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Exactly solvable model (in more than one sense) of  
a system without quasiparticles (non-Fermi liquid).

Relation to holography and gravitation (may be teaches 
us new techniques, may be solves problems in gravity).  

A stable fixed point, describing real life phenomena: 
bulk correlated matter or transport in quantum dots.
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Why SYK? 



Fluctuations in SYK model  (Schwarzian FT). 

SYK matter (Schwarzian RG).  

SYK superconductivity   (extra degrees of freedom).

Outline: 



Sachdev-Ye-Kitaev model
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Sachdev-Ye model
S. Sachdev, J. Ye, PRL 69 (1992). 
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We examine the spin-8 quantum Heisenberg magnet with Gaussian-random, infinite-range ex-
change interactions. The quantum-disordered phase is accessed by generalizing to SU(M) sym-
metry and studying the large M limit. For large S the ground state is a spin glass, while
quantum fluctuations produce a spin-fluid state for small S. The spin-fiuid phase is found to
be generically gapless —the average, zero temperature, local dynamic spin susceptibility obeys
g(u) in(l/~w[) + i(vr/2)sgn(u) at low frequencies.

PACS numbers: 75.10.Jm, 05.30.—d, 75.50.Ee

Random quantum spin systems offer a useful labora-
tory for studying the fascinating interplay between strong
interactions and disorder. Though not as complex or in-
tractable as metal-insulator transition systems, they are
still rich enough to display a host of unusual physical phe-
nomena. Moreover, they can be realized in a number of
experimental systems, many of which have been studied
intensively in recent years [1—5).

It is useful to distinguish two diff'erent types of possi-
ble ground states of a random quantum magnet: (a) a
state with magnetic long range order ((8,) g 0 where 8,
is the spin operator on site i) which can be a spin-glass,
ferromagnet, or an antiferromagnet; (b) a quantum dis-
ordered (or "spin-fluid") state in which (8,) = 0 due
to the presence of strong quantum fluctuations. Many
properties of the magnetically ordered phase can be de-
scribed by a semiclassical analysis. In contrast, the spin-
fluid phase and its zero-temperature phase transition to
the magnetically ordered phase are intrinsically quantum
mechanical, and their properties are only very poorly un-
derstood. This paper shall mainly focus on the properties
of the spin-fluid phase.

We begin by recalling earlier work on spin-fluid states.
In early studies of random-exchange spin- 2 Heisen-
berg spin chains by a numerical renormalization group
method, Ma and co-workers and others [6] noted that
the low temperature spin susceptibility g(T) behaved ap-
proximately like T with n ( 1. This behavior, and
their analysis, suggested that the quantum disordered
phase of spin chains generically possesses gapless exci-
tations: the low energy excitations arose from a signif-
icant probability of finding a pair of spins which were
essentially decoupled from the rest of the system, and
with only a weak, mutual, effective exchange interaction.
Subsequently, the numerical y(T) obtained by Bhatt and
Lee [7] of a dilute three-dimensional random-exchange
spin-2 Heisenberg antiferromagnet with short-range in-
teractions could be well fit by T with n —0.66.
Experiments [8] on many lightly doped semiconductors
have also found similar behavior in the low tempera-
ture spin susceptibility; however, somewhat surprisingly,
this behavior appears to persist in denser, more strongly

doped systems. More recently, Doty and Fisher [9,10]
have obtained numerous exact results on random quan-
tum spin chains; in particular, Fisher [10] proved that
the random-exchange, spin-2 Heisenberg chain has y
1/[T ln (1/T)] and is gapless.

In this paper we introduce a new solvable, random-
exchange, quantum Heisenberg magnet —its solution re-
duces to the determination of the properties of an integro-
differential equation, which is a diKcult, though not im-
possible task. Our model possesses infinite-range ex-
change interactions, and is thus a solvable limit which is
complementary to the spin chains. Over a certain range
of parameters, our model is argued to possess a spin-fluid
ground state, which is found to be generically gapless.
However, the physical mechanism of the gaplessness ap-
pears to be quite different from that of the random spin
chains and the Bhatt-Lee analysis [7]. Which of these
two limits is closer to realistic, dense three-dimensional
models remains an open question. Finally, our model is
expected to display a transition to a spin-glass phase. We
have not yet succeeded in unraveling the nature of this
transition and that of the replica symmetry breaking in
the spin-glass phas" these are issues we hope to address
in a future publication.

The main result discussed in this paper is that the
T = 0, average, local dynamic spin susceptibility of our
model has the following form over the entire quantum
disordered phase:

1 lg(~) = Ã ln [ + i —sgn(cu)

where X is a constant to be determined below, and the
omitted terms are subdominant in the limit [w~ ~ 0.
A notable feature of this form is that it is identical to
the "marginal" Fermi liquid susceptibility proposed on
phenomenological grounds by Varma et aL [ll] as a de-
scription of the electronic properties of the cuprates. It
is not completely unreasonable to begin a study of the
low-lying spin Quctuations in the cuprates by using the
infinite-range quantum spin model described below; how-
ever, at present we have no arguments which can deter-
mine whether, or how, the marginal spectrum will survive
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Many-Body Spectrum

J. Maldacena & D. Stanford ‘2015
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Figure 13: The spectrum for a single realization of the q = 4 model with N = 32 fermions.

One obvious feature of the plot is that there is no scale-invariant divergence ⇢(E) / 1/E
or �(E) at low energy. Instead, the density goes smoothly to zero. A naive reading of the
plot suggests that the spectrum vanishes as Ep with p near one. The zero temperature
entropy does not reflect any actual degeneracy, only a large density of states near the
ground state. From this perspective, a completely random Hamiltonian on a system of
N qubits also has a zero temperature entropy, S0 = N log 2, from the density ⇢(E) /p
E(E � 2)2N . This gives a low temperature free energy logZ = N log 2� (3/2) log �.
In fact, from the plot (13), the density of states in SYK does not look too di↵erent

from the random matrix semicircle. It is important to note, though, that if we increase
N the density in the central region will be growing much faster than near the edges.
Near the center, we expect the density characteristic of the infinite temperature entropy,
⇢ ⇠ 2N/2 ⇡ e0.35N , while near the edges we expect eS0N ⇡ e0.23N . By diagonalizing the
Hamiltonian for di↵erent values of N between 24 and 32, and counting the number of levels
within bands of width 0.3J , we found the best fit e0.33N near the center and e0.24N near
the edge, in reasonable agreement with large N expectations. Note that the Hamiltonian,
while containing of order N4 random elements is not as random as a general random matrix
in Hilbert space, which would contain 2N random elements.

6 Towards a bulk interpretation

A natural starting point for a bulk interpretation is the action (4.169). Due to the large
factor of N , this looks like a classical system for the fields e⌃ and eG. One of them can be
easily eliminated, so we really have one field which is a function of two variables. Thus
we seem to have a field theory defined on a two dimensional space. It is natural to think
of the average of the two times as a time and the di↵erence as a new dimension. The
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We investigate the quantum fluctuation of the model by examine the higher power

of the Green’s function. Section 2, we first review the model and point out the di↵erent

power law decay in di↵erent time domain. In section 2.1, we calculate p-moment

of green’s function in time domain and find an intimidate transient region which

indicate the replica symmetry breaking. In section 2.2, by looking at green’s function

in energy domain, we found some deviant case from their average. By getting rid of

these deviants, the green’s function in time domain become very simliar to replica

symmetric solution.

2 Numerical results of SYK model

The Sachdev-Ye-Kitaev (SYK) model consist of N Majorana fermions with quenched

random interaction of four fermions at a time. The Hamiltonian of this quantum

mechanical system is

H =
NX
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where �i is the Majorana fermion with anti-commutator {�i,�j} = 2�ij , J is the
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Many-Body Level Statistics

Many-Body delocalized ?

3

the boundary degeneracy cannot be fully lifted, because
otherwise the bulk state could have been smoothly de-
formed into the trivial vacuum state across the bound-
ary (which here is a boundary to vacuum). We recall
that with interactions, the classification of the SPT or-
der in symmetry class BDI is reduced from Z to Z8.[6, 54]
So the energy levels of the boundary many-body spec-
trum are non-degenerate if and only if N� is a multiple
of eight [N�(mod 8) = 0]; otherwise, there is a degen-
eracy of every energy level of the many-body spectrum.
The degeneracy of energy levels of the boundary many-
body Hamiltonian can be studied numerically by exact
diagonalization of the Hamiltonian in Eq. (1). In doing
so we need to recall that when N� is odd, the low-energy
Hilbert space of a single boundary is not well-defined.
In that case, the “quantum dimension” (qdim) of the
boundary mode is considered instead, which is defined
to be the square root of the level degeneracy with both
boundaries considered. Numerical results for qdim are
listed on the second line of Tab. I: We see that the eight-
fold periodicity of the level degeneracy matches the Z8

periodicity of the (global) anomaly of the boundary.
However the level degeneracy (or “quantum dimen-

sion”) alone cannot fully resolve the eight-fold anomaly
described by Z8. As we will now explain, we have found
that the level statistics can provide an additional diag-
nostic. In the past, the level statistics of the many-
body spectrum has been used to diagnose whether a
many-body Hamiltonian is in the MBL phase or the
ETH phase (see e.g. [26, 69]). Here we use the level
statistics of the boundary to further resolve the (global)
quantum anomaly of the SPT phase, beyond the diag-
nostic provided by the degeneracy of all levels. In gen-
eral, we collect the eigen energies {En} of the Hamilto-
nian, and arrange them in ascending order E1 < E2 <

· · · . Let �En = En � En+1 be the level spacing,
and we evaluate the ratios of adjacent level spacings
rn = �En/�En+1,[26, 70, 71] such that the dependence
on the density of states cancels out in the ratio. The dis-
tribution of the ratio rn follows Poisson level statistics in
the MBL phase,

Poisson: p(r) =
1

(1 + r)2
, (2)

and WD level statistics in the ETH phase (given by the
“Wigner-surmise”[72]),

WD (surmise): p(r) =
1

Z

(r + r
2)�

(1 + r + r2)1+3�/2
. (3)

The parameters � and Z are di↵erent for GOE: � =
1, Z = 8

27 ; GUE: � = 2, Z = 4⇡
81

p
3
; and GSE: � =

4, Z = 4⇡
729

p
3
. The level repulsion in the ETH spectrum

manifests itself in the asymptotic behavior pWD(r !
0) ⇠ r

� . To make clearer the contrast between di↵er-
ent level statistics, we choose to show the probability

distribution of the logarithmic ratio ln r, which is given
by P (ln r) = p(r)r.
We now apply this analysis to the boundary Hamilto-

nian in Eq. (1). However, extra care should be taken
regarding the Fermion parity. Levels with di↵erent
Fermion parities are independent, so putting all lev-
els together will spoil the true level statistics in each
sector.[77] Therefore, the level statistics must be col-
lected in each Fermion parity sector. Since our BDI-
class Hamiltonian in Eq. (1) possesses, besides Fermion
number parity, no other unitary symmetries, any remain-
ing level degeneracies within each Fermion parity sector
will be ignored, i.e. we only consider the level spacing
between adjacent (non-degenerate) eigenenergies in each
such sector. We have collected the probability distri-
bution P (ln r) = p(r)r of the logarithmic ratio ln r nu-
merically; the results are shown in Fig. 1. We see that
the probability distribution varies systematically with
the number N� of Majorana modes. First of all, in
all cases WD statistics is observed, which shows that
the boundary is indeed in the ETH (quantum chaotic)
phase. Secondly, depending on the topological index
⌫ ⌘ N�(mod 8), the data correspond to one of the three
WD random matrix ensembles (GOE, GUE, or GSE),
as summarized on the third line of Tab. I.[78] Combining
the results for the level statistics (3rd line of Tab. I) with
those for the level degeneracy (2nd line of Tab. I) , the
Z8 anomaly pattern of the thermalized boundary can be
determined up to the sign of the topological index ⌫ (i.e.
⌫ and �⌫ are not distinguishable yet).[79]

Symmetry class BDI, most general Hamiltonian, ana-

lytical results. In this section we demonstrate analytically
that the ‘eight-fold-way’ level statistics of the boundary
Hamiltonian Eq. (1) persists even after including all pos-
sible (random) higher-order interactions (see Eq. (5)
below). Moreover, we show that this is related to the
Bott periodicity of the real Cli↵ord algebra C`0,N��1.[80]
To make this connection, let us first observe that the
Fermion bilinear operators

�a = �a�N� (a = 1, 2, · · · , N� � 1), (4)

where �N� is the “last” of the N� Majorana modes on the
boundary, can be used to define the generators of the Clif-
ford algebra C`0,N��1. We consider a real (matrix) repre-
sentation in Fock space, so that we have �

|
a
= �a (where

| denotes the transposed matrix), and {�a,�b} = 2�ab.
Then it is easy to show, using Eq. (4), that �

|
a

= ��a

and {�a, �b} = �2�ab. So the operators �a indeed repre-
sent the (N��1) antisymmetric generators of the Cli↵ord
algebra C`0,N��1. Then it can be checked that those el-
ements in C`0,N��1 which are represented by symmetric
matrices (in the real representation we are currently con-
sidering – they are thus self-adjoint) are of grade (4k�1)
or 4k (for some k 2 Z+), meaning that they can be
written as products of (4k � 1) or 4k generators �a. It

A. Garcia-Garcia, J. Verbaarschot,  2017
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[33, 41, 42]. However these papers focus only in the central part of the spectrum that

it is not related to properties of the gravity dual. By contrast, we have studied the

statistics of the low lying eigenvalues, namely, the infrared part of the spectrum. Since we

are interested in long time dynamics of the order of the Heisenberg time, we investigate

the level spacing distribution P (s), defined as the probability to find two neighboring

eigenvalues separated by a distance s = (Ei+1 �Ei)/� where � is the mean level spacing

� (see [42] for details of the calculation like the unfolding procedure). In Fig. 5 we depict

results for P (s) for N = 24 and N = 32 considering only 1.5% of the lowest eigenvalues.

