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Two lessons from previous lecture:

1.  Superconductivity develops even when fermionic self-energy diverges

2. Superconducting Tc saturates at a finite value when wD vanishes



Are phonons always responsible 
for superconductivity?



New era began in 1986: cuprates

Alex Muller and Georg Bednortz

Nobel prize, 1987 

1986

Phonon superconductors



New breakthrough in 2008: Fe-pnictides

Hideo Hosono, TITech43K Tc ,FO SmFeAs
26K Tc  ,FLaFeAsO
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Cao et al, 
Nature (2018)

Twisted bilayer graphene, Bernal bilayer graphene…



Heavy fermion materials  and their likes

Ruthenates

Titanates

Nickelades

Kagome materials      

Irridates, Kitaev materials      

Superconductivity in  other materials

+ ...



Tc=39 K Akimitsu et al (2001)

MgB2:  A phonon Superconductor at 40 K

Is only high Tc relevant?  No 

Superconductors with highest Tc are electron-phonon ones
under high pressure:

hydrogen sulfide (H3S): Tc =203K, La and Y-hydrates:Tc =250K



In Cuprates, Fe-pnictides,  as well as in
Ruthenates (Sr2RuO4) ,  Titanates (SrTiO3 ..)
Heavy fermion materials (CeIn5, UPl3, CePd2Si2 ….),
Organic superconductors ((BEDT-TTF)2-Cu[N(CN)2]Br…)
…
electron-phonon interaction most likely is NOT responsible
for the pairing, either by symmetry reasons, or because it is 
just too weak  (Tc would be 1K in Fe-pnictides)

If so, then the pairing must somehow come from
electron-electron  interaction 

Then what is  relevant?  



Heavy fermion
antiferromagnet

Fe-based
Cuprates

Heavy fermion ferromagnet

In many systems, superconductivity occurs near
a point where charge or spin order is about to emerge



Vanishing Rxx

Superconduc*vity near an onset of  one of the  ordered states
in biased Bernal bilayer graphene

Zhou,  Young et al, Science (2022)



Near every electronic instability, one can identify a soft boson   
(the one which will condense on the other side of the transition)

and treat electron-electron interaction as mediated by a soft boson 

Phonons were selected by BCS/Eliashberg for a      
reason: electron-electron interaction
(screened Coulomb interaction ) is repulsive.  

Not so fast….

Examples: ferro/anti-ferro magnetic fluctuations near a spin order, 
nematic fluctuations near an order breaking lattice rotation …



Screened Coulomb potential 

U(r)

distance, r

At large distances,  screened Coulomb interaction oscillates an 
occasionally becomes over-screened    [U(r) = cos (2kFr)/r3] 

Friedel oscillations

Landau   Pitaevskii

P.W. Anderson 
(with Morel)

Kohn        Luttinger



This often selects non-s-wave superconductivity:
p-wave pairing by ferromagnetic  fluctuations, 
d-wave pairing by antiferromagnetic fluctuations, 

s+- pairing by stripe magnetic fluctuations and so on 

However,  once this is taken into consideration, one ends up
with the dynamical pairing, similar to electron-phonon case.

Oscillations increase as the system approaches
a non-superconducting instability



There is a difference, though: there is only one velocity
for collective mode-mediated pairing  – the Fermi velocity.

At a first glance, one cannot then treat bosons as slow compared
to fermions, as we did in Eliashberg theory for el-ph interaction.

At a second glance,  collective bosons are actually slow because
they  are Landau overdamped.  Then Eliashberg-type treatment
is possible, but bosonic polarization must be included.

None. Vertex corrections are generally of order one, 
but in most cases are very small numerically.

Which parameter controls vertex corrections?



There is another difference, which acts  “in favor” of 
pairing mediated by overdamped collective modes.  

