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Plan:

* Yesterday:
The introduction of symmetry fractionalization:
(1) AKLT chain

(2) Generalized symmetry fractionalizations for:
topological defects (dislocations in topological insulators)
topological excitations in topologically ordered phases.

* Today:

(1) Quantum spin liguid phases in frustrated magnets, and related
experiments in materials

(2) Parton constructions of quantum spin liquids, and symmetry
fractionalization



Emergent gauge dynamics

* | was talking about symmetry fractionalized gauge charge/flux
excitations, say Z2 charge/fluxes. But is that just math?

Where does gauge field come from?
In materials, we start from electrons with interactions.



Emergent gauge dynamics

* | was talking about symmetry fractionalized gauge charge/flux
excitations, say Z2 charge/fluxes. But is that just math?

Where does gauge field come from?
In materials, we start from electrons with interactions.

* But even starting from electronic degrees of freedom, which only
carry E&M gauge charge, the low energy dynamics of a system
could show emergent intrinsic gauge dynamics.

Example: FQHE

 Quantum spin liquids are quantum phases with such emergent
gauge fields.



Basic magnetism

* Mott Insulators — Coulomb repulsion localizes
electrons to atomic sites. Only spin degree of

freedom. ., Y Cle HU Y mignay
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Basic magnetism

* Only spin degree of freedom. Simplest quantum
many body system!

t Opposite Spins gain by virtual hopping:
m J=t2/U; H=]S,eS,

H — _tz<ij> CICj —+ Uzin’iTn’N« — H = Jz<ij> S, - Sj
Hubbard ‘ Heisenberg

* Example: La,CuQ, (parent compound of cuprates)

S=1/2 square lattice AntiFerromagnet
J = 1,000Kelvin; t,U =10,000 Kelvin

Neel temperature Tn~250Kelvin



Frustrated magnetism

 Even in the presence of quantum fluctuations, an antiferromagnetic
Heisenberg-like system often has “obviously” favorable classical magnetic
order pattern:

Ji



Frustrated magnetism

 Even in the presence of quantum fluctuations, an antiferromagnetic
Heisenberg-like system often has “obviously” favorable classical magnetic
order pattern:

Ji

* Geometric frustration = no “obviously” favorable order pattern:

Triangular Lattice: Kagome Lattice: Pyrochlore Lattice:




Absence of magnetic ordering at T207?
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* |f thereis such a system, what is the ground state?



Absence of magnetic ordering at T207?

e |f there is such a system, what is the ground state?

Consider spin-1/2 system:
(half-filled)

One possibility:
valence bond solid (VBS)

Non-magnetic ground state

But breaks translational symmetry

The unit cell is doubled = can be viewed as a trivial band insulator
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Is it possible to have a non-magnetic, fully symmetric ground states?
--- quantum spin liquid
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e |f there is such a system, what is the ground state?

Consider spin-1/2 system:
(half-filled)

Is it possible to have a non-magnetic, fully symmetric ground states?
--- quantum spin liquid

In one spatial dimension this is not surprising due to Mermin-Wigner
theorem.

In higher dimensions, in fact, spin liquids are guaranteed to be exotic phases.



Absence of magnetic ordering at T207?

e |f there is such a system, what is the ground state?

Consider spin-1/2 system:
(half-filled)

Is it possible to have a non-magnetic, fully symmetric ground states?
--- quantum spin liquid

In one spatial dimension this is not surprising due to Mermin-Wigner
theorem.

In higher dimensions, in fact, spin liquids are guaranteed to be exotic phases.

First of all, they are certainly NOT band insulators. (violate Luttinger’s
theorem)



In addition: A no-go theorem

* Hastings (2004)

Consider a translational symmetric (periodic boundary condition) spin-1/2
system in d-spatial dimensions with finite ranged interactions, with one spin
per unit cell.