As in the central part of the spectrum [41, 42], it follows closely the prediction of the

Gaussian Orthogonal Ensemble (GOE). The good agreement shows that the eigenvalues

of the SYK Hamiltonian fluctuate according to random matrix theory all the way to the

ground state region. This shows that the SYK Hamiltonian is chaotic in the infrared

domain. This is a further confirmation of the full ergodicity of the SYK model in the long
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FIG. 5. Level spacing distribution P (s) resulting from exact diagonalization of the SYK Hamilto-

nian Eq. (1) for N = 32 and 400 realizations (squares) and N = 24 and 10000 realizations (circles).

We only consider the infrared part of the spectrum, about 1.5%, which is related to the gravity

dual of the model. As in the bulk of the spectrum [41, 42], we observe excellent agreement with

the Wigner surmise for the Gaussian Orthogonal Ensemble (GOE). This strongly suggests that

full ergodicity, typical of quantum systems described by random matrix theory, is also a universal

feature of quantum black holes.
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Effective action

• (R-times) replicated Matsubara action

S. Sachdev ‘2015; J. Maldacena & D. Stanford ‘2015
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• (R-times) replicated Matsubara action
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Effective action

( ) 42

' ' '[ , tr ln ' ']
2 4

ab ba abNS d d d dJG G Gtt t t ttt t t t t
æ ö

é ù- ¶S = S S+ + +ç ÷ë û
è ø

ò ò

- integrating out Majoranas … 
S. Sachdev ‘2015; J. Maldacena & D. Stanford ‘2015

Self-energy

classical limit – saddle point equations:   N →∞

δS /δG = 0                    δS /δΣ = 0



Mean-field solution: 

• Self-consistent Dyson equation (S. Sachdev, J. Ye ‘1993) 

( ) 32
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• Mean-field solution (T=0)
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- is of conformal form with the scaling dimension D = 1/4

N →∞
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Goldstone action
J. Maldacena & D. Stanford ‘2015

• Schwarzian action of reparametrizations

- the Schwarzian derivative is defined by

h,τ{ }≡ h '''
h '
−

3
2

h ''
h '

⎛

⎝
⎜

⎞

⎠
⎟

2

,           m∝N J

- it respects the coset structure versus H=SL(2,R) 

g !h,τ{ } = h,τ{ } if  g(τ ) =
aτ + b
cτ + d

∈ SL(2,R)

at t>m fluctuations are strong
2)t∂

2

strong Goldstone fluctuations associated to the confor-
mal symmetry ensue, and e↵ectively change the dimen-
sion of the fermion operator to �3/4[19, 20, 22, 23]. In
this low energy regime, a single particle perturbation has
dimension 1� 2⇥ 3/4 = �1/2 and now is RG irrelevant.
This dimensional crossover implies a competition be-

tween inter-dot couplings and intra-dot quantum fluc-
tuations: depending on the bare strength of the cou-
pling, Goldstone modes are either suppressed, or ren-
der the inter-dot coupling irrelevant. This implies the
existence of a metal-insulator quantum phase transition
(QPT) separating a phase of a strongly coupled FL from
an insulating phase of essentially isolated dots. Below,
we will explore this QPT within the framework of an ef-
fective low energy field theory describing granular SYK
matter in terms of two coupling constants, representing
intra-dot interaction and inter-dot coupling strength, re-
spectively. We will demonstrate the renormalizability
of the theory and from the flow of coupling constants
(cf. Fig. 2 below) derive the manifestations of quantum
criticality in two temperature scales marking an insula-
tor/SM and FL/SM crossover at weak and strong cou-
pling, respectively, cf. Fig. 1.
Before turning to the discussion of the model we note

that reference [24] applied similar reasoning to predict
a non-FL/FL phase transition for an isolated SYK dot
subject to a one-body perturbation. We will comment
on this result in relation to the I/FL transition in the
array geometry after developing the proper theoretical
framework. On general grounds we also expect similar
physics in models of interacting complex fermions, the
SY model[4–6]. However, the presence of U(1)-mode as-
sociated with particle number conservation in the SY
system makes the theory more complicated. We here
prefer to sidestep this complication and expose the rel-
evant physics within the SYK framework, unmasked by
the U(1) phase fluctuations [25]. In this system of electri-
cally neutral Majorana fermions, thermal conductivity,
(T ), is the main signature of transport, and from the
Wiedemann-Franz law we infer that the ratio T/ plays
a role analogous to the electrical resistivity of complex
fermion matter. We find that in the insulating phase
it exhibits a minimum before diverging at small T as
T/(T ) / 1/T (cf. bottom left inset in Fig. 1). In the SM
(FL) phase T/ ratio exhibits T -linear (approximately
T -independent) behavior, respectively.
The model: we consider a system described by the

Hamiltonian[6]

H =
1

4!

X

a

NX

ijkl

J
a
ijkl⌘

a
i ⌘

a
j ⌘

a
k⌘

a
l +

i

2

X

habi

NX

ij

V
ab
ij ⌘

a
i ⌘

b
j , (1)

where the mutually uncorrelated Gaussian distributed
coe�cients J

a
ijkl and V

ab
ij have been specified above.

Following a standard procedure[17–21], the theory av-
eraged over the coupling constant distributions is

described by an imaginary time functional Z =R
D(G,⌃) exp(�S[G,⌃]), where G = {Ga

⌧1,⌧2} and
⌃ = {⌃a

⌧1,⌧2} are time bi-local integration fields
playing the role of the on-site SYK Green function
and self-energy, respectively. The action S[G,⌃] ⌘P

a S0[Ga
,⌃a] +

P
habi ST[Ga

, G
b], contains the ‘G⌃-

action’, S0, of the individual dots, and a tunneling ac-
tion ST[Ga

, G
b] = 1

2NV
2
RR

d⌧1d⌧2 G
a
⌧1,⌧2G

b
⌧2,⌧1 describ-

ing the nearest neighbor hopping. Here, we omit a replica
structure[26] technically required to perform the averag-
ing, but inessential in the present context.
While the explicit form of the G⌃-action[27] will not be

needed, the following points are essential: (i) the action
S0 possesses an exact SL(2, R)-invariance (see below)
and approximate invariance under reparameterizations of
time[4, 17–21], h : S1 ! S

1
, ⌧ 7! h(⌧), where h is a dif-

feomorphism of the circle, S1, defined by imaginary time
with periodic boundary conditions onto itself. The infi-
nite dimensional symmetry group di↵(S1) of these trans-
formations is generated by a Virasoro algebra, hence the
denotation ‘conformal’. (ii) The symmetry is subject to a
weak explicit breaking by the time derivatives present in
the action S0. For low energies, the corresponding action

cost is given by[4, 17–21, 28–30] S0[h] = �m
R �
0 d⌧{h, ⌧},

where {h, ⌧} ⌘
�
h00

h0

�0 � 1
2

�
h00

h0

�2
is the Schwarzian deriva-

tive, and the proportionality m / N/J of the coupling
constant indicates that quantum reparameterization fluc-
tuations become stronger for small N . For temperature
scales T < m

�1 even large deviations, h, away from
h(⌧) = ⌧ may have low action. This marks the entry
into a low temperature regime dominated by strong repa-
rameterization fluctuations. Finally, (iv) the mean-field
Green function G⌧1,⌧2 = |⌧1�⌧2|�1/2 (the square root de-
pendence reflects the non-FL dimension of the fermions)
transforms under reparameterizations as

G⌧1,⌧2 ! G⌧1,⌧2 [h] =

✓
h
0
1h

0
2

[h1 � h2]2

◆1/4

, (2)

where hi ⌘ h(⌧i) and h
0
i ⌘ dh(⌧)/d⌧ |⌧=⌧i . For an

isolated dot, integration over the h-fluctuations e↵ec-

tively changes the Green function to hG⌧1,⌧2 [h]ih
mT⌧1�!

m|⌧1 � ⌧2|�3/2, corresponding to a change of the fermion
operator dimension to �3/4[19, 20, 22–24].
The e↵ective low-energy lattice Schwarzian theory is

formulated in terms of the reparameterizations ha(⌧) on
di↵erent dots. Its action S[h] = S0[h] + ST[h], is defined
through

S0[h] = �m

X

a

Z
d⌧ {ha

, ⌧}, (3)

ST[h] = �w

X

habi

ZZ
d⌧1d⌧2

✓
h
0a
1 h

0a
2

[ha
1 � h

a
2 ]

2
⇥ h

0b
1 h

0b
2

[hb
1 � h

b
2]

2

◆1/4
,

where m and w are parameters with dimensions of [time]
and [energy], and bare valuesm / N/J and w / NV

2
/J .



Dilaton (Jackiw 85-Teitelboim 83) gravity

3 NAdS2, or nearly AdS2 spacetimes

The pure AdS2 gravity theory discussed above is not consistent with any configuration
with non-zero energy, since the variation of the metric imposes that the stress tensor of
matter is identically zero. The Einstein term is topological and does not contribute to the
equation of motion for the metric. If one is only interested in understanding the ground
state entropy this can be enough [9, 10].

In order to obtain a reasonable gravity theory it is important to consider a nearly
AdS2 geometry. In other words, we need to keep track of the leading e↵ects that break
the conformal symmetry. This is a configuration that still remembers that the conformal
symmetry is slightly broken. A model that correctly captures a large number of situations
where AdS2 arises from a higher dimensional system (or from some otherwise well defined
UV theory) is the following [3]

I = �
�0

16⇡G

Z
p
gR + 2

Z

bdy

K

�
�

1

16⇡G

Z
d2x�

p
g(R + 2) + 2

Z

bdy

�bK

�
+IM [g,�]+· · ·

(3.7)
Here we imagine that �0 � � and the dots denote higher order terms in �. We will neglect
all such higher order terms here. �b is the boundary value of �. If AdS2 is arising from
the near horizon geometry of an near extremal black hole, then �0 + � is the area of the
two sphere, and �0 is the area of the extremal black hole, with � denoting the deviations
from this extremal value. The middle term in the action is the Jackiw Teitelboim two
dimensional gravity theory [5, 4]. The first term is purely topological and its only role
is to give the extremal entropy. We have included the extrinsic curvature terms at the
boundary to make the metric variational problem well defined. From now on, we will
ignore the dots in (3.7). Since the first term in the action is topological we will also ignore
it.

A thorough analysis of this model was presented in an article by Almheiri and Polchinski
[3]. Here we simply emphasize how the pattern of breaking of the reparametrization
symmetry determines many aspects of the theory. Now, let us analyze the equations of
motion of the Jackiw Teitelboim theory

IJT = �
1

16⇡G

Z
d2x�

p
g(R + 2) + 2

Z

bdy

�bK

�
. (3.8)

The equations of motion for � imply that the metric has constant negative curvature or is
AdS2. This is also the case if we include the matter term in (3.7) since it is independent
of the dilaton �. The equations of motion for the metric are

T �
µ⌫ ⌘

1

8⇡G
(rµr⌫�� gµ⌫r

2�+ gµ⌫�) = 0 (3.9)

Due to the Bianchi identity, this implies that T �
µ⌫ is automatically conserved. It turns out

that the general solution is

� =
↵ + �t+ �(t2 + z2)

z
= Z.Y (3.10)
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where we also rewrote the expression in embedding coordinates (2.2), where Z is an arbi-
trary vector.1

The solution breaks the SL(2) isometries to U(1). In fact, the vector ⇣µ = ✏µ⌫@⌫� is
aways a Killing vector of the metric thanks to the equations (3.9) [16]. Thus, the combined
dilaton gravity theory always preserves this isometry.

Since � is diverging near the boundary, we now have a new dimensionful coupling
constant which is the strength of that divergence. In other words, beyond the condition
(2.4) we also need to impose the condition

�b = �|bdy =
�r(u)

✏
(3.11)

where �r(u) is an arbitary dimension �1 coupling. The r stands for “renormalized,” in
the sense that it remains finite in the ✏ ! 0 limit. For generality we have chosen it to
depend on u, but we could also choose it to be independent of u. When we choose it to
be constant we will denote it as �̄r.

When we embed this into in a full higher dimensional picture, we have in mind situa-
tions where �b / 1/✏ is large, but �b ⌧ �0 so that we are still in the near extremal region.2

In other words, we cut o↵ the space before � becomes too large. Note that the notion of
“too large” is really external to the theory (3.8).

Now, once we impose both (2.4) and (3.11) we determine completely the shape of
the curve or reparametrization t(u). It is simply given by computing z(u) from (2.4),
substituting in (3.10) and then using (3.11) to obtain

↵ + �t(u) + � t(u)2

t0(u)
= �r(u). (3.12)

It is interesting that this condition can also be obtained from an e↵ective action for
t(u). A simple way to obtain the e↵ective action is the following. Starting from (3.8) we
impose the equation of motion for � which implies that we have an AdS2 space. Inserting
that into the action (3.8) we find that the first term vanishes and we only get the boundary
term, which involves the boundary value of � (3.11),

ITJ ! �
1

8⇡G

Z
du

✏

�r(u)

✏
K (3.13)

where we also used that the induced metric is given by du/✏, (2.4). The extrinsic curvature
is given by

K =
t0(t0 2 + z0 2 + zz00)� zz0t00

(t0 2 + z0 2)
3
2

= 1 + ✏2Sch(t, u) ,

1More precisely, in (3.10) we use the Euclidean version of the embedding coordinates.

2This type of expansion is somewhat analogous to the slow roll expansion for inflationary universes.

7

Figure 2: In (a) we see the full AdS2 space. In (b) we cut it o↵ at the location of a
boundary curve. In (c) we choose a more general boundary curve. The full geometry of
the cutout space does depend on the choice of the boundary curve. On the other hand,
the geometry of this cutout region remains the same if we displace it or rotate it by an
SL(2) transformation of the original AdS2 space.