The spectrum of collective excitations generally has strong 
momentum dependence

q
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Near a ferromagnetic 
or a nematic transition

As a result, when bosonic mass vanishes, quasiparticle 
self-energy acquires a non-Fermi liquid form 

(S(w) \sim w2/3 at a nematic QCP in 2D),
but  does not diverge. Then one can do analysis right at the
critical point, without a fear of having to deal with divergencies.   

For el-phonon interaction, fermionic self-energy diverges
when Debye frequency vanishes.  One has to keep wD finite 



Ne

Ordered
state

pressure, field

The set: 

Consider a situation when a system of itinerant fermions
approaches an instability towards some electronic order  

There are three basic facts
about system behavior
in the vicinity of a QCP



xc

Non-Fermi 
liquid

Fermi liquid
Fermi 
liquid

High energies

Basic fact #1:  interaction, mediated by a 
gapless boson, destroys Fermi liquid behavior

Σ′(𝜔) ~ Σ′′(𝜔) ∝ 𝜔!/#



xc

Non-Fermi 
liquid

Fermi liquid
Fermi 
liquid

Basic fact #2:  the same interaction mediates pairing

Interaction,  mediated by a soft boson, gives rise
to an attraction in at least one pairing channel

(d-wave or s+- for  an AFM case,  p-wave for a FM case) 

Super-
conductivity

If there were no non-Fermi liquid,
there definitely would be
superconductivity at a QCP  



Pairing wants to make electrons coherent,
Non-Fermi liquid tends to keep them incoherent

Pairing non-FL

Basic fact #3: competition 

It is not clear a’priori that superconductivity out of 
a non-Fermi liquid actually develops



This competition is built into Eliashberg theory
(coupled equations for fermionic self-energy and pairing vertex)

Let’s apply Eliashberg theory to electronic mediated pairing

Let’s focus on system behavior right at a QCP
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cL (W)  is a propagator of collective excitations, 
integrated along the Fermi surface        

The equations are formally the same as in the el-phonon case 

Pairing 
vertex

Self-
energy

m
m m

m m

 ( ) ( )   
 ( )

F W
D W =W

W + S W
Superconducting gap

The term with wm=Wm is eliminated by the same reason as for el-phonon case 



Examples:

Near a nematic
transition in 2D 

q
|| qm

1  )(q,
m22

m W++
=W

a
c

-1/3
L m m m( ) (q, ) dq  ,  m 0

                                      

c cW = W µ W =ò

Near an AFM 
transition in 2D
(hot spot model)  
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P-A Lee, Bonesteel, McDonald, Nayak, Millis, Altshuler, Ioffe, Metlitski, Sachdev, Senthil, Berg, Klein
Kivelson, Fradkin, Oganesyan, Lederer, Fernandes, Trebst, Metzner, Pepin, Efetov, Maslov, Raghu…

Millis, Sachdev, Varma, Finkelstein, Schmalian, Metlitski, Sachdev, Y. Wang, Efetov, Pepin, Zaanen,  
Tremblay,  Berg, Fernandes, Tsvelik, S-S Lee, Di Castro, Castellani, Grilli, Caprara..(CDW), Georges…

Son, Raghu, Torroba, Senthil, Mross, Metlitski, Sachdev, Moon, Schmalian…. 

Anisotropic 
3D systems 𝜒!(Ω") = &𝜒(q,Ω") dq ∝ Ω"−𝑎 , a ≪ 1



I will combine all these cases into

cL (W) = (g/W)g

The g-model

and will keep g as a continuous parameter



For these models, 
the normal state is a non-Fermi liquid

S(wm) ~ (wm)1-g

Self-energy does not diverge  for g <1



Let’s solve  for Tc and check whether it is zero or finite. 
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Treat F as infinitesimally small, 
cL = (g/|Wm|)g,  S(Wm) ~ |Wm|1-g



Ask a computer

Tc

1

Ask a friend

Tc = g f(g)



Is this superconductivity associated 
with  the Cooper logarithm?