Theorem: in such a system the ground state is separated from the first
excited state by an energy gap that vanishes in the thermodynamic limit:

E1-Eo <Log(L)/L, for a system of linear size L.
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Consider a translational symmetric (periodic boundary condition) spin-1/2
system in d-spatial dimensions with finite ranged interactions, with one spin
per unit cell.

Theorem: in such a system the ground state is separated from the first
excited state by an energy gap that vanishes in the thermodynamic limit:

E1-Eo <Log(L)/L, for a system of linear size L.

Interpretation:

If the ground state breaks symmetry, this is not surprising. (Goldstone
mode...)



In addition: A no-go theorem

* Hastings (2004)

Consider a translational symmetric (periodic boundary condition) spin-1/2
system in d-spatial dimensions with finite ranged interactions, with one spin
per unit cell.

Theorem: in such a system the ground state is separated from the first
excited state by an energy gap that vanishes in the thermodynamic limit:

E1-Eo <Log(L)/L, for a system of linear size L.

Interpretation:

However if the ground state is a spin liquid (no symmetry breaking), this
theorem indicates only two possibilities:

(1) Gapless QSL (2) Gapped QSL with degeneracy on torus
£ EA =
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Quantum spin liquid is a new state of matter

 Gapless QSL

What protects the gapless modes?

In conventional phases, the only two possible ways leading to gapless phases:
(1) Goldstone modes (free boson)

(2) Fermi liquid (free fermion)

But in gapless QSL, none of these mechanism holds.



Quantum spin liquid is a new state of matter

* Gapless QSL

What protects the gapless modes?

In conventional phases, the only two possible ways leading to gapless phases:
(1) Goldstone modes (free boson)

(2) Fermi liquid (free fermion)

But in gapless QSL, none of these mechanism holds.

 Gapped QSL

What is protecting the ground state degeneracy on torus?

In the absence of symmetry breaking, the only mechanism we know is:
Topological order (e.g., emergent gauge field...)
for example:
Laughlin’s nu=1/3 state has three-fold ground state deg. on torus.



Quantum spin liquid materials

* Inthe past decade, a few strong candidate materials are found:
(J>=100K, no magnetic order down to <=50mK)

* Spin-1/2 Triangular lattice near Mott transition
organic salts: --(BEDT-TTF)2Cu2(CN)3 (Kanoda’s group)
d-mit
--- gapless QSL with metallic-like thermal transport!

dmit organic salts

(Incomplete list)
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--- gapless QSL with metallic-like thermal transport!

Spin-1/2 Kagome lattice Heisenberg system
Herbertsmithite: ZnCu3(OH)6CI2 (Y. Lee’s group ...)
--- gapless or small gapped QSL

Herbertsmithite

Hyperkagome Iridate: Na4lr308 (Takagi’s group...)
--- gapless QSL?

Spin-1/2 Pyrochlore lattice quantum spin ice Yb2Ti207 (Ross et.al 2009...)
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Quantum spin liquid materials

* Inthe past decade, a few strong candidate materials are found:
(J>=100K, no magnetic order down to <=50mK)

Spin-1/2 Triangular lattice near Mott transition
organic salts: --(BEDT-TTF)2Cu2(CN)3 (Kanoda’s group)

d-mit dmit organic salts
--- gapless QSL with metallic-like thermal transport!
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Herbertsmithite

e Spin-1/2 Kagome lattice Heisenberg system
Herbertsmithite: ZnCu3(OH)6CI2 (Y. Lee’s group ...)
--- gapless or small gapped QSL

 Hyperkagome Iridate: Na4lr308 (Takagi’s group ...)
--- gapless QSL?

Spin-1/2 Pyrochlore lattice quantum spin ice Yb2Ti207 (Ross et.al 2009...)

(Incomplete list)



How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction
helps a lot!

e Can we write down a QSL wavefunction?

Let’s consider triangular spin-1/2 lattice as an example.

-
ST/" 2

VAVAVAVAV.