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of
di↵erent interior geometries is given by the set of all functions t(u) up to the above SL(2)
transformations. (Or modded out by these SL(2) transformations (2.5)).

It is worth noting that we can also look at the asymptotic symmetries of AdS2. They
are generated by reparametrizations of the asymptotic form

⇣t = "(t), ⇣z = z"0(t) (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u
to t(u) = u+ "(u).

If we insert these geometries into the action (2.3) the Gauss-Bonnet theorem implies
that we always get the same action, namely the extremal entropy. Thus we have a set of
exact zero modes parametrized by t(u) (up to the SL(2) identification (2.5)).

Notice that, near the boundary, the geometries are indistinguishable, we need to go
through the bulk in order to distinguish them. In fact, this is the realization of the full
reparametrization symmetry that we expect in this problem. In other words, we expect
that SL(2) is enhanced to a full Virasoro like symmetry, which in this case, are just the
reparametrization symmetries. However, the reparametrization symmetry is spontaneously
broken by AdS2. It is broken to SL(2, R). The zero modes are characterized by the
functions t(u). These can be viewed as Goldstone bosons. Except that here we consider
them in the Euclidean problem. We can call these zero modes “boundary gravitons”.
They are similar to the ones that appear in three dimensions. An important di↵erence
with the three dimensional case is that, here, these modes have precisely zero action in the
confromal limit, there is no local conformal invariant action we can write down for them.

5

Sch(t, u) ⌘ �
1

2

t00 2

t0 2
+

✓
t00

t0

◆0

(3.14)

Inserting this into ITJ we get

I = �
1

8⇡G

Z
du�r(u)Sch(t, u) (3.15)

We see that the zero modes get an action detemined by the Schwarzian. Here �r(u) is an
external coupling and t(u) is the field variable.

It is interesting to contemplate why we obtained this. We expect that the breaking of
conformal symmetry should be local along the boundary, and proportional to �r(u). In
addition, we expect to obtain a local action which involves the Pseudo-Nambu Goldstone
modes. Since these are specified by t(u) up to global SL(2) transformations, we conclude
that the simplest term is the Schwarzian action, which is indeed SL(2) invariant; Sch(t, u) =
Sch(at+b

ct+d , u).
Finally, it easy to check that by varying (3.15) with respect to t(u) we obtain the

equation 
1

t0

✓
(t0�r)0

t0

◆0�0
= 0 (3.16)

which can be easily integrated to (3.12), where ↵, �, � are integration constants.3 Thus
we see that the action (3.15), which is defined purely on the boundary, captures the same
information as the bulk expression for the dilaton �. Notice that this also implies that
the equations of motion of the action (3.15) are equivalent to imposing the equations of
motion that result from varying the metric, which were not imposed in deriving (3.15).
The time dependence of �r(u) allows us to pick an arbitrary t(u) as the saddle point
geometry. On the other hand, we can also remove it by picking a new time coordinate via
dũ = �̄rdu/�r(u). When �r(u) is constant (3.16) becomes �̄r

[Sch(t,u)]0

t0 = 0.
The Schwarzian action summarizes many gravitational e↵ects of the model. As we

have explained, it follows from the symmetries of the problem and its applicability can
go beyond systems that are described by a local gravity theory. In fact, this Schwarzian
action was introduced, for these reasons, by Kitaev in his analysis of certain interacting
fermion models [11] (see [17] for a description).

3.1 The near extremal entropy

It is convenient to make a change of field variable in the Schwarzian action from t to ⌧ of
the form

t = tan
⌧

2
. (3.17)

3A fourth integration constant arises by integrating (3.12).
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Green function

Q: What is the IR limit of Green’s function?

G(τ1 −τ2 )∝ Dh×
h '(τ1)⎡⎣ ⎤⎦

1/4
h '(τ2 )⎡⎣ ⎤⎦

1/4

h(τ1)− h(τ2 )
1/2

× e−S0[h]

G/H
∫

- average the mean-field result over Goldstone modes

• Phase representation (measure is flat!)

non-compact phase

S0[ϕ] =
M
2

ϕ ' τ( )⎡
⎣

⎤
⎦

2
dτ

−∞

+∞

∫ , h ' τ( ) = eϕ τ( )



Green’s function

Gτ1−τ2
∝

dα
α0

+∞

∫ Dϕ[τ ] e
1
4
ϕ (τ1)

e
1
4
ϕ (τ2 )

e
−

M
2

ϕ ' τ( )⎡
⎣

⎤
⎦
2
dτ

−∞

+∞

∫ −α exp[ϕ (τ )]dτ
τ1

τ2∫

G/H
∫

Liouville potential 

h(τ1)− h(τ2 )⎡⎣ ⎤⎦
−1/2

= eϕ (τ )

τ1

τ2

∫ dτ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1/2

=
dα
α0

+∞

∫  e
−α exp[ϕ (τ )]dτ

τ1

τ2∫

h ' τ( ) = eϕ τ( )

Schwarzian



Liouville QM

• Effective Hamiltonian

Ĥ = −
∂ϕ

2

2M
+αeϕ ,

ejaµ

j

• Spectral decomposition of the Green’s function

G(τ )∝ dα
α0

+∞

∫ 0
k
∑ e

1
4
ϕ

kα e−|τ |k2 2M kα e
1
4
ϕ

0

( )2
/ 28ikk K M ejaj µ

“effective mass”

k +ÎR



Green Function 

at which two reparametrizations take equal values, fa(⌧1(⌧)) = fb(⌧2(⌧)). When expanded

in small deviations 'ab = �a � �b, each term in the action Eq. (12) acquires the form mass

term

S
ab
2

' � NJ

27
p
2⇡

X

a6=b

g
2

ab

Z

C
d⌧

✓
1� 3

4
'
2

ab

◆
' 5NJ

210
p
2⇡

X

a6=b

g
2

ab

Z
'
2

abd⌧, (13)

where in the last expression the integral already goes along the straight line. On the other

hand, the Schwarzian derivative in the represenation Eq. (11) has a simple form

Sch(f, ⌧) = �1

2
(�0)2 + �

00
. (14)

It follows that the action Eq. (13) dominates over the Schwarzian derivative in the long time

limit. Denoting the reparametrization in each replica as �a = � + 'a (where
Pn

a=1
�a ⌘ 0)

we can cast the total action for reparametrizations to the following form

S[�,'] = g
2

0
M

Z
(�0)2d⌧ + g

2

0
M

X

a

Z
('0

a)
2
d⌧ +

5NJ

210
p
2⇡

X

a6=b

g
2

ab

Z
('a � 'b)

2
d⌧, (15)

where the time scale M reads as M = N lnN/(64
p
⇡J) and g0 denotes the diagonal element

of the matrix g that are assumed to be replica-independent. One can see from Eq. (15),

that there is only one mode � = 1

n

Pn
a=1

�a, which is governed by the Schwarzian derivative.

Other modes 'a become coupled by the quadratic potential. We note that due to the

constraint
Pn

a=1
'a = 0 there is only n � 1 independent 'a modes. Finally, let us mention

that the structure of action Eq. (12) is in agreement with the coset space G/H of the

replicated SYK model. For the infinitesimal reparametrizations fa(⌧) = ⌧+✏a(⌧) the phases

�a(⌧) ' ✏
0
a(⌧). We see that the action Eq. (12), if written in terms of ✏a(⌧), remains massless.

Although only the average over replicas mode ✏ =
nP

a=1

✏a is governed by action in form of the

Schwarzian derivative.

Change of the symmetry breaking pattern by the replica non-diagonal saddle point, and

induced e↵ective potantial binding di↵erent parametrizations Eq. (12) has dramatic conse-

quences for the time-dependence of correlation functions at long times. It is known, that

the reparametrization fluctuations modify the decay of two-point correlation function

G(⌧1, ⌧2) =
1

N

X

i

h�i(⌧1)�i(⌧2)i (16)
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M. Berkooz, et al, 2018G(τ )∝ |τ |−1/2 , τ < m

m |τ |−3/2 , τ > m

⎧
⎨
⎪

⎩⎪

m =
N
J



Lessons from SYK model:

An emergent “zero-bias anomaly” 
indicates onset of the insulating 
behavior.                       

1/ ε

ε

On  the mean-field level:                                 
' 1/ 2

1
| ' |

ab

t
ab
t t

G
J t

d
- -
µ -N →∞

fermion dimensions:  Δ =
1
4
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mean-field level. However, as temperature is lowered be-
low the energy scale J/N , strong Goldstone fluctuations
associated to the conformal symmetry ensue, and e↵ec-
tively change the dimension of the fermion operator to
�3/4[20, 21, 23, 24]. In this low energy regime, a single
particle perturbation has dimension 1� 2⇥ 3/4 = �1/2
and now is RG irrelevant.

This dimensional crossover implies a competition be-
tween inter-dot couplings and intra-dot quantum fluc-
tuations: depending on the bare strength of the cou-
pling, Goldstone modes are either suppressed, or ren-
der the inter-dot coupling irrelevant. This implies the
existence of a metal-insulator quantum phase transition
(QPT) separating a phase of a strongly coupled FL from
an insulating phase of essentially isolated dots. Below, we
will explore this QPT within the framework of an e↵ec-
tive low energy field theory characterizing granular SYK
matter in terms of two coupling constants, representing
intra-dot interaction and inter-dot coupling strength, re-
spectively. We will demonstrate the renormalizability
of the theory and from the flow of coupling constants
(cf. Fig. 2 below) derive the manifestations of quantum
criticality in two temperature scales marking an insula-
tor/SM and FL/SM crossover at weak and strong cou-
pling, respectively, cf. Fig. 1.

Reference [25] applied similar reasoning to predict a
non-FL/FL phase transition for an isolated SYK dot
subject to a one-body perturbation. We will comment
on this result in relation to the I/FL transition in the
array geometry after developing the proper theoretical
framework. On general grounds we also expect similar
physics in models of interacting complex fermions, the
SY model[4–6]. However, the presence of U(1)-mode as-
sociated with particle number conservation in the SY
system makes the theory more complicated. We here
prefer to sidestep this complication and expose the rel-
evant physics within the SYK framework, unmasked by
the U(1) phase fluctuations [26]. In this system of electri-
cally neutral Majorana fermions, thermal conductivity,
(T ), is the main signature of transport, and from the
Wiedemann-Franz law we infer that the ratio T/ plays
a role analogous to the electrical resistivity of complex
fermion matter. We find that in the insulating phase
it exhibits a minimum before diverging at small T as
T/(T ) / 1/T (cf. bottom left inset in Fig. 1). In the SM
(FL) phase T/ ratio exhibits T -linear (approximately
T -independent) behavior, respectively.

The model: we consider a system described by the
Hamiltonian[6]
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where the mutually uncorrelated Gaussian distributed
coe�cients J

a
ijkl and V

ab
ij have been specified above.

Following a standard procedure[18–22], the theory av-

eraged over the coupling constant distributions is
described by an imaginary time functional Z =R
D(G,⌃) exp(�S[G,⌃]), where G = {Ga

⌧1,⌧2} and
⌃ = {⌃a

⌧1,⌧2} are time bi-local integration fields
playing the role of the on-site SYK Green function
and self-energy, respectively. The action S[G,⌃] ⌘P

a S0[Ga
,⌃a] +

P
habi ST[Ga

, G
b], contains the ‘G⌃-

action’, S0, of the individual dots, and a tunneling ac-
tion ST[Ga

, G
b] = 1

2NV
2
RR

d⌧1d⌧2 G
a
⌧1,⌧2G

b
⌧2,⌧1 describ-

ing the nearest neighbor hopping. Here, we omit a replica
structure[27] technically required to perform the averag-
ing, but inessential in the present context.

While the explicit form of the G⌃-action[28] will not
be needed, the following points are essential: (i) the ac-
tion S0 is approximately invariant under reparameteriza-
tions of time[4, 18–22], h : S1 ! S

1
, ⌧ 7! h(⌧), where

h is a di↵eomorphism of the circle, S1, defined by imag-
inary time with periodic boundary conditions onto it-
self. The infinite dimensional symmetry group di↵(S1)
of these transformations is generated by a Virasoro al-
gebra, hence the denotation ‘conformal’. (ii) The sym-
metry is subject to a weak explicit breaking by the time
derivatives present in the action S0. For low energies,
the corresponding action cost is given by[4, 18–22, 29–31]
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is the Schwarzian derivative, and m / N/J the first of
two coupling constants defining the model. For tempera-
ture scales T < m

�1 even large deviations, h, away from
h(⌧) = ⌧ may have low action. This marks the entry
into a low temperature regime dominated by strong repa-
rameterization fluctuations. Finally, (iv) the mean-field
Green function G⌧1,⌧2 = |⌧1�⌧2|�1/2 (the square root de-
pendence reflects the non-FL dimension of the fermions)
transforms under reparameterizations as

G⌧1,⌧2 ! G⌧1,⌧2 [h] =
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where e.g. h1 ⌘ h(⌧1) and h
0
1 ⌘ dh(⌧)/d⌧ |⌧=⌧1 . For

an isolated dot, integration over the h-fluctuations e↵ec-

tively changes the Green function to hG⌧1,⌧2 [h]ih
mT⌧1�!

m|⌧1 � ⌧2|�3/2, corresponding to a change of the fermion
operator dimension to 3/4[20, 21, 23–25].

The e↵ective low-energy lattice Schwarzian theory is
formulated in terms of the reparameterizations ha(⌧) ef-
fective on di↵erent dots. Its action S[h] = S0[h] + ST[h],
is defined through

S0[h] = �m

X

a

Z
d⌧ {ha

, ⌧}, (3)

ST[h] = �w

X

habi

ZZ
d⌧1d⌧2

✓
h
0a
1 h

0a
2

[ha
1 � h

a
2 ]

2
⇥ h

0b
1 h

0b
2

[hb
1 � h

b
2]

2

◆1/4
,

where m and w are parameters with dimensions of [time]
and [energy], and bare valuesm / N/J and w / NV

2
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mean-field level. However, as temperature is lowered be-
low the energy scale J/N , strong Goldstone fluctuations
associated to the conformal symmetry ensue, and e↵ec-
tively change the dimension of the fermion operator to
�3/4[18, 19, 21, 22]. In this low energy regime, a single
particle perturbation has dimension 1� 2⇥ 3/4 = �1/2
and now is RG irrelevant [23].