BCS:  interaction is frequency independent, 

The kernel is marginal, 
iterations yield  Cooper logarithms 

Φ (T) = 𝜋T λ ∑!
"($)
|!$|

+ Φ0

Φ(T)= Φ! 1 + 𝜆 log
𝑤0

T + 𝜆" log"
𝑤0

T +. . . =
Φ!

1 − 𝜆 log𝑤0
T

Pairing susceptibility  F(T)/F0 diverges at Tc ~ 𝑤0e-1/l

and is negative at smaller T

A way to detect Tc analytically (and check Cooper logs)
is to depart from the normal state

and analyze  the pairing susceptibility.
It should diverge at Tc and become negative at T <Tc 



Φ (Ω2) = 𝜋T (1−𝛾)∑345
6(3!)

|3!|1"#
8

|3!− 5!|#
8

1 9|3!/:|# + F0

interaction
c(W)~1/|W|g

self-energy
S(w) ~w1-g

1+ w/S(w)

At low frequencies, the kernel is marginal:
1-g (from S(w)) + g (from c(W))  =1,

perturbation theory contains logarithms, like in BCS,

Let’s  now depart  from a non-FL normal state (S(wm) ~ (wm)1-g )

0< g<1
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If we sum up logarithms, we get, even at T=0

No indication of pairing instability. 
Pairing susceptibility remains positive and finite at T=0.



You do not have a weak coupling limit
to justify logarithmic approximation

Did our best friend betray us?



Let’s then go beyond summing up the logarithms 
and look more carefully into the low-frequency region:

Φ (Ω) = 1−𝛾
! ∫d 𝜔 6(3)

|3<5|#|3|$4# + F0

The solution is a power-law F(W) ~|W|-a

The summation of the  logarithms gives a real a=1-g

The actual solution for any g has two complex exponents:
a = g/2 + i b and a = g/2 - i b 

Φ Ω = F0
|'|&/+

C( |Ω|)* + C(∗ |Ω|−i𝛽 ~ F0
|'|&/+

cos(𝛽 log | Ω|+ f)

H. Liu, McGrrevy, Vegh, Cortez et al, Zaanen, Klebanov et al, Tsvelik,
Torroba, Raghu, H. Wang,  Esterlis, Schmalian, Y. Wang, Sachdev, Patel…

Φ(Ω!)= Φ"
𝑔

|Ω!|

1− 𝛾



F(W)

W

( )i * -i
1 1/2

1 ( )    C  | | C  | |  
| |

b b
gF W = W + W

W
Φ Ω = Φ0 + 
positive  correctionsInconsistent

Perturbative expansion breaks down, and one
needs a finite F (w) (i.e., a finite pairing gap) to 
modify the low-frequency behavior and match

with the high-frequency one

Small W Large W

This is non-BCS pairing mechanism:
complex exponents instead of Cooper logarithm



Δ (𝑤") = 𝑤"
Φ (𝑤")

𝑤" + Σ(𝑤")

D(wm) Solution of the non-linear 
gap equation



Φ (Ω) = 1−𝛾
!= ∫d 𝜔 6(3)

|3<5|#|3|$4# + F0

One can see all this more clearly by extending  the
model to non-equal interactions in the particle-hole and 
particle-particle channels (rescale pp interaction by 1/N)

At N = Ncr, Φ Ω =
1

|Ω|'/-
1 + a 𝑙𝑜𝑔|Ω|

Complex 
exponents

Real 
exponents

SC state Normal state



Let’s connect pairing by collective modes
and el-phonon superconductivity

at  vanishing wD



For el-phonon case 𝜒#(Ω$) = @𝜒 q,Ω$ dq ∝ 1/Ω$2

cL (W) = (g/W)g g=2

g/(2p)

Karakozov et al, Marsiglio, Carbotte, Combescot; Metlitski et al, 
Mross et al; Y. Wang et al, Torroba et al, Y. Wu et al ….