AN ANAN




How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction
helps a lot! S -

.
v

e Can we write down a QSL wavefunction? %
N

The usual way of writing down a spin wavefunction: /\/VW

\/Ll/>: \SI)SZ)----— SI\/> CATATATANT

Intrinsically biased towards magnetic order.




How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction
helps a lot!

Si== )
N N
WA\

e Can we write down a QSL wavefunction? Y

The parton construction: (Schwinger-boson method) W
LA A /AN /\ ]

(1) Enlarge hilbert space:

Split the spin in to partons:
-_ N
) t ( ) :
Sy = = by a (O A3 En(o’
ol=N, ¥, bip, biv. SFTn-li boSONS .

(Auerbach, Arovas, Read, Sachdev...)



How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction
helps a lot! -

Si==

VAVAVAVAV
e Can we write down a QSL wavefunction? AW
The parton construction: (Schwinger-boson method) W

LA A /AN /\ ]

(1) Enlarge hilbert space:

Split the spin in to partons:

§¢ = = by’ (—0%301(3 bf@
ij?}caf %: Enlazljd Vel

4+ & A e AR
Uun Fky < T(‘aﬂ

(Auerbach, Arovas, Read, Sachdev...)



How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction

|
helps a lot! S=k -
VAVAVAVAY/
e Can we write down a QSL wavefunction? AW
The parton construction: (Schwinger-boson method) W
LA AN\ /AN /\ |

(1) Enlarge hilbert space:

Split the spin in to partons:
— — N\
1 1t ( ) \
S@ - = o, 2 O A3 El@

Why would we do this?

--- Similar to the AKLT-model, these auxillary Schwinger-bosons
helps us to compactly writing down an interesting wavefunction.

(Auerbach, Arovas, Read, Sachdev...)



How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction
helps a lot!

Si=
N
\J

2
2

e Can we write down a QSL wavefunction? NV

The parton construction: (Schwinger-boson method) W
LA A /AN /\ ]

(1) Enlarge hilbert space:
N ¢ A L
Split the spin in to partons: S; = = bad(‘y)&(! B.@

(2) Write down a spin-rotation sym. boson mean-field state:

HMF - 5 B‘A' bia b\jd T % A\d,(b-:& JT(?, Z&@ ‘HLC)
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How to describe a QSL?

* In history, we know that explicitly writing down the wavefunction
helps a lot!

‘ _
Si==

.
WAV

e Can we write down a QSL wavefunction? NV

The parton construction: (Schwinger-boson method) W
LA A /AN /\ ]

(1) Enlarge hilbert space: o (_\

t .
Split the spin in to partons: S; = = bia 0)4(4 B.@

(2) Write down a spin-rotation sym. boson mean-field state:
Huwe = % Bij bia b\ja. + % A\'J.(b..!a.‘gp s +l\.c)

2 &S
(3) Project mean-field state back to physical hilbert space:

Spiny = P l6Sh P PR



Quantum Spin liquid wavefunction

o

§lr = ‘;.— b:d (G‘)‘{@ LEF HMF" :2 B!& bi:\bjd + 2 A\d'.(b}tg i ide"‘)l.C)
= &S A

lSPTn> = P(_:‘_, ,&£>MF Pe-, PY‘Dl)eC‘leVI AW

* To respect lattice space group symmetry, Aij/Bij cannot be
chosen arbitrarily. (will come back on this shortly)

Intuition—> | Aij| all same, |Bij| all same for NN bonds.

But what about the U(1) phases? (will come back.)



Quantum Spin liquid wavefunction
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* To respect lattice space group symmetry, Aij/Bij cannot be
chosen arbitrarily. (will come back on this shortly)

* Imagine using |spin> as variational wavefunction for some model.
Energetically:

Does the optimal \ &GS, mr have Schwinger boson condensation ?