This dimensional crossover implies a competition be-
tween inter-dot couplings and intra-dot quantum fluc-
tuations: depending on the bare strength of the cou-
pling, Goldstone modes are either suppressed, or ren-
der the inter-dot coupling irrelevant. This implies the
existence of a metal-insulator quantum phase transition
(QPT) separating a phase of a strongly coupled FL from
an insulating phase of essentially isolated dots. Below, we
will explore this QPT within the framework of an e↵ec-
tive low energy field theory characterizing granular SYK
matter in terms of two coupling constants, representing
intra-dot interaction and inter-dot coupling strength, re-
spectively. We will demonstrate the renormalizability
of the theory and from the flow of coupling constants
(cf. Fig. 2 below) derive the manifestations of quantum
criticality in two temperature scales marking an insula-
tor/SM and FL/SM crossover at weak and strong cou-
pling, respectively, cf. Fig. 1.

On general grounds we expect this scenario to ex-
tend to models of interacting complex fermions, the SY
model[4–6]. However, the presence of U(1)-mode asso-
ciated with particle number conservation in the SY sys-
tem makes the theory more complicated. We here pre-
fer to sidestep this complication and expose the relevant
physics within the SYK framework, unmasked by the
U(1) phase fluctuations [24]. In this system of electri-
cally neutral Majorana fermions, thermal conductivity,
(T ), is the main signature of transport, and from the
Wiedemann-Franz law we infer that the ratio T/ plays
a role analogous to the electrical resistivity of complex
fermion matter. We find that in the insulating phase
it exhibits a minimum before diverging at small T as
T/(T ) / 1/T (cf. bottom left inset in Fig. 1). In the SM
(FL) phase T/ ratio exhibits T -linear (approximately
T -independent) behavior, respectively.

The model: we consider a system described by the
Hamiltonian[6]

H =
1
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where the mutually uncorrelated Gaussian distributed
coe�cients J

a
ijkl and V

ab
ij have been specified above.

Following a standard procedure[16–20], the theory av-
eraged over the coupling constant distributions is
described by an imaginary time functional Z =R
D(G,⌃) exp(�S[G,⌃]), where G = {Ga

⌧1,⌧2} and
⌃ = {⌃a

⌧1,⌧2} are time bi-local integration fields
playing the role of the on-site SYK Green function

and self-energy, respectively. The action S[G,⌃] ⌘P
a S0[Ga

,⌃a] +
P

habi ST[Ga
, G

b], contains the ‘G⌃-
action’, S0, of the individual dots, and a tunneling ac-
tion ST[Ga

, G
b] = 1

2NV
2
RR

d⌧1d⌧2 G
a
⌧1,⌧2G

b
⌧2,⌧1 describ-

ing the nearest neighbor hopping. Here, we omit a replica
structure[25] technically required to perform the averag-
ing, but inessential in the present context.

While the explicit form of the G⌃-action[26] will not
be needed, the following points are essential: (i) the ac-
tion S0 is approximately invariant under reparameteriza-
tions of time[4, 16–20], h : S1 ! S

1
, ⌧ 7! h(⌧), where

h is a di↵eomorphism of the circle, S1, defined by imag-
inary time with periodic boundary conditions onto it-
self. The infinite dimensional symmetry group di↵(S1)
of these transformations is generated by a Virasoro al-
gebra, hence the denotation ‘conformal’. (ii) The sym-
metry is subject to a weak explicit breaking by the time
derivatives present in the action S0. For low energies,
the corresponding action cost is given by[4, 16–20, 27–29]
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is the Schwarzian derivative, and m / N/J the first of
two coupling constants defining the model. For tempera-
ture scales T < m

�1 even large deviations, h, away from
h(⌧) = ⌧ may have low action. This marks the entry
into a low temperature regime dominated by strong repa-
rameterization fluctuations. Finally, (iv) the mean-field
Green function G⌧1,⌧2 = |⌧1�⌧2|�1/2 (the square root de-
pendence reflects the non-FL dimension of the fermions)
transforms under reparameterizations as

G⌧1,⌧2 ! G⌧1,⌧2 [h] =
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where e.g. h1 ⌘ h(⌧1) and h
0
1 ⌘ dh(⌧)/d⌧ |⌧=⌧1 . For

an isolated dot, integration over the h-fluctuations e↵ec-

tively changes the Green function to hG⌧1,⌧2 [h]ih
mT⌧1�!

m|⌧1 � ⌧2|�3/2, corresponding to a change of the fermion
operator dimension to 3/4[18, 19, 21–23].

The e↵ective low-energy lattice Schwarzian theory is
formulated in terms of the reparameterizations ha(⌧) ef-
fective on di↵erent dots. Its action S[h] = S0[h] + ST[h],
is defined through
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where m and w are parameters with dimensions of [time]
and [energy], and bare valuesm / N/J and w / NV

2
/J .

A hallmark of the lattice Schwarzian action, S[h], is its
invariance under actions of SL(2, R), where the group is
represented via the Möbius transformations h(⌧) = ↵⌧+�

�⌧+�
with ↵���� = 1. This shows that the h-transformations
to be integrated cover the coset space di↵(S1)/SL(2, R).
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mean-field level. However, as temperature is lowered be-
low the energy scale J/N , strong Goldstone fluctuations
associated to the conformal symmetry ensue, and e↵ec-
tively change the dimension of the fermion operator to
�3/4[18, 19, 21, 22]. In this low energy regime, a single
particle perturbation has dimension 1� 2⇥ 3/4 = �1/2
and now is RG irrelevant [23].
This dimensional crossover implies a competition be-

tween inter-dot couplings and intra-dot quantum fluc-
tuations: depending on the bare strength of the cou-
pling, Goldstone modes are either suppressed, or ren-
der the inter-dot coupling irrelevant. This implies the
existence of a metal-insulator quantum phase transition
(QPT) separating a phase of a strongly coupled FL from
an insulating phase of essentially isolated dots. Below, we
will explore this QPT within the framework of an e↵ec-
tive low energy field theory characterizing granular SYK
matter in terms of two coupling constants, representing
intra-dot interaction and inter-dot coupling strength, re-
spectively. We will demonstrate the renormalizability
of the theory and from the flow of coupling constants
(cf. Fig. 2 below) derive the manifestations of quantum
criticality in two temperature scales marking an insula-
tor/SM and FL/SM crossover at weak and strong cou-
pling, respectively, cf. Fig. 1.
On general grounds we expect this scenario to ex-

tend to models of interacting complex fermions, the SY
model[4–6]. However, the presence of U(1)-mode asso-
ciated with particle number conservation in the SY sys-
tem makes the theory more complicated. We here pre-
fer to sidestep this complication and expose the relevant
physics within the SYK framework, unmasked by the
U(1) phase fluctuations [24]. In this system of electri-
cally neutral Majorana fermions, thermal conductivity,
(T ), is the main signature of transport, and from the
Wiedemann-Franz law we infer that the ratio T/ plays
a role analogous to the electrical resistivity of complex
fermion matter. We find that in the insulating phase
it exhibits a minimum before diverging at small T as
T/(T ) / 1/T (cf. bottom left inset in Fig. 1). In the SM
(FL) phase T/ ratio exhibits T -linear (approximately
T -independent) behavior, respectively.
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where the mutually uncorrelated Gaussian distributed
coe�cients J
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ijkl and V
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ij have been specified above.

Following a standard procedure[16–20], the theory av-
eraged over the coupling constant distributions is
described by an imaginary time functional Z =R
D(G,⌃) exp(�S[G,⌃]), where G = {Ga

⌧1,⌧2} and
⌃ = {⌃a

⌧1,⌧2} are time bi-local integration fields
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structure[25] technically required to perform the averag-
ing, but inessential in the present context.
While the explicit form of the G⌃-action[26] will not

be needed, the following points are essential: (i) the ac-
tion S0 is approximately invariant under reparameteriza-
tions of time[4, 16–20], h : S1 ! S

1
, ⌧ 7! h(⌧), where

h is a di↵eomorphism of the circle, S1, defined by imag-
inary time with periodic boundary conditions onto it-
self. The infinite dimensional symmetry group di↵(S1)
of these transformations is generated by a Virasoro al-
gebra, hence the denotation ‘conformal’. (ii) The sym-
metry is subject to a weak explicit breaking by the time
derivatives present in the action S0. For low energies,
the corresponding action cost is given by[4, 16–20, 27–29]
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ture scales T < m

�1 even large deviations, h, away from
h(⌧) = ⌧ may have low action. This marks the entry
into a low temperature regime dominated by strong repa-
rameterization fluctuations. Finally, (iv) the mean-field
Green function G⌧1,⌧2 = |⌧1�⌧2|�1/2 (the square root de-
pendence reflects the non-FL dimension of the fermions)
transforms under reparameterizations as
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m|⌧1 � ⌧2|�3/2, corresponding to a change of the fermion
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where m and w are parameters with dimensions of [time]
and [energy], and bare valuesm / N/J and w / NV

2
/J .

A hallmark of the lattice Schwarzian action, S[h], is its
invariance under actions of SL(2, R), where the group is
represented via the Möbius transformations h(⌧) = ↵⌧+�

�⌧+�
with ↵���� = 1. This shows that the h-transformations
to be integrated cover the coset space di↵(S1)/SL(2, R).

Both terms in the action are SL(2,R) invariant.
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The action itself is built from the two simplest SL(2, R)
invariant blocks: local {h, ⌧} and bi-local h0

1h
0
2/[h1�h2]2.

Maintained SL(2, R) symmetry imposes a stringent con-
dition on the behavior of the theory under renormal-
ization. A successive integration over h-transformations
must leave the local and bi-local terms form invariant
(multi-point terms may be generated but are irrelevant).
The invariance condition thus implies that the renormal-
ization results in a flow of the two couplings m and w.
RG analysis: we decompose fluctuations into ’fast’ and

’slow’ as h(⌧) = f(s(⌧)) ⌘ (f � s)(⌧), where f and s

are fluctuations in the frequency range [⇤, J ] and [0,⇤],
and ⇤ is a running cuto↵ energy[30]. We then integrate
out the fast modes f(s), and rescale time ⌧ ! ⌧J/⇤
to restore the UV cuto↵ ⇤ ! J . Consider first the case
m

�1
< ⇤ < J , where the reparameterization fluctuations

are suppressed. The RG flow is then governed by the
‘engineering’ dimensions, resulting in:

d lnm

dl
= �1;

d lnw

dl
= +1, (4)

where l = ln(J/⇤). For T > J/N this flow should be
terminated when either ⇤ reaches T , or V (l) ⇠

p
w(l)

reaches UV cuto↵ J . This defines the temperature scale
TFL = V

2
/J , which separates the high temperature SM

and low temperature FL. In SM phase w(T ) = NV
2
/T

and T/(T ) / J/w(T ) / T/(NTFL) [6], while in FL the
thermal resistivity saturates at T/(T ) / 1/N .
We turn now to the regime of strong reparameteriza-

tion fluctuations. By the time ⇤ reaches J/N , m(l) =
m(0)e�l reaches the inverse UV cuto↵ m(l) ⇡ 1/J . To
proceed with the further renormalization, we employ the
Schwarzian chain rule

{f � s, ⌧} = (s0)2{f, s}+ {s, ⌧}, (5)

to obtain the action: S0[f � s] = S
fast
0 [f, s] +S0[s], where

S
fast
0 [f, s] = �

P
a

R
m

a(s){fa
, s}ds, and m

a(s) ⌘ ms
a0.

At lowest order in w one needs to average the coupling
action ST[f �s] over the fast fluctuations with the weight

e
�Sfast

0 [f,s]. A straightforward application of the chain
rule to the Green functions, Eq. (2), shows that

G⌧1,⌧2 [f � s] = Gs1,s2 [f ](s
0
1s

0
2)

1/4
, (6)

so that hST[f � s]if / hGs1,s2 [f
a]ifahGs2,s1 [f

b]ifb splits
into two fast averages. These expressions can be
evaluated with the help of exact results [18, 21] for
hGs1,s2 [f ]if . Referring to the supplementary material
for details, we note the asymptotic expressions (s12 ⌘
s1 � s2):

hGs1,s2 [f ]if '

8
><

>:

|s12|�1/2
, s12 < m;p

m(s1)m(s2)|s12|�3/2
, m<s12<⇤�1;

m⇤|s12|�1/2
, ⇤�1

< s12.

