry (even just
on the edge) allows us to gap the system!



Electromagnetic Response Actions

1D
-® 6 O 06— 9o o6 o o o o o o+ Conduction

Sl[Ap,] ‘ /dxdt QGMVFMV—/dLEdt PlE L= _'_R

2D (weak) A W

iiiiii

1 .
0900
20908
1

2!

Sa[Au] = o= / d*zdt Gie"™ F,, = / d*zdt Py - E

2D (strong)

2




Quantization of Z, Electromagnetic Response

Si[A,] = 4; / drdt 0" F,,, = / drdt P,E

* Under C symmetry P, transforms to —P, (odd).

JEE : This constrains P,=-P,.
Z, Quantization of P;: RN
* Forcrystals P, is periodici.e. P,= P+ ne

P,=0o0re/2

This type of quantized response appears in all even spacetime dimensions

Sa[A,] = / Brdt PE-B odd under T, T2=-1]
Ss[Au] = / d°xdt PsEo BosBys (0odd under C, C2=-1)

S7|Au] = /d7il?dt PrEo1B23BasBer  (odd under T, T2=+1)

Interestingly, every action has an E-field, thus also odd under inversion!



Inversion Protected Topological Phases

Each of the topological phases with a generalized polarization response can be
stabilized by inversion symmetry instead of C or T. Thus, can arise in non-fine
tuned/non-superconducting systems ( € ) and in magnetic systems (¥). We will
only consider a tiny subset of the rich inversion protected classification.

Big calculational advantage is that topological invariants in models can be
determined from discrete data in the Brillouin zone without any integration.

Example: PH(I{T)P_I — H(—L)

e det B(m/a) e H X :
P p— o | — o O

Tr[A(—k)] = —Tr[A(k)] — iV Log[det B(k)]
Bunn(k) = (ttm (=) | Plun (k)

If we know the inversion eigenvalues of the occupied bands we can determine
polarization.



Inversion Eigenvalue Example

©=0 P =o0"
LL ® . o o 6 o6 o6 o o6 o o o
0 —t

H(k)=<_t 0 ) A(k) =
((k=0)=((k=m7/a) = +1

O=1
0 ¢ ika ) _1

H(k) = (_te_ika ‘ ) Ak) = 5

((k=0)=—C(k=7/a) =+1



Higher Dimensional Cases with Inversion

o o
+ + C:, _ - (1 —
. ()%= I calk=n)
Chern o e A,acoce.
Number Inversion(C,) determines Chern number mod 2 (Hughes et al., Turner et al.)
C, rotation determines Chern number mod n (Fang et al.)
o ®
++  +4

0 e o Syd]- / #rdt PE - B

Magneto- = +
electric k=0
polarization ? With T and P we can use the Fu-Kane formula:
. -
A S P3 = I I Calk=A)
° ® A,a€oce. /2
++ ++
K = Eigenvalues come in Kramers’ pairs with T & P.
z” But if we break T, how do we choose half the occupied states?




Higher Dimensional Cases with Inversion

® @
+ + To make the formula well defined when we only have P
3D: there must be constraints so that we can define half the

e +@ occupied bands when there is no Kramers’ degeneracy:

k=0 * Topological constraint: Product of ALL inversion
eigenvalues must be positive (otherwise gapless). If

+. +’ product is negative there exists a topologically
protected metal (Weyl semi-metal in some cases)

+ @ @ * All first Chern numbers vanish (or are even)

k,=Tt )

P3 — I I Qo (lL — A)
Chern number has to go from odd to A,a€oce. /2

even as kz goes from 0 to 1. This
cannot happen in an insulator.



Part 2: Bound States on Topological
Defects in Spatial Symmetry Protected
Phases



Historical Reference List

Precursors:

» Jackiw, R., and C. Rebbi. "Solitons with fermion number 1/2." Phys. Rev. D 13.12 (1976): 3398-34009.
* Su, W. P, J.R.Schrieffer, and A. J. Heeger. "Solitons in polyacetylene." Physical Review Letters 42.25 (1979): 1698-1701.

Modern Developments:

* Lee, Dung-Hai, Guang-Ming Zhang, and Tao Xiang. "Edge solitons of topological insulators and
fractionalized quasiparticles in two dimensions." Physical review letters 99.19 (2007): 196805.

* Ran, Ying, Ashvin Vishwanath, and Dung-Hai Lee. "Spin-Charge Separated Solitons in a Topological Band
Insulator." Physical review letters 101.8 (2008): 086801.

* Qj, Xiao-Liang, and Shou-Cheng Zhang. "Spin-Charge Separation in the Quantum Spin Hall State."
Physical Review Letters 101.8 (2008): 086802.