Quantum Spin liquid wavefunction

§l¢ = ‘;.— b:& (‘?)‘(ﬁ bf@ HMF= :2 B!é' b?o\bjd + 2 A!d'.(b}t.l i 2*"‘)\&)

2 (&S ;="‘z-_
lSPTn> = P(_:‘_, l&§7MF Pe-, Pr‘Dl)e(l‘leVl /\W

* To respect lattice space group symmetry, Aij/Bij cannot be
chosen arbitrarily. (will come back on this shortly)

* Imagine using |spin> as variational wavefunction for some model.
Energetically:

Does the optimal \ GS). mr have Schwinger boson condensation ?

If YES: magnetically ordered state If NO: gapped QSL state!



Quantum Spin liquid wavefunction

o= L@ =z Bpbk + 2 Al et
= lﬁs>ﬂll'— S;'=‘Jz'_' -
VAVAVAVAY;
ny = rection AW
spin > = Ve l G< Pg-y projec S
5Py = R L6 XIERE

* To respect lattice space group symmetry, Aij/Bij cannot be
chosen arbitrarily. (will come back on this shortly)

* Imagine using |spin> as variational wavefunction for some model.
Energetically:

Does the optimal \ GTS>MF have Schwinger boson condensation ?

Let’s assume this for the moment —> @05 gapped QSL stat




Triangular lattice example

Si=%
* Aij term (singlet pairing) is favored by AF coupling. 7 }b ,
/\AD/V\/\>
For simplicity, let’s consider a mean-field state y
o

setting Bij=0.

What’s the condition for Aij such that lattice symmetry is respected?



Triangular lattice example

St.="7:
* Aijterm (singlet pairing) is favored by AF coupling. VAN
/\AD/W\>
For simplicity, let’s consider a mean-field state y
S e
setting Bij=0.

What’s the condition for Aij such that lattice symmetry is respected?
Note:
Pz (birbie ~bib w
—A‘()'( baf’\‘ blnl/ —b\) )’M\B
= o= — AT A is d chiond]
= A'(} — \jT ( A s dire ,)

Naively = Aij always break lattice symmetry?!



The gauge structure of QSL wavefunction

|spiny> = Pa- [6G<he P PPN b

e Although | GS>wmr breaks lattice symmetry,
| spin> may restore it.

Con5|der two MF states:
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The gauge structure of QSL wavefunction

|spiny> = Pa- [6G<he P PPN b

e Although | GS>wmr breaks lattice symmetry,
| spin> may restore it.

on5|der two MF states:

HIV\\—~ ({A‘b)S) — Z A‘A«(‘Ow( b\)@ zo@‘\"h C)
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The gauge structure of QSL wavefunction

|spiny> = Pa- [6G<he P PPN b

e Although | GS>wmr breaks lattice symmetry,
| spin> may restore it.

Con5|der two MF states:

HIV\\—~ ({A‘b)S) — z()’ A‘A«(‘Ow( b\)@ zo@‘\"h C)

5 T AR R Al CIBlbl '0‘)}3
H ({A'é’e k}) )( ’ +kcJ% f
ﬁ
)l ome
\SPm = SFIV\ > [Q %1 phase



The gauge structure of QSL wavefunction

[yl |spin(f Ayetiti}))
(Rbe| Hhy same %MWHTAW\ statfe |

 Many to one labeling --- the definition of gauge theory.
(gauge “symmetry” is NOT physical symmetry)
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[yl |spin(f Ayetiti}))
(Rbe| Hhy same %MWHTAW\ statfe |

 Many to one labeling --- the definition of gauge theory.
(gauge “symmetry” is NOT physical symmetry)

e This U(1) gauge redundancy can be seen in the parton

construction: N )
S, =+ by (G)A@ big



The gauge structure of QSL wavefunction

[yl |spin(f Ayetiti}))
(Rbe| Hhy same %MWHTAW\ statfe |

 Many to one labeling --- the definition of gauge theory.
(gauge “symmetry” is NOT physical symmetry)

e This U(1) gauge redundancy can be seen in the parton
construction: — )
- 1 |t :
S[, =z b;p{(‘y)dg b.p

* Imagine we use |spin(Aij)> as variational wavefunctions,
The effective Hamiltonion must be U(1) gauge invariant.