(7)

The first line states that at time scales shorter than m

reparameterization fluctuations are suppressed and G re-
tains its mean-field form. For intermediate time scales,
they change the time dependence of G to a �3/2 power
law. At yet longer times, fast reparameterization fluctu-
ations cease to be e↵ective and G is back to �1/2 decay.
Equation (7) implies that the double time integral in

the averaged tunneling action hST[f � s]if ⌘ Sint + Slong

gets di↵erent contributions from intermediate (m <

⌧12 < ⇤�1) and long time di↵erences (⌧12 > ⇤�1). The
former is handled with the help of the expansion
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+ . . . ,

(8)

where ⌧ = (⌧1 + ⌧2)/2. Collecting all factors s
0 from

Eqs. (5) and (7), we encounter the l.h.s. of this equa-
tion with � = 3/4, both for s = s

a,b. Substituting the
r.h.s. and noting that the contribution of lowest order
in derivatives comes from the cross contribution of the
first and the second term in the (a) ⇥ (b)-product, we
obtain a contribution of local Schwarzian form Sint !
Z
4 wm

2
l
P

a

R
⇤�1 d⌧{sa, ⌧}, where Z is the coordination

number of the array and l ⌘ ln(1/⇤m) =
R ⇤�1

m d⌧12⌧
2�4�
12

from the time integration. Finally, rescaling the time
variable ⌧ ! e

l
⌧ , to reset the cuto↵ ⇤�1 ! m, we ob-

serve that the action contains a term S0[s] with the renor-
malized coe�cient m(l) = e

�l(m + Z
4 wm

2
l). We finally

turn to the contribution, Slong, from large time di↵er-
ences, where now the third line in Eq. (7) for the Green
functions is to be used. After the rescaling of time, this
generates an expression identical to the original ST[s],
but with a new constant w(l) = e

l
w(m⇤)2 = e

l
we

�2l.
From these results, RG equations are obtained by dif-

ferentiation over l and putting l = 0. This leads to

d lnm

dl
= �1 +

Z

4
wm;

d lnw

dl
= +1� 2. (9)

The second equation reflects the aforementioned change
of the dimension of w from +1 to �1. While Eqs. (4) are
applicable for mJ � 1, the new set of the RG equations
(9) is derived in the opposite limit mJ ⌧ 1. Indeed, this
is the condition to employ the asymptotic expressions
(7), as opposed to the exact expressions[18, 21], see the
supplementary material for more information.
Analysis of the RG: we first note that the limiting

forms of the scaling equations, Eqs. (4) and (9), ad-
mit a closed representation in the dimensionless variable
� ⌘ wm. In the regime mJ � 1 one has d ln�/dl = 0,
while for mJ ⌧ 1:

d ln�

dl
=

✓
Z

4
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◆
. (10)

This equation exhibits an unstable fixed point �c = 8
Z ,

marking a transition between a FL phase at � > �c and
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The action itself is built from the two simplest SL(2, R)
invariant blocks: local {h, ⌧} and bi-local h0

1h
0
2/[h1�h2]2.

Maintained SL(2, R) symmetry imposes a stringent con-
dition on the behavior of the theory under renormal-
ization. A successive integration over h-transformations
must leave the local and bi-local terms form invariant
(multi-point terms may be generated but are irrelevant).
The invariance condition thus implies that the renormal-
ization results in a flow of the two couplings m and w.
RG analysis: we decompose fluctuations into ’fast’ and

’slow’ as h(⌧) = f(s(⌧)) ⌘ (f � s)(⌧), where f and s

are fluctuations in the frequency range [⇤, J ] and [0,⇤],
and ⇤ is a running cuto↵ energy[30]. We then integrate
out the fast modes f(s), and rescale time ⌧ ! ⌧J/⇤
to restore the UV cuto↵ ⇤ ! J . Consider first the case
m

�1
< ⇤ < J , where the reparameterization fluctuations

are suppressed. The RG flow is then governed by the
‘engineering’ dimensions, resulting in:

d lnm

dl
= �1;

d lnw

dl
= +1, (4)

where l = ln(J/⇤). For T > J/N this flow should be
terminated when either ⇤ reaches T , or V (l) ⇠

p
w(l)

reaches UV cuto↵ J . This defines the temperature scale
TFL = V

2
/J , which separates the high temperature SM

and low temperature FL. In SM phase w(T ) = NV
2
/T

and T/(T ) / J/w(T ) / T/(NTFL) [6], while in FL the
thermal resistivity saturates at T/(T ) / 1/N .

We turn now to the regime of strong reparameteriza-
tion fluctuations. By the time ⇤ reaches J/N , m(l) =
m(0)e�l reaches the inverse UV cuto↵ m(l) ⇡ 1/J . To
proceed with the further renormalization, we employ the
Schwarzian chain rule

{f � s, ⌧} = (s0)2{f, s}+ {s, ⌧}, (5)

to obtain the action: S0[f � s] = S
fast
0 [f, s] +S0[s], where

S
fast
0 [f, s] = �

P
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R
m

a(s){fa
, s}ds, and m

a(s) ⌘ ms
a0.

At lowest order in w one needs to average the coupling
action ST[f �s] over the fast fluctuations with the weight

e
�Sfast

0 [f,s]. A straightforward application of the chain
rule to the Green functions, Eq. (2), shows that

G⌧1,⌧2 [f � s] = Gs1,s2 [f ](s
0
1s

0
2)

1/4
, (6)

so that hST[f � s]if / hGs1,s2 [f
a]ifahGs2,s1 [f

b]ifb splits
into two fast averages. These expressions can be
evaluated with the help of exact results [18, 21] for
hGs1,s2 [f ]if . Referring to the supplementary material
for details, we note the asymptotic expressions (s12 ⌘
s1 � s2):
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tains its mean-field form. For intermediate time scales,
they change the time dependence of G to a �3/2 power
law. At yet longer times, fast reparameterization fluctu-
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Equation (7) implies that the double time integral in
the averaged tunneling action hST[f � s]if ⌘ Sint + Slong

gets di↵erent contributions from intermediate (m <

⌧12 < ⇤�1) and long time di↵erences (⌧12 > ⇤�1). The
former is handled with the help of the expansion
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where ⌧ = (⌧1 + ⌧2)/2. Collecting all factors s
0 from
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tion with � = 3/4, both for s = s
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variable ⌧ ! e
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⌧ , to reset the cuto↵ ⇤�1 ! m, we ob-

serve that the action contains a term S0[s] with the renor-
malized coe�cient m(l) = e

�l(m + Z
4 wm

2
l). We finally

turn to the contribution, Slong, from large time di↵er-
ences, where now the third line in Eq. (7) for the Green
functions is to be used. After the rescaling of time, this
generates an expression identical to the original ST[s],
but with a new constant w(l) = e
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From these results, RG equations are obtained by dif-

ferentiation over l and putting l = 0. This leads to
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d lnw
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The second equation reflects the aforementioned change
of the dimension of w from +1 to �1. While Eqs. (4) are
applicable for mJ � 1, the new set of the RG equations
(9) is derived in the opposite limit mJ ⌧ 1. Indeed, this
is the condition to employ the asymptotic expressions
(7), as opposed to the exact expressions[18, 21], see the
supplementary material for more information.

Analysis of the RG: we first note that the limiting
forms of the scaling equations, Eqs. (4) and (9), ad-
mit a closed representation in the dimensionless variable
� ⌘ wm. In the regime mJ � 1 one has d ln�/dl = 0,
while for mJ ⌧ 1:

d ln�
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=

✓
Z

4
�� 2

◆
. (10)

This equation exhibits an unstable fixed point �c = 8
Z ,

marking a transition between a FL phase at � > �c and
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A hallmark of the lattice Schwarzian action, S[h], is its
invariance under actions of SL(2, R), where the group is
represented via the Möbius transformations h(⌧) = ↵⌧+�

�⌧+�
with ↵���� = 1. This shows that the h-transformations
to be integrated cover the coset space di↵(S1)/SL(2, R).
The action itself is built from the two simplest SL(2, R)
invariant blocks: local {h, ⌧} and bi-local h0

1h
0
2/[h1�h2]2.

Maintained SL(2, R) symmetry imposes a stringent con-
dition on the behavior of the theory under renormal-
ization. A successive integration over h-transformations
must leave the local and bi-local terms form invariant
(multi-point terms may be generated but are irrelevant).
The invariance condition thus implies that the renormal-
ization results in a flow of the two couplings m and w.
RG analysis: we decompose fluctuations into ’fast’ and

’slow’ as h(⌧) = f(s(⌧)) ⌘ (f � s)(⌧), where f and s

are fluctuations in the frequency range [⇤, J ] and [0,⇤],
and ⇤ is a running cuto↵ energy[31]. We then integrate
out the fast modes f(s), and rescale time ⌧ ! ⌧J/⇤
to restore the UV cuto↵ ⇤ ! J . Consider first the case
m

�1
< ⇤ < J , where the reparameterization fluctuations

are suppressed. The RG flow is then governed by the
‘engineering’ dimensions, resulting in:

d lnm

dl
= �1;

d lnw

dl
= +1, (4)

where l = ln(J/⇤). For T > J/N this flow should be
terminated when either ⇤ reaches T , or V (l) ⇠

p
w(l)

reaches the UV cuto↵ J . This defines the tempera-
ture scale TFL = V

2
/J , separating the high temperature

SM and low temperature FL. In the SM phase w(T ) =
NV

2
/T and T/(T ) / J/w(T ) / T/(NTFL) [6], while in

FL the thermal resistivity saturates at T/(T ) / 1/N .
We now turn to the regime of strong reparameteriza-

tion fluctuations. When ⇤ reaches J/N , m(l) = m(0)e�l

reaches the inverse UV cuto↵ m(l) ⇡ 1/J . To pro-
ceed with the further renormalization, we employ the
Schwarzian chain rule

{f � s, ⌧} = (s0)2{f, s}+ {s, ⌧}, (5)

to obtain the action: S0[f � s] = S
fast
0 [f, s] +S0[s], where

the ’fast’ Schwarzian action has a time-dependent mass
m(s) ⌘ ms

a0. At lowest order in w one needs to average
the coupling action ST[f �s] over the fast fluctuations. A
straightforward application of the chain rule to the Green
functions, Eq. (2), shows that

G⌧1,⌧2 [f � s] = Gs1,s2 [f ](s
0
1s

0
2)

1/4
, (6)

so that hST[f �s]if / hGs1,s2 [f
a]ifa⇥hGs2,s1 [f

b]ifb splits
into two fast averages. These expressions can be evalu-
ated with the help of exact results [19, 22] for the 2-
point propagator of the Schwarzian theory. Referring to
the supplementary material for details [32], we note the

asymptotic expressions (s12 ⌘ s1 � s2):

hGs1,s2 [f ]if '

8
><

>:

|s12|�1/2
, s12 < m;p

m(s1)m(s2)|s12|�3/2
, m<s12<⇤�1;

m⇤|s12|�1/2
, ⇤�1

< s12.

(7)
This equation implies that the double time integral in the
averaged tunneling action hST[f � s]if ⌘ Sint+Slong gets
di↵erent contributions from intermediate (m < ⌧12 <

⇤�1) and long time di↵erences (⌧12 > ⇤�1). In pro-
cessing the former, we use the general Taylor expansion
(⌧ = (⌧1 + ⌧2)/2)
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(8)

with� = 3/4 to process the rational functions of the slow
fields appearing upon substitution of Eqs. (5) and (7)
into the action. Here, the second term indicates how the
non-linear action of the tunneling term manages to feed
back into the Schwarzian action under renormalization.
Carrying out the details of the RG step (see supplemen-
tary material) and rescaling time to retain the value of
the cuto↵, ⇤, we find that the integration over the inter-
mediate time domain changes the coe�cient of the local
action as m ! m(l) ⌘ e

�l(m + Z
4 wm

2
l). The comple-

mentary integration over large time di↵erences conserves
the form of the tunneling action but changes the coupling
constant as w ! w(l) = e

l
w(m⇤)2 = e

l
we

�2l

From these results, RG equations are obtained by dif-
ferentiation over l and putting l = 0. This leads to

d lnm

dl
= �1 +

Z

4
wm;

d lnw

dl
= +1� 2. (9)

The second equation reflects the aforementioned change
of the dimension of w from +1 to �1. While Eqs. (4) are
applicable for mJ � 1, the new set of the RG equations
(9) is derived in the opposite limit mJ ⌧ 1. (Indeed, this
is the condition under which the exact expressions for
the propagator[19, 22] can be reduced to the asymptotic
expressions (7), see the supplementary material.)
Analysis of the RG: we first note that the limiting

forms of the scaling equations, Eqs. (4) and (9), ad-
mit a closed representation in the dimensionless variable
� ⌘ wm. In the regime mJ � 1 one has d ln�/dl = 0,
while for mJ ⌧ 1:

d ln�

dl
=

✓
Z

4
�� 2

◆
. (10)

This equation exhibits an unstable fixed point �c = 8
Z ,

marking a transition between a FL phase at � > �c and
an insulating one at � < �c. Since �(0) ⇠ (NV/J)2,
one finds Vc ⇠ J/

p
ZN , inversely proportional to N ,

as stated in the introduction. Notice that according
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dition on the behavior of the theory under renormal-
ization. A successive integration over h-transformations
must leave the local and bi-local terms form invariant
(multi-point terms may be generated but are irrelevant).
The invariance condition thus implies that the renormal-
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Schwarzian chain rule:
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The action itself is built from the two simplest SL(2, R)
invariant blocks: local {h, ⌧} and bi-local h0

1h
0
2/[h1�h2]2.

Maintained SL(2, R) symmetry imposes a stringent con-
dition on the behavior of the theory under renormal-
ization. A successive integration over h-transformations
must leave the local and bi-local terms form invariant
(multi-point terms may be generated but are irrelevant).
The invariance condition thus implies that the renormal-
ization results in a flow of the two couplings m and w.

RG analysis: we decompose fluctuations into ’fast’ and
’slow’ as h(⌧) = f(s(⌧)) ⌘ (f � s)(⌧), where f and s

are fluctuations in the frequency range [⇤, J ] and [0,⇤],
and ⇤ is a running cuto↵ energy[30]. We then integrate
out the fast modes f(s), and rescale time ⌧ ! ⌧J/⇤
to restore the UV cuto↵ ⇤ ! J . Consider first the case
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< ⇤ < J , where the reparameterization fluctuations

are suppressed. The RG flow is then governed by the
‘engineering’ dimensions, resulting in:
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where l = ln(J/⇤). For T > J/N this flow should be
terminated when either ⇤ reaches T , or V (l) ⇠
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reaches UV cuto↵ J . This defines the temperature scale
TFL = V
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/J , which separates the high temperature SM

and low temperature FL. In SM phase w(T ) = NV
2
/T

and T/(T ) / J/w(T ) / T/(NTFL) [6], while in FL the
thermal resistivity saturates at T/(T ) / 1/N .