* Ran, Ying, Yi Zhang, and Ashvin Vishwanath. "One-dimensional topologically protected modes in
topological insulators with lattice dislocations." Nature Physics 5.4 (2009): 298-303.

e Jurici¢, Vladimir, et al. "Universal Probes of Two-Dimensional Topological Insulators: Dislocation and it
Flux." Physical Review Letters 108.10 (2012): 106403.

* Hughes, Taylor, Hong Yao, and Xiao-Liang Qi. "Majorana Fermions Bound to Dislocations in 2d Weak
Topological Superconductors." Bulletin of the American Physical Society 55 (2010).

* Teo, Jeffrey CY, and Taylor L. Hughes. "Existence of Majorana-Fermion Bound States on Disclinations and
the Classification of Topological Crystalline Superconductors in Two Dimensions." Physical review letters
111.4 (2013): 047006.

* Benalcazar, Wladimir A., Jeffrey CY Teo, and Taylor L. Hughes. "Classification of Two Dimensional
Topological Crystalline Superconductors and Majorana Bound States at Disclinations." arXiv preprint
arXiv:1311.0496 (2013).



2+1-d Topological Insulator (QAHE)

Take massive Dirac Hamiltonian in 2+1-d (Haldane 1988). Also known as Chern Insulator.
f N ,. o [ m by — 1k
Hoa =3 e} (keo™ + kyo? + moedagl[- 5 0 ( L
— — SRS - iy —m

Vacuum | Bulk

Ey = i\/k‘lz + kg +m? m>0 m<0

L

Bulk described by massive Dirac fermions, boundary described
by massless chiral fermions in one lower dimension, Clifford
algebra dimension cut in half. QHE without Landau levels.




Boundstate Production Mechanisms

For free fermion models the Dirac domain wall/vortex is the generic mechanism for
topological boundstates. However, this does not apply for more complicated
interacting systems.

Another mechanism which can be used even with interactions are considering “gauge
fluxes” of a global symmetry.

symmety A

U(1) Global Charge Conservation Magnetic flux

Translation Symmetry Dislocation
Rotation Symmetry Disclination
Anyonic Symmetry Twist Defect

In the case of free fermions the mechanisms coincide



Bound States on a flux in the QAHE/Chern
Insulator

Topological Phase Protected by Global U(1) symmetry: global charge conservation

Gapless fermion spectrum on cut

o—©O AE

m(y) = m

Lee, Zhang, Xiang PRL (2007)



Crystal Dislocations: Translation/Torsion
Flux

Let’s take a path in the lattice
3 steps right

3 steps up

3 steps left

3 steps down

This path is closed in the
reference state.

oo o 0 0o
0 0.4 o 0o 0o o o

The amount of translation is the
Burgers vector and it is a vector of
topological charges. It doesn’t change
if you continuously deform the
dislocation.

f%%
——@-

o o o o 0 0 o0 o
o o o © O 0 0 00

e—9@ @ 0o o0 o e o ©°o



Dislocation Bound States in Translation
Protected Topological States

Topological insulators/ 1

superconductors (class D) n=—=~_-B Ran 7h

with weak indices 2 Burger'svector | o7 <1NS
characterizing ~ Vishwanath, 2009

(G1, Gz, G3)=G,

dislocation

~——o——o— o

Teo, Kane, 2010, Ran2010 Asahi, Nagaosa, 2012 Juricic, et al., 2012 TLH, Yao, Qi, 2013



Bound States on Dislocations

m(y) = me®¥E

Gapless fermion spectrum on cut

m(y) = m

Ran, Zhang, Vishwanath Nat. Phys. (2009).



Bound States with Secondary Weak Invariants

In class D in 3d we have an antisymmetric tensor G,

1 1
n=—=GqaBo° n = %Gabe’Bg

Requires translation symmetry along . _ ,

dislocation. Bound state on linked dislocations does not

A weak invariant for the dislocation itself! requilre symmetry alqng d|sIocat|or.1. _
Possible appearance in Raghu, Kapitulnik,

TLH, Yao, Qi, 2013 Kivelson state of Sr,RuO, where G_, #0.



Disclinations in the Square Lattice

b  « « odd

Classification: C4 X ZQ Frank Angle x Translation Parity

!

Eveness / oddness of number of translations.
Equal to number of distinct rotation centers.