HCAGY) = H (T A5e®% ) )



The gauge structure of QSL wavefunction

[yl |spin(f Ayetiti}))
(Rbe| Hhy same %MWHTAW\ statfe |

The spin state |S lY\{ > respects lattice symmetry g as long as:
P

(Wen, 2002, Wang & Vishwanath 2006)



The gauge structure of QSL wavefunction

[yl |spin(f Ayetiti}))
(Rbe| Hhy same %MWHTAW\ statfe |

The spin state |S lY\{ > respects lattice symmetry g as long as:
P

(Wen, 2002, Wang & Vishwanath 2006)



Examples:

On triangular lattice, the following Aij patterns respect lattice
symmetry: (Sachdev 1992, Wang, Vishwanath, 2006)

(Aij are all real positive)

A > >
- >
-
" !
> =
0
“Zero-flux state” “pi-flux state”

Both states can describe QSL.



Examples:

On triangular lattice, the following Aij patterns respect lattice
symmetry: (Sachdev 1992, Wang, Vishwanath, 2006)

(Aij are all real positive)

> >
O

“Zero-flux state” “pi-flux state”

Both states can describe QSL.

Are these two states different?
(will come back to this shortly)



Low energy excitations?



Low energy excitations

* Higgs mechanism:
The non-zero Aij breaks U(1) gauge redundancy down to Z2:

3
A
AB/ \ > considor
\ —>— 2 N
Az, P‘ = A)g AS’z Az\

OMQQ ‘bm'/\SjﬂWVl‘l'wn P\ —s PI QTZQ,

Gauge charge-2 object P1 is non-zero.
--- charge-2 Higgs mechanism, just like in a superconductor



Low energy excitations

* Higgs mechanism:
The non-zero Aij breaks U(1) gauge redundancy down to Z2:

A
AB/ \ > considor

Aa, P\ = Alg A?Z A)_\
SMQQ ‘bm'/\SjﬂWVl‘l'wn P\ —s PI QTZQ,

Gauge charge-2 object P1 is non-zero.

--- charge-2 Higgs mechanism, just like in a superconductor

* Low energy excitations:

gauge charge-1: Schwinger boson(spinon) + pi-gauge-flux: vison



Summary of discussion so far

By attempting to construct symmetric QSL, we are forced to
consider the gauge structure of wavefunctions.

On triangular lattice, the states we discussed has emergent 72
gauge dynamics. (gapped QSL) “n
\
gauge charge: spin-1/2 boson (spinon) Vigon < i
o
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pi-gauge flux (VISOI’]) These are anyons!
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Summary of discussion so far

* By attempting to construct symmetric QSL, we are forced to
consider the gauge structure of wavefunctions.

 On triangular lattice, the states we discussed has emergent 72
gauge dynamics. (gapped QSL) “n
gauge charge: spin-1/2 boson (spinon) Vigon Q\ L
pi-gauge flux (ViSOh) These are anyons! &
§]>TIIM
This is striking: another example of symmetry fractionalization.
Physical spectrum only contains integer spin excitations,

but quasiparticle (gauge charge) can be spin-1/2.

(Fractionalization of spin-rotation symmetry.)



Summary of discussion so far

* By attempting to construct symmetric QSL, we are forced to
consider the gauge structure of wavefunctions.

 On triangular lattice, the states we discussed has emergent 72
gauge dynamics. (gapped QSL) “n
gauge charge: spin-1/2 boson (spinon) Vigon Q\ L
pi-gauge flux (ViSOh) These are anyons! &
§]>TIIM
This is striking: another example of symmetry fractionalization.
Physical spectrum only contains integer spin excitations,

but quasiparticle (gauge charge) can be spin-1/2.