We turn now to the regime of strong reparameteriza-
tion fluctuations. By the time ⇤ reaches J/N , m(l) =
m(0)e�l reaches the inverse UV cuto↵ m(l) ⇡ 1/J . To
proceed with the further renormalization, we employ the
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At lowest order in w one needs to average the coupling
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rule to the Green functions, Eq. (2), shows that

G⌧1,⌧2 [f � s] = Gs1,s2 [f ](s
0
1s

0
2)

1/4
, (6)
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b]ifb splits
into two fast averages. These expressions can be
evaluated with the help of exact results [18, 21] for
hGs1,s2 [f ]if . Referring to the supplementary material
for details, we note the asymptotic expressions (s12 ⌘
s1 � s2):

hGs1,s2 [f ]if '
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|s12|�1/2
, s12 < m;p

m(s1)m(s2)|s12|�3/2
, m<s12<⇤�1;

m⇤|s12|�1/2
, ⇤�1

< s12.

(7)

The first line states that at time scales shorter than m

reparameterization fluctuations are suppressed and G re-
tains its mean-field form. For intermediate time scales,
they change the time dependence of G to a �3/2 power
law. At yet longer times, fast reparameterization fluctu-
ations cease to be e↵ective and G is back to �1/2 decay.
Equation (7) implies that the double time integral in

the averaged tunneling action hST[f � s]if ⌘ Sint + Slong

gets di↵erent contributions from intermediate (m <

⌧12 < ⇤�1) and long time di↵erences (⌧12 > ⇤�1). The
former is handled with the help of the expansion
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+ . . . ,

(8)

where ⌧ = (⌧1 + ⌧2)/2. Collecting all factors s
0 from

Eqs. (5) and (7), we encounter the l.h.s. of this equa-
tion with � = 3/4, both for s = s

a,b. Substituting the
r.h.s. and noting that the contribution of lowest order
in derivatives comes from the cross contribution of the
first and the second term in the (a) ⇥ (b)-product, we
obtain a contribution of local Schwarzian form Sint !
Z
4 wm

2
l
P

a

R
⇤�1 d⌧{sa, ⌧}, where Z is the coordination

number of the array and l ⌘ ln(1/⇤m) =
R ⇤�1

m d⌧12⌧
2�4�
12

from the time integration. Finally, rescaling the time
variable ⌧ ! e

l
⌧ , to reset the cuto↵ ⇤�1 ! m, we ob-

serve that the action contains a term S0[s] with the renor-
malized coe�cient m(l) = e

�l(m + Z
4 wm

2
l). We finally

turn to the contribution, Slong, from large time di↵er-
ences, where now the third line in Eq. (7) for the Green
functions is to be used. After the rescaling of time, this
generates an expression identical to the original ST[s],
but with a new constant w(l) = e

l
w(m⇤)2 = e

l
we

�2l.
From these results, RG equations are obtained by dif-

ferentiation over l and putting l = 0. This leads to

d lnm

dl
= �1 +

Z

4
wm;

d lnw

dl
= +1� 2. (9)

The second equation reflects the aforementioned change
of the dimension of w from +1 to �1. While Eqs. (4) are
applicable for mJ � 1, the new set of the RG equations
(9) is derived in the opposite limit mJ ⌧ 1. Indeed, this
is the condition to employ the asymptotic expressions
(7), as opposed to the exact expressions[18, 21], see the
supplementary material for more information.
Analysis of the RG: we first note that the limiting

forms of the scaling equations, Eqs. (4) and (9), ad-
mit a closed representation in the dimensionless variable
� ⌘ wm. In the regime mJ � 1 one has d ln�/dl = 0,
while for mJ ⌧ 1:

d ln�

dl
=

✓
Z

4
�� 2

◆
. (10)

This equation exhibits an unstable fixed point �c = 8
Z ,

marking a transition between a FL phase at � > �c and
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In this supplementary material we provide some tech-
nical background on the lattice Schwarizian field theory
discussed in the main text.
E↵ective action and stationary phase solutions — Aver-
aging the Grassmann coherent state path integral rep-
resentation of the SYK Hamiltonian over the Gaussian
distributions of matrix elements J

a

ijkl
and V

ab

ij
and sub-

sequently integrating out the Grassmann variables, one
obtains two contributions to the action:

S0[G
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,⌃a] = �N

2

X

a

h
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+

Z
d⌧1d⌧2

✓
G

a

⌧1,⌧2
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J
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4
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)4
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; (1)

and

ST[G
a
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b] =
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2
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X

habi

V
2

Z
d⌧1d⌧2G

a

⌧1,⌧2
G

b

⌧2,⌧1
, (2)

where we have suppressed the replica structure of the
fields. The global factor N upfront justifies a saddle
point approach based on variational solutions for G and
⌃. To zeroth order in @⌧ and V

2, one finds a family of
conformally invariant solutions, parameterized by di↵eo-
morphisms h(⌧):

G⌧1,⌧2 [h]/
✓

h
0
1h

0
2

[h1 � h2]2

◆1/4

; ⌃⌧1,⌧2 [h]/
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h
0
1h
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2

[h1 � h2]2
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.

(3)
The terms coupled to @⌧ and V

2 break the Di↵(S1) sym-
metry down to SL(2, R), and the corresponding action
cost is given by Eq. (3) of the main text. Eq. (3) thus
defines the low-energy e↵ective action of the SYK array.
RG analysis — We now decompose the h(⌧) fluctuations
into ’fast’ and ’slow’ as h(⌧) = f(s(⌧)) ⌘ (f � s)(⌧).
The fast part, f(s), includes fluctuations in the frequency
range [⇤, J ], and the slow one, s(⌧), the remaining modes
with frequencies less than ⇤. As long as m

�1
< ⇤, the

action cost of fast modes is high and their integration has
no bearing on the slow action. E↵ective renormalization
sets as ⇤ < m

�1. To first order in w one needs to consider
hST[(f �s)]if , which takes the following form (cf. Eq. (5)
of the main text):

hSTif = �w

X

habi

ZZ
d⌧1d⌧2 hGs

a
1 ,s

a
2
ifa [s0

a

1s
0a
2 ]

1/4⇥
�
a ! b

�
,

(4)

FIG. 1. The log-log plot of the fast Green’s functions Gf (s)
versus time s used in the RG analysis. The slopes of the three
straight parts are �1/2,�3/2,�1/2, correspondingly.

where the Green function averaged over the fast degrees
of freedom is

hGs1,s2if = Gf (s1, s2) =
D (f 0(s1)f 0(s2))

1/4

[f(s1)� f(s2)]1/2

E

f

, (5)

and h. . .if stands for the integration over the functions
f(s) with the weight Sfast

0 [f, s]. Below we will show that
this function shows di↵erent power law scaling depending
on the separation of its arguments (see Fig. 1):

Gf (s1, s2) '
m

1/2(s1)m1/2(s2)

|s1 � s2|3/2
, m < |s1 � s2|<⇤�1

(6)
at intermediate time ranges and

Gf (s1, s2) =
m⇤

|s1 � s2|1/2
, |s1 � s2| > ⇤�1 (7)

for long times. We present detailed derivation of these ex-
pressions below. The intuition behind them is as follows:
the change of the exponent from �1/2 to �3/2 at times
> m is a result of quantum fluctuations, leading to Li-
ouville quantum mechanics [1]. Since the low-frequency
spectrum of fluctuations f(s) is cut o↵ by ⇤, one expects
that the Green function at longer times (> ⇤�1) turns
back to its mean-field form with the exponent �1/2.
The suppression factor m⇤ < 1 accounts for the drop
of the Greens function in the intermediate time range.
In Eq. (6) we have evenly split the mass m(s) = ms

0

between the two times, s1 and s2, which is permissible
on account of the assumed slowness of s and leads to
manifest SL(2, R) invariance of the slow modes action.
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As noted in the main text, the average action (4) ac-
quires contributions from intermediate and long time dif-
ferences ⌧1 � ⌧2. Using the above asymptotic expressions
for the Green functions, we obtain, respectively,

Sint=�wm
2

ZZ

m<|⌧12|<⇤�1
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✓
s
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◆3/4
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⌘
.

(8)
and

Slong=�w(m⇤)2
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⌘
.

(9)
In the first of these integrals, we use the expansion Eq.
(8) of the main text. We then note that the contri-
bution of lowest order in derivatives comes from the
cross contribution of the first and the second term in
the (a) ⇥ (b)-product. Turning to center of mass coor-
dinates, ⌧ = (⌧1 + ⌧2)/2 and ⌧12 = ⌧1 � ⌧2, the integral
factorizes into a contribution of local Schwarzian form
Sint ! Z

4 wm
2
l
P

a

R
⇤�1 d⌧{sa, ⌧}, and a logarithmic fac-

tor l ⌘ ln(1/⇤m) =
R ⇤�1

m
d⌧12/⌧12. Here, Z is the co-

ordination number of the array. We finally rescale the
time variable ⌧ ! e

l
⌧ , to reset the cuto↵ ⇤�1 ! m,

to obtain the original Schwarzian action with a coupling
constant m(l) = e

�l(m+ Z

4 wm
2
l), as stated in the main

text. Turning to the contribution, Slong, we observe that
this one already has the form of the original tunneling
action ST[s]. All that remains to be done is to rescale
time which generates the renormalized coupling constant
w(l) = e

l
w(m⇤)2 = e

l
we

�2l.
Di↵erentiation of the running constants over l gener-

ates the following RG equations:

d lnm

dl
= �1 +

Z

4
mw,

d lnw

dl
= �1, mJ ⌧ 1.

(10)
On the other hand, when mJ � 1 the renormalization is
only due to the engineering dimensions,

d lnm

dl
= �1,

d lnw

dl
= +1, mJ � 1. (11)

A way to interpolate between the two limits (10) and (11)
is to define an e↵ective m-dependent scaling dimension
of the fermion operators as,

� (m) = �1

2

d lnG(s)

d ln s

�����
s=1/J

, (12)

where the exact two-point Green’s function is [1]

G(s) / 1p
m

Z +1

0
dkM2(k)e

�k
2
s/2m

, (13)

M2(k) = k sinh(2⇡k)�2( 14 + ik)�2( 14 � ik).

The function � (m) smoothly interpolates between
� = 3/4 at mJ ⌧ 1 and � = 1/4 at mJ � 1,
cf. Fig. 3 of the main text. Using this representation of
the two-point function, the RG equations may be derived
along the same lines as above, leading to
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In terms of m and � = mw they read
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These equations are valid to the first order in Z�, but
for arbitrary mJ . They interpolate between the two lim-
its elaborated in the main text. The corresponding RG
flow diagram is presented in the main text as Fig. 2. It
contains the non-trivial hyperbolic fixed point (�c,mc),
with �c =

8
Z
and � (mc) =

1
2 . Notice that at the critical

point, the system shows FL scaling.
Linearizing Eqs. (15) around this fixed point one finds

d

dl
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,

where

 ⌘ 4
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m=mc

= �0.41.

The two Lyapunov exponents corresponding to the rele-
vant and irrelevant directions are thus found as r = 1
and irr = . The former specifies that the crossover
scales TI(�) / (�c � �) and TFL(�) / (� � �c) behave
linearly near the critical point, see Fig. 1 of the main
text.
’Fast’ Green function — The above analysis relies on
Eqs. (6), (7), or Eq. (7) of the main text. While the gen-
eral form of these asymptotics follows from qualitative
reasoning, the derivation from the Schwarzian theory re-
quires some work. We start from a representation of the
Schwarzian action in terms of the Liouvillian action of
a quantum particle with coordinate �(s) ⌘ ln f 0(s) [1].
This enables one to represent the ’fast’ Green function as
the following path integral

Gf (s1 � s2) = Z�1

Z
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In the first of these integrals, we use the expansion Eq.
(8) of the main text. We then note that the contri-
bution of lowest order in derivatives comes from the
cross contribution of the first and the second term in
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flow diagram is presented in the main text as Fig. 2. It
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and irr = . The former specifies that the crossover
scales TI(�) / (�c � �) and TFL(�) / (� � �c) behave
linearly near the critical point, see Fig. 1 of the main
text.
’Fast’ Green function — The above analysis relies on
Eqs. (6), (7), or Eq. (7) of the main text. While the gen-
eral form of these asymptotics follows from qualitative
reasoning, the derivation from the Schwarzian theory re-
quires some work. We start from a representation of the
Schwarzian action in terms of the Liouvillian action of
a quantum particle with coordinate �(s) ⌘ ln f 0(s) [1].
This enables one to represent the ’fast’ Green function as
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FIG. 2. RG flow in the plane of couplings (� = mw,m);

here �c = 8/Z and mc = O(1)/J . The initial values are

m(0) = N/J and �(0) = (NV/J)2.

to Eq. (9), d lnm/dl|�=�c = +1, opposite to Eq. (4).
The only way to reconcile the two limits is to have an-
other fixed point at mc ⇠ 1/J . The resulting two pa-
rameter RG diagram in the plane (�,m) is shown in
Fig. 2. To first order in an expansion in w, but arbi-
trary m, this diagram may be derived from exact ex-
pressions for hGs1,s2 [f ]if , see supplementary material for
details. In particular, the RG equation for w becomes
d lnw/dl = 2�4� (m), where � (m) is the e↵ective m-
dependent scaling dimension of the fermion, see Fig. 3.
The analysis of higher orders in ST shows that the ac-
tual small parameter of the perturbative expansion is Z�.
Therefore, the fixed point is actually out of the perturba-
tively controled regime and may not be used for quantita-
tive evaluation of critical indices. However, second order
calculations [33] show that RG flow keeps its qualitative
form, Fig. 2.