Teo, TLH: PRL 2013



Dislocation = Disclination Dipole

, Overall odd dislocation
A

How does
Majorana mode

decide where to go?
Teo, TLH; PRL 2013



Classification of C4 Invariant 2D Superconductors

 BdG Hamiltonian in class D (PHS)
=Hpac(k)=Z™" = —Hpya(—k)
* C4 rotation symmetry (square lattice)

’f’HBdg(k)’f’T — HBdG(r y k)

—reT =7

Teo, TLH; arXiv:1208.6303



Classification of C4 Symmetric Superconductors
* Topological invariants (all T-breaking)

. . /L
(i) First Chern Number o — — Tr(d.A)
. .. : T
(ii) Rotation invariants
4-fold momenta rotation eigenvalues ).( .M
at [[=T, M |
—[5 _ G_ZW/4, H6 _ 6z7r/4 : |
[e---X

‘17 _ 67237r/47 H8 _ e—i37r/4

2-fold momenta rotation eigenvalues

Xy =i, X4= —i

BZ

Rotation spectra discrepancies in valence bands

[’M = # X4 — #1'5s — #17

ne = # Mg — #1L6 ny = # M7 — #F7]

K =74

Teo, TLH; PRL 2013



Hamiltonian Generators
* 4 group generators / model Hamiltonians for

Z4 — {(Ch; Ty, Mg, N7)}

(i) Modified chiral p+ip superconductor on square lattice
H, = A(sin k7, + sin k,7,) + u1(cos k; + cos k)7, + 2us cos k, cos k, T,

H, ’ hopping strength’ ch N4 ne ny
Hc(ll;o) uy > uz > 0 1 —1 1 0
AR —uy > up >0 1 0 ~1 0

(ii) Lattice models of Majorana fermions

(b) *iv > wie o> el (€) 33 33 nosd
LH% }FH} Sr2RuOa4 ><><><
) oo
%H_yj:_jk,_j. Raghu, Kapitulnik, Kivelson, 2010 :.><iy>4<"><.:

TB model ’ ch N4 ne nr
H, 0 1 -1 1
H.

0 2 0 0 Teo, TLH: PRL 2013




Majorana Zero Modes at Disclinations

e Simple Majorana Models:

° ° °
e &> 9 o> 9o o> o o
e e > o 0 > o 0 > o o
Y

04—)—00—)—0.

..—)—y?

e o—>—o .—)—...—}—...

Teo, TLH; PRL 2013



Z2 Index for MBS on Disclinations

4 1 Sz \
O= | _-T -G, + 2 (ch+ng+2n4+3n7) mod 2
2T PArs 1

. A )

\ J

|
Frank angle Rotation invariant
/ from occupied bands

Weak invariant

Gz/:n4‘|’n6+n7

Chern invariant

Teo, TLH; PRL 2013



Z2 Index for MBS on Disclinations

( )

1 ()

©O=|_T -G, + - (ch+ns+2n4+3n7)| mod 2
2T 2T

}

Rotation piece

Number of Majorana
fermion at a corner

Teo, TLH; PRL 2013



Part 3:Topological Response of 2+1-D
T-breaking Chern Insulator to
Geometric Perturbations



Historical Reference List

Precursors:
* AVRON, JE, R. SEILER, and PG ZOGRAF. "VISCOSITY OF QUANTUM HALL FLUIDS." Physical review letters 75, 697 (1995)
* Lévay, Péter. "Berry’s phase, chaos, and the deformations of Riemann surfaces." Physical Review E 56, 6173 (1997).

* Avron, J. E. "Odd viscosity." Journal of statistical physics 92, 543 (1998).

Modern Developments

* Read, N. "Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p_ {x}+ ip_ {y} paired
superfluids." Physical Review B 79, 045308 (2009).

* Haldane, F. D. M. “Hall viscosity and intrinsic metric of incompressible fractional Hall fluids.” arXiv:0906.1854.

* Tokatly, I. V., and Giovanni Vignale. "Lorentz shear modulus of fractional quantum Hall states." Journal of Physics:
Condensed Matter 21.27 (2009): 275603.

* Hughes, Taylor L., Robert G. Leigh, and Eduardo Fradkin. "Torsional response and dissipationless viscosity in
topological insulators." Physical Review Letters 107, 075502 (2011).

* Read, N., and E. H. Rezayi. "Hall viscosity, orbital spin, and geometry: paired superfluids and quantum Hall
systems." Physical Review B 84 085316 (2011).

* Barkeshli, Maissam, Suk Bum Chung, and Xiao-Liang Qi. "Dissipationless phonon Hall viscosity." Phys Rev B 85
(2012): 245107.

* Bradlyn, Barry, Moshe Goldstein, and N. Read. "Kubo formulas for viscosity: Hall viscosity, Ward identities, and the
relation with conductivity." Physical Review B 86, 245309 (2012).