* Consistent with “no-go theorem”: QSL has to be exotic



Coming back: Examples:

* On triangular lattice, the following Aij patterns respect lattice
symmetry: (Sachdev 1992, Wang, Vishwanath, 2006)

(Aij are all real positive)

A > >
- >
-
" !
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“Zero-flux state” “pi-flux state”

Both states can describe QSL.

Are these two states different?



Coming back: Examples:

* On triangular lattice, the following Aij patterns respect lattice

symmetry: (Sachdev 1992, Wang, Vishwanath, 2006)

(Aij are all real positive)

\2
A > >
- >

-

" !

> > = -

o
“Zero-flux state” “pi-flux state”

They are different, no way to adiabatically connect.

Deep reason: These two states represent two inequivalent fractionalizations of lattice sym!

Spinons (gauge charge) can form projective representations of lattice symmetry.

In fact, also generally described by l_, Z(/ﬁﬁffe S‘&-, 2:.) (Wen, Hermele,...)



Energetics

* | was assuming that energetically optimal \5\-§>MF does not
have Schwinger-boson condensation.

* For triangular lattice spin-1/2 Heisenberg model, this is NOT true.

In fact the optimal state has boson condensation exactly describing
the 120-degree magnetic order:

/L 7\ )k/’** A \
B\ 8 /\ = /™

/1< AW >t\
R UER

Yol




Energetics

* | was assuming that energetically optimal \6\'§>MF does not
have Schwinger-boson condensation.

e But for Kagome spin-1/2 J1-J2 Heisenberg model, the optimal
state is found to be fully gapped QSL .

(Tay, Motrunich 2011)

* L L 4 * * * L 4 L

[ L ] L] L - S

* L - L * * * *
L4 L ]
* * L 3 * * * L 3 L g
L ] © L ]

e e e e o o o o - -

(a) q = 0 SB ansatz

(Sachdev 1992, Wang & Vishwanath 2006)



Kagome spin-1/2 system

 For NN only Heisenberg interaction:

Some numerical works (incomplete list): Il LA WA
Series expansion: VBS (Singh, Huse, 2008) - . . .

* * * * ® * L L 4

MERA: VBS (Evenbly, Vidal, 2010)
DMRG: gapped QSL (Yan, Huse, White 2011.....)

Variational Monte Carlo: U(1)-Dirac gapless QSL

(YR, Hermele, Lee, Wen Igbal, Poilblanc, Becca,.....



Experiment signatures of QSL?

* Apart from no magnetic ordering:
(1) If gapless = metallic thermal transport in an insulator

(2) If gapped, more difficult to prove by usual probes.

But at least spin excitations should form continuum without
quasiparticle peaks.



* Spin-1/2 Kagome lattice Heisenberg system
Herbertsmithite: ZnCu3(OH)6CI2

J~200K, no ordering down to 50mK,
* Experiments support gapless QSL:

Herbertsmithite

e.g, Han et.al, 2012: Inelastic neutron scattering.

'Lh(ointegrated '
_over 1to 9 meV

A central question for classification of the ground state of herbert- t
smithite is whether a spin gap exists. One surprising aspect of our data Zn & 7\
is that the spin excitations seem to be gapless over a wide range of Q
positions, at least down to /i = 0.25 meV. This observation is difficult



Summary

* In frustrated magnets, QSLs may be realized as ground states.

* By constructing QSL wavefunctions, we are forced to realize:
QSL hosts emergent gauge dynamics.

 Gapped QSL is “topologically ordered”.
topological dynamical excitations: gauge charge/flux (anyons)

* Symmetry fractionalization occurs for gauge charge/flux
excitations:

local symmetries (spin rotation),
and spatial symmetries (lattice symmetry).



 Thank youl!