The FL part of the RG diagram, Fig. 2, is well de-
scribed by Eqs. (4) and the physics of the array is the
one discussed in Ref. [6]. The only addition is that
the crossover temperature TFL(�) ! 0, when � ! �c,
Fig. 1. This is due to the fact that for � ⇡ �c the flow
spends a long “time” in the vicinity of the (�c,mc) fixed
point, thus reaching progressively lower T . In the insu-

FIG. 3. The log-linear plot of the e↵ective scaling dimension

of fermion operators � , as a function of the running scale

mJ . For its exact definition in terms of 2-point function of the

Schwarzain theory we refer to the supplementary material.

lating phase, � ! 0 and thus according to dw/dl = �w

(Eq. (9)) and w ⇠ V
2, V (T ) / T

1/2. The diminishing of
the inter-dot coupling at low temperatures implies that
second order perturbation theory in V (T ) may be applied
to evaluate the thermal conductivity (T ). Therefore one
finds (T )/T / |V (T )|2 / T in the insulating phase.

To conclude, we have seen that the renormaliza-
tion procedure indeed preserves the form of the lattice
Schwarzian field theory. This stability follows from the
conformal relations (5) and (8), but ultimately is required
by the condition of maintained SL(2, R) symmetry. Our
ability to deduce the entire RG flow (for Z� . 1) is
owed to the knowledge of the reparameterization aver-
aged Green function hG[f ]if for any m, which in turn
follows from mapping of the local Schwarzian action to
Liouville quantum mechanics [19]. We finally note that
the RG procedure introduced in this Letter may likewise
be applied to an isolated SYK dot subject to a random
one-body perturbation [24]. The most important di↵er-
ence is that the action ST is now subject to only one, and
not two di↵erent reparameterization modes. This leads
to a set of RG equations [34], di↵erent from the present
ones in that strength of the one-body term, w, remains
always relevant. At the same time, there is a transition
in the scaling of m, separating a FL phase (m � 1/J)
from a phase of strong quantum fluctuations (m ! 0),
in line with the prediction of Ref. [24].

Summary — In this work we have shown that, regard-
less of dimensionality and geometric structure, an array
of SYK dots coupled by one-body hopping exhibits a
zero temperature metal-insulator transition. This phe-
nomenon is rooted in the conformal invariance of the non-
FL states supported by the individual SYK dots. The
presence of this symmetry in turn is a direct consequence
of an asymptotically strong dot-local interaction and may
transcend the specific model employed here. A mutually
suppressive competition between conformal fluctuations
on the dots and the conformal symmetry breaking tunnel-
ing operators implies the presence of a transition between
an insulating and a metallic phase, and a crossover into a
strange metal regime at finite temperatures. Read in this
way, the main message of our study is that phenomenol-
ogy present in many strongly correlated materials, may
follow from a rather basic principle. Although, the un-
derlying Schwarzian lattice theory will not be able to de-
scribe the specific physics of realistic quantum materials,
it will be intriguing to find out if the universality class
of its phase transition can encompass strong correlations
phenomena beyond those discussed here.
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here �c = 8/Z and mc = O(1)/J . The initial values are

m(0) = N/J and �(0) = (NV/J)2.

an insulating one at � < �c. Since �(0) ⇠ (NV/J)2,
one finds Vc ⇠ J/

p
ZN , inversely proportional to N ,

as stated in the introduction. Notice that according to
Eq. (9), d lnm/dl|�=�c = +1, opposite to Eq. (4). The
only way to reconcile the two limits is to have another
fixed point at mc ⇠ 1/J . The resulting two parame-
ter RG diagram in the plane (�,m) is shown in Fig. 2.
To first order in an expansion in w, but arbitrary m,
this diagram may be derived from exact expressions for
hGs1,s2 [f ]if , see supplementary material for details. The
analysis of higher orders in ST shows that the actual
small parameter of the perturbative expansion is Z�.
Therefore the fixed point is actually out of the pertur-
batively controled regime and may not be used for quan-
titative evaluation of critical indices. However, second
order calculations [31] show that RG flow keeps its qual-
itative form, Fig. 2.
The FL part of the RG diagram, Fig. 2, is well de-

scribed by Eqs. (4) and the physics of the array is the
one discussed in Ref. [6]. The only addition is that
the crossover temperature TFL(�) ! 0, when � ! �c,
Fig. 1. This is due to the fact that for � ⇡ �c the flow
spends a long “time” in the vicinity of the (�c,mc) fixed
point, thus reaching progressively lower T . In the insu-
lating phase, � ! 0 and thus according to dw/dl = �w

(Eq. (9)) and w ⇠ V
2, V (T ) / T

1/2. The diminishing of
the inter-dot coupling at low temperatures implies that
second order perturbation theory in V (T ) may be applied
to evaluate the thermal conductivity (T ). Therefore one
finds (T )/T / |V (T )|2 / T in the insulating phase.

To conclude, we have seen that the renormaliza-
tion procedure indeed preserves the form of the lattice
Schwarzian field theory. This stability follows from the
conformal relations (5) and (8), but ultimately is required
by the condition of maintained SL(2, R) symmetry. Our
ability to deduce the entire RG flow (for Z� . 1) is
owed to the knowledge of the reparameterization aver-
aged Green function hG[f ]if for any m, which in turn

follows from mapping of the local Schwarzian action to
Liouville quantum mechanics [18].
Summary — In this work we have shown that, regard-
less of dimensionality and geometric structure, an array
of SYK dots coupled by one-body hopping exhibits a
zero temperature metal-insulator transition. This phe-
nomenon is rooted in the conformal invariance of the non-
FL states supported by the individual SYK dots. The
presence of this symmetry in turn is a direct consequence
of an asymptotically strong dot-local interaction and may
transcend the specific model employed here. A mutually
suppressive competition between conformal fluctuations
on the dots and the conformal symmetry breaking tun-
neling operators then enforces the presence of a tran-
sition between an insulating and a metallic phase, and
crossover into a strange metal regime at finite tempera-
tures. Read in this way, the main message of our study is
that phenomenology present in many strongly correlated
materials, may follow from a rather basic principle. This
makes one optimistic that further features of quantum
matter can be modeled via the SYK paradigm.
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We investigate single dot spin-full Sachdev-Ye-Kitaev (SYK) model with attractive on-site paring.
This model exhibit the phase transition from strange metal to superconductor when decreasing
temperature, which verified by the existence of many-body gap and O↵-Diagonal-Long-Range-Order
(ODLRO). We show that in large paring regime, this model is integrable with Richardson solution.
While in small pairing regime, a quantum phase transition occur, which characterized by phase
decoherence of non-vanishing mean-field single particle superconducting gap.

I. INTRODUCTION AND MODEL

Introduction TBD: Some known paper about SYK superconductor: (1) phonon mediated pairing1,2 (2) Hubbard
U pairing3,4

Initially arised as a solid state model of conformally invariant boundary of AdS2 gravity theory5,6, Sachdev-Ye-
Kitaev (SYK) model quickly gained importance as the simplest candidate for theoretical explananation of the prop-
erties of strange, or incoherent, metals, which are ubiquitously observed as a high-temperature phase of high-Tc

superconductors7.
Several extentions of SYK model has been proposed recently, aiming to obtain superconductivity as a low-

temperature part of the phase diagram1,3,4. In Refs.3,4, the strongly correlated electron system is envisioned as
an array of coupled SYK grains. Thereby, the instability towards superconductivity in the particle-particle (Cooper)
interaction channel can be seen already by considering a spinful version of the SYK model with real-valued random
couplings4. However, to reach the true superconducting ground state, an attractive interaction between fermions has
to be included, which would provide a mechanism for the creation of electron pairs1,3. It was shown in Ref.3 that
already infinitesimally small attractive interaction in form of hopping of spin-singlet fermion pairs induced the super-
conducting ground state in the SYK-model. A single grain with more involved coupling between electrons through
random phonon modes has been considered in Ref.1, which also results in the superconducting low-temperature phase.
Those works opened a new field of investigations concerning the phase transition between the incoherent metal and
superconductor. The specific models considered in Refs.1,3,4 exhibited rich phase diagrams with substantial part of
the parameter space covered by the well-known Fermi liquid phase. The existence of the Fermi liquid, although
important for the description of experimental high-Tc materials, masks the phase transition between the incoherent
metal (IM) and superconductor (SC) in wide range of parameters1. In the case of SYK-arrays considers in Ref.3, the
IM-SC phase transition is exhibited only in more complex SYK8 rather than in SYK4 models.

In this letter, we report results on the incoherent metal – superconductor phase transtion in the SYK4 model
complemented by attractive local Hubbard interaction. We consider that model as the minimal possible extenstion
of SYK, possessing the superconducting ground state.

We start from spin-full SYK Fermion on N sites constructed in zero dimension, with attractive Hubbard pairing
term, which have Hamiltonian:

H =
X

i<j;k<l

Jij;kl

X

�,�0

c
†
i�c

†
j�0ck�0cl� � U

X

i

c
†
i"c

†
i#ci#ci" (1)

Jij;kl are real random variables with variance J
2
/N

3 and with rid of coinciding indices. We preserve time reversal
symmetry Jij;kl = �Jji;kl = �Jij;lk = Jji;lk in order to enhance superconductivity.
When the system has high enough temperature (compare to J), it is standard SYK physics, with two point Greens

function G(⌧) ⇠ 1/
p
⌧ , indicating a strange metal. So the question one can ask is whether the system will exhibit

Superconductor instability or not when decreasing the temperature. We will answer this question in two di↵erent
limit of U/J , and demonstrate both classical/quantum phase transition when tuning parameters: temperature T and
U/J .

on-site attractionreal Gaussian spin 1/2



Off-Diagonal Long Range Order
ODLRO

<          > =0      in any finite size system

2

II. LARGE U/J LIMIT

In large U/J limit, low energy sector will be on-site paired fermion. Once the pairing automatically set, the
remaining question to ask is whether these paired fermion (hard-core boson) will form a Bose-condensate or not?

A. O↵-Diagonal-Long-Range-Order in paired Fermion system

In order to verify the existence of BEC in Boson system, one can check the O↵-Diagonal-Long-Range-Order
(ODLRO):

⇢ij = hb
†
i bji (2)

where b
†
i is bosonic creation operator in Boson system. If the largest eigenvalue of ODLRO �0 scale as O(N), while

other eigenvalues �↵, ↵ 6= 0 scale as O(1), then this system is a simple Bose-condensate.
For the SYK + Hubbard model with Hamiltonian Eq. (1), in the large U/J limit, Hubbard pairing is strong

enough to bond every two fermion with di↵erent spin on-site. So one can define hard-core bosons b
†
i = c

†
i"c

†
i# and

check ODLRO in the system.
We use exact diagonalization to find eigenvalues and eigenstates in low energy paired fermion sector of SYK +

Hubbard model. All following numerical results are restrict in definite particle numbers sector and filling factor is
1/2 (or say there is N Fermions in the system). Fig. 1(a) strongly indicating the existence of condensation in the
ground state. Roughly speaking, the largest eigenvalue of ODLRO is scale as �0 ⇠ N/4, while the rest of them is
�↵ ⇠ 1/4, ↵ = 1, 2, ..., N � 1. We also investigate the finite temperature e↵ect. Fig 1(b) shows how ODLRO decaying
when turn on thermal fluctuation. And ODLRO is decaying at the order of E� = J

2
/U no matter what system size

N is. In next section we will show E� is the energy scale that in front of the e↵ective low energy theory and has two
physical meaning: (1) it is the temperature scale that destroy the condensation in thermal-dynamical limit. (2) it is
the many-body gap which may associate superconducting gap � in large U limit.

(a) (b)

FIG. 1: (a) ODLRO vs number of sites N of SYK+Hubbard model for ground state at U/J = 2. Blue line is the result from
modified Richardson model. (b) ODLRO vs temperature of SYK+Hubbard model at U/J = 2.

B. Richardson Solution and superconducting gap
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Local pair-density matrix:

positive-definite N*N matrix

Tr = # of local fermion pairs < (# of fermions)/2

ODLRO= largest eigenvalue of         scales with N
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III. PHASE-RIGIDITY AND QUANTUM TRANSITION AT SMALL U/J

When decreasing the paring strength U , the on-site paired density decreasing and one expect the superconductivity
would be killed eventually. Now the question is whether there exist a quantum phase transition point at finite U = Uc

which drive the system to be incoherent metal as if it is pure SYK metal.
One can establish an e↵ective theory of G, F , ⌃, ⌅ and superconducting gap �i (need to be filled by Sasha’s

calculation). At mean field level, the instability of gap �i = � closing is happened at U = 0. While the many-body
gap E� closed at finite U as shown in Fig 3(a). (need more detailed information for many-body gap at finite size,
say di↵erent chirality, gap closing...) (also need more and better understanding of what is the connection/di↵erence
between these two gap in this limit...)

The existence of mean-field superconducting gap � does not necessarily indicating superconductivity, since the
signature of superconductivity should be phase coherence. In previous section, we identify superconductivity by
stating the existence of ODLRO in large U/J limit, which has strong phase rigidity as explained in Eq. (5). When
U is small, even though the on-site order parameter �i has non-zero absolute value of mean-field �, their phase �i

which defined by �i = �e
i�i are not necessarily to be close to each other.

(a) (b)

FIG. 3: (a) Many-body gap of SYK + Hubbard vs U/J . In this model at half-filling, there is chiral symmetry which separate
the spectrum in two sectors. The gap is defined by lowest energy of �1 chirality minus +1 chirality. In N/2 is odd case, normal
state prefer chirality to be �1. (b) ODLRO vs U/J . At U/J ⇠ 0.25, an obvious kink show up suggest a sharp transition even
observed at N=10 case.

The numerical result shows that ODLRO start to getting smaller and at some critical Uc, it goes to ⇠ 1/4 as it is
shown Fig. 3. We identify the position of U = Uc to be the breaking of phase rigidity and established an e↵ective
field theory around there for the phase �i. See Appendix (?) for details, the e↵ective theory of phase can be written
as quantum rotators model, with action:

S[�i(⌧)] =
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the e↵ective interaction strength g ⇠ e
�J/U (need to be verified and shown somewhere). This model can be solved by

mean-field approximation in large N limit. The single particle condensate wave-function follows the Gross-Pitaevski
equation:

�
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@�2
� g⇢ cos(�) = µ 

⇢ =

Z 2⇡

0
d�| (�)|2 cos�

(7)

This mean-field Gross-Pitaevski equation can be solved by Mathieu function, and should obey self-consistency con-
dition. One can treat it iteratively and the result of ⇢ is plotted in Fig 4 which can be viewed as order parameter.
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Almost done  J
SYK model is exactly solvable 
N →∞,   ε-fixed;                             N →∞,   ε→ 0,  Nε-fixed  

SYK matter exhibits distinct observable 
signatures of the non-Fermi liquid fixed point.  