* Hoyos, C., and D. T. Son. "Hall viscosity and electromagnetic response." Physical review letters 108, 066805 (2012).

* Ryu, Shinsei, Joel E. Moore, and Andreas WW Ludwig. "Electromagnetic and gravitational responses and anomalies
in topological insulators and superconductors." Physical Review B 85, 045104 (2012).

* M Stone, "Gravitational anomalies and thermal Hall effect in topological insulators." Phys Rev B 85, 184503 (2012).

* Hughes, Taylor L., Robert G. Leigh, and Onkar Parrikar. "Torsional Anomalies, Hall Viscosity, and Bulk-boundary
Correspondence in Topological States.” Phys. Rev. D 88, 025040 (2013).

* Abanov, Alexander G. "On the effective hydrodynamics of the fractional quantum Hall effect." J Phys A, 46, 292001
(2013).

*  Wiegmann, P. "Anomalous Hydrodynamics of Fractional Quantum Hall States.” arXiv:1305.6893.



Geometry Coupling in Solids via Frame Field

Conventionally, electrons moving in a solid couple to “geometry” through the local
displacement field which encodes distances between unit cells via the strain/metric tensor.

i i y ij 1 ou’ N ou?
— — u” = -\ 73— a
g¥ =0% —2u AT
If the unit cells are featureless and isotropic then it is just the distance between cells that

determines the hopping matrix elements which feed back into the electronic structure.

However, the orientation of the local degrees of freedom (orbitals/spin) within the unit
cell can also be important for the resulting electronic structure and require the
introduction of a frame field.

{ §8 <8 8 ot b 8 et

The strain/metric tensor represents an equivalence class of frames which can differ by
LOCAL rotations. Thus, the frame contains more information (“square root of metric”).

gzy _ e’;aabe}?}



Appearance of Frame Field in Solids

When should we worry about using a frame?
Toy problem: Take two atoms with p,, p,, and p,-orbitals. Does the energy depend on
how the orbitals are locally oriented on each site?

8

SOC=0

1.5

Energy

1

0.5+

ol

-05

-1

15

-2 1 1 1
0 2 4 G

Rotation Angle of Left Atom



Appearance of Frame Fields in Solids

The place to look for the effects of torsion is in materials
which have strong spin-orbit coupling. This means that you want the
motion/momentum coupled to spin degrees of freedom:

. ita 10 Dirac model/Topological
H—])zeal“ +77ZF Insulator

. 1 _Jgagb  Luttinger model for common IlI-V
H = PiPj eaebs S semi-conductors (spin 3/2)

However, simple Schrodinger electrons won’t even feel the effects:

pPiead®’ep; _ pigp;

H =
2m 2m




U(1) analogy for frame fields: Gauge field
of translations

Gauge potential and Wilson loop
for electro-magnetic field:

B=VxA

U = exp [% ](A : d€] = exp [2miD /D]

Gauge potential and Wilson loop
for dislocations:

B =V x e“

U = exp [% %ea : d@] = exp [—%pab“]

Magnetic Flux of frame field is a dislocation



Electromagnetic Response (QHE)

Electromagnetic linear response:

Au/\/v\/‘Q’\/\/\/\Ap

Serf[Au] = — / dBre'PA,0,A,

A




Calculating Geometric Response

We will be considering 2+1-d massive fermions (Chern Insulator/QAHE) coupled to external
geometric perturbations. We can just integrate out the fermions:

Stress Tensor response:

S = /d3x det(e)y (1D, ely* —m) ¢
Tj T
D, = 8, — iwyap 2™ T -

We find:
SefflA, e, w] =

1 2A 1 o
— / (aH ANdA — “—voly + ikgCS[D] +ily € AT, + —e€apce® N R + )
2 KN KN

TLH, Leigh, Parrikar (2012)



Chiral Gravity Response Theory

 Keeping T-even and T-odd pieces we find an interesting

structure:
1 2 1 o
(O'H ANdA — —woly + ikgCS[&] + iy €* N T, + —€qbee” AR
2 KN KN
Tolwtﬂbgh:aﬂ@hase o , . .
Can rewrite in a Chern-Simons term using a single
(IHI—‘(% SL(2,R) connection (Witten 1989,2007)
— (32 a __  .a 1 a
g};’: _Q; ./4 = W -+ ZG
RKHg — dll 1
K = ———
E — (87 l = %
AN _ Im|
kKN 127 . . : :
S = 4\3 1 Coefficients in topological phase satisfy
0 3 )
N = Ay — S—W\m\ Brown-Henneaux formula with
K