Tc /g

Tc is non-zero for all g 0.18g



0<g<2

There are model systems for g>1: dispersion-less fermions
interacting with an Einstein phonon via a random 

Yukawa coupling (Yukawa SYK model)

Depending on the number of fermionic and bosonic flavors
Esterlis,  Schmalian, Y. Wang,  Classen… 



Dynamical vortices 



Let’s compare interaction on the Matsubara axis and 
on the real axis  

cL (Wm) = (g/|Wm|)g cL (W) = (g/|W|)g eipg/2 sgn W

Re cL (W) = (g/|W|)g cos(pg/2)

Im cL (W) = (g/|W|)g sin(pg/2) sgn (W)

Attractive for all g

attractive for g <1
repulsive for g >1

Matsubara axis Real axis

Real 
axis

vanishes at  g =2

At g=2, interaction is purely attractive on the Matsubara axis 
and purely repulsive on the real axis (el-ph. case at wD=0)

Carbotte, Marsiglio; R. Combescot



Solve the non-linear gap equation at T=0

(2-g) log[W/g]

Matsubara axis:  

D(
w
m
)/

g
Colors –

different g

A rather conventional behavior: 
• gap  function D(wm) tends to a finite value at w=0
• gap magnitude scales with g

Nothing special happens at g=2



Convert the gap equation onto the real axis and solve
Carbotte, Marsiglio, Combescot, 
Karakozov, Maksimov, Mikhailovsky1<g<2

On the Matsubara axis

Sign-preserving
solution

On the real axis

y (w)

D’ (w)

D’’ (w)

1/Wg

eipg/2/wg

Number of 2p phase slips
increases as g approaches 2

There appear 2p phase slips!



If there are m 2p phase slips on the real axis,
and the gap function is purely real on the
Matsubara axis, there must be m 2p vortices
in the upper frequency half-plane.

A dynamical vortex: a point in the upper frequency 
half-plane, where the  gap function vanishes.



y (w) y (w)

Phase Y(w) winds up by 2p around a vortex 

|D(wm)|

wm



As g increases, dynamical vortices 
penetrate into the upper half-plane, one-by-one

Real w (real axis)
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Plots of the phase y of the order parameter D eiy

g =1.8 g =1.84

g =1.91 g =1.946

Smaller g~1

Larger g->2



g=2.   Number of vortices becomes infinite,
and they penetrate up to infinite frequency. 

y(z)

z = w’+iw’’

The gap function develops an essential singularity at w = infinity

Log(|D(z)|)



There is more at g=2   

y(z)

z = w’+iw’’

Log(|D(z)|)

Zeros  of D (vortices)

Divergencies of D (anti-vortices)



1< g <2

The gap function is analytic in the upper half-plane of
z = w’ +i w’’  (as the physical function must be). 
Poles (anti-vortices)  are in the lower half-plane.

Pade approximants

vortices

anti-vortices

Vortices – zeros of D(z), z = w’ +i w’’
Anti-vortices – poles of D(z)



Vortices (zeros of D)

anti-vortices (poles of D)

As g increases towards 2
21

As the line of anti-vortices moves towards the real axis,
vortices are pushed into the upper ½ plane of frequency 

g



A highly non-trivial behavior of an el-phonon 
superconductor along real frequency axis in

the limit of vanishing wD

g<2

The density of states:

g=2

DO
S 

[a
.u

]

DOS = gapped continuum DOS = a set o bound states



Conclusions:

• Pairing out of a Non-FL is fundamentally different from BCS
Pairing develops in most cases,  but the reason  is 
complex exponents  rather than Cooper logarithms

• As the exponent g increases, dynamical vortices penetrate into
the upper ½ plane, one by one.

The g=2 model (el-phonon interaction at vanishing wD)
is a critical one: the number of vortices is infinite,

and there is an essential singularity at an infinite frequency. 



THANK YOU