SYK can be superconducting. 
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Electronic transport in nano-structures, such as long molecules or 2D exfoliated flakes, often
goes through a nearly degenerate set of single-particle orbitals. Here we show that in such cases a
conspiracy of the narrow band and strong e-e interactions may stabilize a non Fermi liquid phase
in the universality class of the complex Sachdev-Ye-Kitaev (SYK) model. Focusing on signatures
in quantum transport, we demonstrate the existence of anomalous power laws in the temperature
dependent conductance, including algebraic scaling T 3/2 in the inelastic cotunneling channel, sepa-
rated from the conventional Fermi liquid T 2 scaling via a quantum phase transition. The relatively
robust conditions under which these results are obtained indicate that the SYK non Fermi liquid
universality class might be not as exotic as previously thought.

Introduction: Electronic device miniaturization is now
routinely operating at levels where quantum limits are
reached. Examples where quantum e↵ects are of key rele-
vance and/or used as operational resources include single
molecule transport[1–4], various realizations of qubits[5],
and increasingly even commercial applications such as Q-
dot display technology. Physically, such nanoscopic de-
vices (henceforth summarily denoted as ‘quantum dots’)
are frequently described[6] in terms of only few collective
variables — their cumulative electric charge, a global su-
perconducting order parameter, a collective spin, etc.

Starting from first principle many body representa-
tions, this ‘universal Hamiltonian’ approach[7, 8] is im-
plemented via elimination of microscopic degrees of free-
dom which in turn rests on statistical arguments[7, 9, 10].
To illustrate the principle in the simplest physical set-
ting, consider a small quantum system with i = 1, . . . , N
electronic orbitals, assumed spinless for simplicity. This
setting is described by the Hamiltonian Ĥ =

PN
i ✏ic

†
i ci+PN

ijkl J̃ijklc
†
i c

†
jckcl, where ✏i are the energies of the non-

interacting orbitals, and J̃ijkl are the matrix elements of
the particle interactions — generally strong in the case of
nanoscopic device extensions. Systems of realistic com-
plexity are typically non-integrable on the single particle
level, implying e↵ectively random matrix elements, J̃ijkl.
This randomness is usually taken as justification to dis-
card all matrix elements except those with non-zero mean
value. Specifically, focusing on contributions with i = k,
j = l, or i = l, j = k, and assuming approximate equality
of diagonal matrix elements on average, one is led to the
representation

Ĥ =
NX

i

✏ic
†
i ci +

1
2EC n̂

2 +
NX

ijkl

Jijklc
†
i c

†
jckcl, (1)

where Jijkl now excludes matrix elements with identi-

cal indices, n̂ =
PN

i c
†
i ci is the total charge on the dot

and the coe�cient EC = e
2
/C defines its e↵ective elec-

trostatic capacitance, C. The standard universal Hamil-

tonian approach [7, 8] defines n̂ as the central collective
variable, and ignores the contribution of the random sign
matrix elements, Jijlk, to the interaction energy.

In this paper, we caution that the neglect of the term
ĤSYK ⌘

P
Jijklc

†
i c

†
jckcl may be less innocent then is

commonly assumed. The point is that ĤSYK is a vari-
ant of the complex SYK Hamiltonian [11, 12][13], the
latter being defined as an all–to–all interaction Hamil-
tonian with random matrix elements taken from a zero
mean Gaussian distribution with hJ2

ijkli = J
2
/N

3. The
pure SYK Hamiltonian [11, 12, 14–19] defines a univer-
sality class distinguished for a maximal level of entangle-
ment, chaos, and non Fermi liquid (NFL) correlations,
otherwise shown only by black holes (in 2D gravity the
latter are related to SYK model via the holographic cor-
respondence [20–22]). Correlations generated by arrays
of SYK cells are increasingly believed[23–27] to be rele-
vant in the physics of strongly correlated quantum mat-
ter, and it has been suggested that single copies of SYK-
Hamiltonians might describe small sized samples of flat
band materials[28]. In the following, we reason that even
the low temperature physics of the much more generic
class of systems described by the Hamiltonian above can
be partially, or even fully governed by the SYK univer-
sality class. The latter is the case if the band width, W ,
of single particle orbitals, ✏i, is smaller than the inter-
action strength, W < J . For these values, strong quan-
tum fluctuations generated by ĤSYK render the single
particle contribution Ĥ0 ⌘

P
i ✏ic

†
i ci irrelevant[29]. Con-

versely, for larger values the fluctuations themselves get
suppressed by Ĥ0. However, even then the presence of
ĤSYK shows in extended crossover windows in tempera-
ture where the dot shows NFL correlations. In the fol-
lowing we address both cases, focusing on signatures on
low temperature transport.

The crucial feature of the SYK Hamiltonian is the pres-
ence of a weakly broken infinite dimensional conformal
symmetry [12, 30, 31]. This symmetry breaking man-
ifests itself in NFL correlations, and in the emergence
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ĤSYK ⌘

P
Jijklc

†
i c

†
jckcl may be less innocent then is

commonly assumed. The point is that ĤSYK is a vari-
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of a set of Goldstone modes, which in the present con-
text define a second set of low energy collective vari-
ables, h(⌧), besides n̂(⌧). Depending on temperature,
and the relative strength of interactions and the single-
particle bandwidth, the conspiracy of these degrees of
freedom can drive the system into a strongly correlated
NFL phase of matter. In quantum transport, the pres-
ence of these regimes shows in non-monotonicity of the
temperature dependent conductance, g(T ), and in power
laws g(T ) ⇠ T

↵ di↵erent from the T 2 of the Fermi liquid
dot.
Symmetries: We start by identifying the symmetries
of the system, which in turn determine its low-energy
quantum fluctuations. This is best done in a coherent
state representation, where the Hamiltonian is expressed
via Grassmann valued time-dependent fields (c, c†) !
(c(⌧), c̄(⌧)), depending on imaginary time ⌧ 2 [0,�]. The
system’s action S =

R
d⌧(c̄i@⌧ ci�H(c, c̄)) is then approx-

imately invariant under the transformations[12, 30, 31]
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h
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where the dot stands for the time derivative, and the U(1)
phase � is canonically conjugated to the charge operator,
n̂. The functions h(⌧) are di↵eomorphic reparameteriza-
tions of imaginary time and as such take values in the
coset space Di↵(S1)/SL(2, R), where Di↵(S1) is the set
of smooth functions parameterizing the periodic interval
of imaginary time and the factorization of SL(2, R) ac-
counts for a few exact global symmetries of the action).
The symmetries (2) are explicitly broken by both, the
time derivative in the action, and the single particle con-
tribution in Eq. (1). We first discuss the former and note
that the action cost associated with temporal fluctuations
of (�, h) reads[12, 30, 31]

S0[�, h]=

Z
d⌧

h
1
2E

�1
C �̇

2 �m{h, ⌧}
i
, (3)

where {h, ⌧} ⌘ d
dt

⇣
ḧ
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The physical information relevant to our discussion be-

low is contained in the fermion Green functions, G⌧1,⌧2 =
hci(⌧1)c̄i(⌧2)i. The transformations (2) a↵ects the Green
functions as G ! G[�, h], where
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
rameterizations, this leads to the NFL scaling G⌧1,⌧2 ⇠
|⌧1 � ⌧2|�1/2 signifying an interaction–dominated theory.

FIG. 1. Main Panel: temperature dependence of the direct
tunneling contribution to the conductance. An exponential
suppression at temperatures T < EC gives way to an T�1/2

power law at larger temperatures. Left inset: diagram of the
direct tunneling process; black lines are Green functions in
the lead (l) and the dot (d), fat dots are tunneling vertexes at
times ⌧1,2, respectively, and the red dashed line represents the
charging correlation D(⌧1 � ⌧2), Eq. (5). Right inset: energy
dependence of the average tunneling density of states on the
dot at T < J/N .

Isolated dot: For an isolated dot integration over the
phase field with the action (9) generates the factor[33, 34]
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D
e
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Fourier transformation of D(⌧) to the energy domain
leads to a gap, EC , in the excitation spectrum, and
an exponential suppression of the single-particle den-
sity of states, the Coulomb blockade. The second fac-
tor hG⌧1,⌧2 [h]ih, which in the same from appears in the
charge-neutral Majorana SYK model, has been studied
extensively in Refs. [35, 39]. Here, the main observation
is a crossover from temporal decay as |⌧1� ⌧2|�1/2 for in-
termediate time scales 1 < J |⌧1�⌧2| < N , to |⌧1�⌧2|�3/2

in the fluctuation dominated long time regime, N <

J |⌧1�⌧2|. This change implies a crossover in the e↵ective
fermion dimension from � = 1/4 to � = 3/4. Fourier
transformation of the long time power law reveals the
presence of a soft zero-bias anomaly /

p
E � Ec on top

of the hard Coulomb blockade gap (see inset in Fig. 1.)
Tunneling conductance: We next consider the system
connected to metallic leads via the tunneling Hamilto-
nian HT =

P
i,k Vikc

†
idk +h.c.. Here, dk are annihilation

operators in the normal leads and we assume the ma-
trix elements Vik to be e↵ectively random with variance
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
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ḧ
ḣ
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
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|⌧1 � ⌧2|�1/2 signifying an interaction–dominated theory.
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particle bandwidth, the conspiracy of these degrees of
freedom can drive the system into a strongly correlated
NFL phase of matter. In quantum transport, the pres-
ence of these regimes shows in non-monotonicity of the
temperature dependent conductance, g(T ), and in power
laws g(T ) ⇠ T

↵ di↵erent from the T 2 of the Fermi liquid
dot.
Symmetries: We start by identifying the symmetries
of the system, which in turn determine its low-energy
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state representation, where the Hamiltonian is expressed
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(c(⌧), c̄(⌧)), depending on imaginary time ⌧ 2 [0,�]. The
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tions of imaginary time and as such take values in the
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
rameterizations, this leads to the NFL scaling G⌧1,⌧2 ⇠
|⌧1 � ⌧2|�1/2 signifying an interaction–dominated theory.

FIG. 1. Main Panel: temperature dependence of the direct
tunneling contribution to the conductance. An exponential
suppression at temperatures T < EC gives way to an T�1/2

power law at larger temperatures. Left inset: diagram of the
direct tunneling process; black lines are Green functions in
the lead (l) and the dot (d), fat dots are tunneling vertexes at
times ⌧1,2, respectively, and the red dashed line represents the
charging correlation D(⌧1 � ⌧2), Eq. (5). Right inset: energy
dependence of the average tunneling density of states on the
dot at T < J/N .
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Tunneling conductance: We next consider the system
connected to metallic leads via the tunneling Hamilto-
nian HT =

P
i,k Vikc

†
idk +h.c.. Here, dk are annihilation

operators in the normal leads and we assume the ma-
trix elements Vik to be e↵ectively random with variance
h|Vik|2i ⌘ v

2. To second order in perturbation theory,
this generates the tunneling action

ST [�, h]= �g0T

ZZ
d
2
⌧
e
�i�(⌧2)G⌧2,⌧1 [h]e

i�(⌧1)

sin(⇡T (⌧1 � ⌧2))
, (6)

where g0 / ⌫v
2
N/J is the bare dimensionless tun-

neling coupling of the lead-dot interface and ⌫ is the

2

of a set of Goldstone modes, which in the present con-
text define a second set of low energy collective vari-
ables, h(⌧), besides n̂(⌧). Depending on temperature,
and the relative strength of interactions and the single-
particle bandwidth, the conspiracy of these degrees of
freedom can drive the system into a strongly correlated
NFL phase of matter. In quantum transport, the pres-
ence of these regimes shows in non-monotonicity of the
temperature dependent conductance, g(T ), and in power
laws g(T ) ⇠ T

↵ di↵erent from the T 2 of the Fermi liquid
dot.
Symmetries: We start by identifying the symmetries
of the system, which in turn determine its low-energy
quantum fluctuations. This is best done in a coherent
state representation, where the Hamiltonian is expressed
via Grassmann valued time-dependent fields (c, c†) !
(c(⌧), c̄(⌧)), depending on imaginary time ⌧ 2 [0,�]. The
system’s action S =

R
d⌧(c̄i@⌧ ci�H(c, c̄)) is then approx-

imately invariant under the transformations[12, 30, 31]

ci(⌧) ! e
�i�(⌧)

h
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
rameterizations, this leads to the NFL scaling G⌧1,⌧2 ⇠
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
rameterizations, this leads to the NFL scaling G⌧1,⌧2 ⇠
|⌧1 � ⌧2|�1/2 signifying an interaction–dominated theory.
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direct tunneling process; black lines are Green functions in
the lead (l) and the dot (d), fat dots are tunneling vertexes at
times ⌧1,2, respectively, and the red dashed line represents the
charging correlation D(⌧1 � ⌧2), Eq. (5). Right inset: energy
dependence of the average tunneling density of states on the
dot at T < J/N .
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Here, the terms in the numerator are consequences of
Eq. (2), and the denominator reflects the ‘engineering
dimension’ � = 1/4 of fermions in a mean field approach
to the SYK Hamiltonian[30, 32]. In the absence of repa-
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Almost done  J
SYK model is exactly solvable 
N →∞,   ε-fixed;                             N →∞,   ε→ 0,  Nε-fixed  

SYK arrays and dots exhibit distinct observable 
signatures of the non-Fermi liquid fixed point.  

SYK fixed point is locally stable against perturbations,
such as inter-dot tunneling and intra-dot kinetic energy.  