CL=O:CR=1



Chiral Gravity Response Theory

 Keeping T-even and T-odd pieces we find an interesting
structure:

1 2A 1 o
— / (aH ANdA — —voly + ikgCS[D] +ily € AT, + —€apce® N R + )
2 KN KN

Topological Phase We also find a subleading correction to the viscosity
m> which is quantized in units of C,/48n
(=5
27 1 o 4
02 5/ kg Re” N1y
1 On a constant curvature Riemann manifold
K = ——
48T 5
L _m = (M W=D _ g
KN 127 H V7T 6A
A 1
— = Aj— —|mf
KN 3T

TLH, Leigh, Parrikar (2012)



Topological Viscosity
We will only look at the torsion term and to simplify the description
we focus on a flat background where we pick a gauge where the spin-
connection vanishes:

1 _
Seff = 573 /(13176“'/’)6:201/6277@

We can compare this to the quantum Hall response:

SerflAu] = i /d3:17€#VpA#0VAp

A7

Note that the coefficient of the first term must have units
of 1/[Length]*2 when compared to the dimensionless, quantized
Hall conductance. If we reinsert the physical units into the frame

field response we find:
h rm\?2 h
7 =
" or (hv) e

Hughes, Leigh, Fradkin (2011)



Topological Viscosity Response Equations

 We can calculate the stress-energy tensor and find:

. e D
Té — 773ez](djeo — ()Oe ')77ab = 77361]8.7701) ) ne2 ..
] J T 'L]E
A
0 7. b — b 2
T, = n3e” 0ie;nab = n3B Nap 0" p
h

Torsion Magnetic Field:
B == b0(x — x(;)

The torsion magnetic field is simply tied to the dislocation density.
(Also curvature magnetic field tied to disclinations)



Magnetic Torsion Response

T2 = n3€' 0;€5map = 03B Nap

This torsion response implies that momentum density in the a-th
direction is bound to a frame field flux i.e. a dislocation

y
X
Momentum density on dislocation is (momentum/length)*length of edge state
pushed into bulk. That is viscosity*Burgers’ vector.



Magnetic Torsion Response




Electric Charge Response

Before we tackle the electric torsion response let us first consider
the electric field response in the QHE: Generate E-field via the
Faraday effect

= = e - 2




Electric Charge Response

=t =

(a)

Lox

Py — Dy t+elAA,

h

2mq h . 2m(g+1)
T eI

Spectral Flow of the Edge States

AE

— |- -—r - Im

(b)




Electric Torsion Response

T} = n3€ (9jel — 0oel)nap = 1136 EXna

Thread a torsion flux through the cylinder i.e. thread a dislocation.




QH Viscosity Bulk Boundary Correspondence

—
‘-‘-‘-_- ——Q—

A new 1+1-d anomaly in the stress Comparison with chiral current:
current (Diffeomorphism anomaly)
v a UV ra nv - - L N
Pi — Pa + pihyg pi — pi +€A;

e = 5 + b

How do we understand spectral flow?

TLH, Leigh, Parrikar



QH Viscosity Bulk Boundary Correspondence

Can get some clues from twisted boundary conditions:

[im r 1
ex] € [ (iperforih gaues traasfofpatiem) (1)) W (1)
e*vlvy (y) = exp [ik,b¥ (t)] ¥
( o | 1 |
7 L, [1-0b(t)/L,
WL, \"T % )




QH Viscosity Bulk Boundary Correspondence

BnGuBNGCs:

! 1

Spectral Flow:

2 d(1)
kL/R _ = =\Y)
7 Ly [q—l— Dy ]

(Hall conductance due to shift)

2Tq 1
k‘L/R - [ ] (Viscosity due to scaling?)
y L, |1£0b(t)/L,

Can think about it like fixed velocity but changing length of edge,
OR fixed length but edge velocities changing



Spectral Stretching/Rotation

(a) AE (b)

The cut-off breaks Lorentz invariance explicitly at high energy. Similar to how lattice Chern
insulator has broken time-reversal (or parity in original language) at high energy.

Momentum transport during velocity changing process/diffeomorphism exactly matches
bulk viscosity transport from the torsion Chern-Simons.



Spectral Flow Comparison
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(Electromagnetic)
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(Torsion)



Summary

We discussed types of topological phases protected
by discrete spatial symmetries and their
corresponding responses and tendency to bind low-
energy states to defects.

We also discussed the appearance of a chiral
gravity response theory in the 2+1-d Chern
insulator and the corresponding viscosity response
including a new type of edge anomaly.




