Superconductivity out of a hon-Fermi liquid

Andrey Chubukov

University of Minnesota

School on Superconductivity, Tallahassee, FL, January 8, 2024



Two lessons from previous lecture:

1. Superconductivity develops even when fermionic self-energy diverges

2. Superconducting Tc saturates at a finite value when wp vanishes



Are phonons always responsible
for superconductivity?



New era began in 1986: cuprates
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Fig. 1. Evolution of the superconductive transition temperature subsequent

to the discovery of the phenomenon.




New breakthrough in 2008: Fe-pnictides

LaFeAsO, F , Tc=26K
SmFeAsO, F ,Tc=43K
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Twisted bilayer graphene, Bernal bilayer graphene...
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Superconductivity in other materials

Heavy fermion materials and their likes

Ruthenates

Titanates
Nickelades

Kagome materials

Irridates, Kitaev materials

+ ...



Is only high Tc relevant? No

MgB,: A phonon Superconductor at 40 K

T.=39 K Akimitsu et al (2001)
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Superconductors with highest Tc are electron-phonon ones

under high pressure:
hydrogen sulfide (H3S): Tc =203K, La and Y-hydrates:Tc =250K



Then what is relevant?

In Cuprates, Fe-pnictides, as well as in

Ruthenates (Sr,RuQ,) , Titanates (SrTiO5 ..)

Heavy fermion materials (Celns, UPl5;, CePd,Si, ....),
Organic superconductors ((BEDT-TTF),-Cu[N(CN),]Br...)

electron-phonon interaction most likely is NOT responsible
for the pairing, either by symmetry reasons, or because it is
just too weak (Tc would be 1K in Fe-pnictides)

If so, then the pairing must somehow come from
electron-electron interaction




In many systems, superconductivity occurs near
a point where charge or spin order is about to emerge
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Superconductivity near an onset of one of the ordered states
in biased Bernal bilayer graphene
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Near every electronic instability, one can identify a soft boson

(the one which will condense on the other side of the transition)
and treat electron-electron interaction as mediated by a soft boson

Examples: ferro/anti-ferro magnetic fluctuations near a spin order,
nematic fluctuations near an order breaking lattice rotation ...

Phonons were selected by BCS/Eliashberg for a
reason: electron-electron interaction
(screened Coulomb interaction ) is repulsive.

Not so fast....
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At large distances, screened Coulomb interaction oscillates an
occasionally becomes over-screened [U(r) = cos (2kgr)/r3]



Oscillations increase as the system approaches
a non-superconducting instability

This often selects non-s-wave superconductivity:

p-wave pairing by ferromagnetic fluctuations,

d-wave pairing by antiferromagnetic fluctuations,
S+- pairing by stripe magnetic fluctuations and so on

However, once this is taken into consideration, one ends up
with the dynamical pairing, similar to electron-phonon case.



There is a difference, though: there is only one velocity
for collective mode-mediated pairing — the Fermi velocity.

At a first glance, one cannot then treat bosons as slow compared
to fermions, as we did in Eliashberg theory for el-ph interaction.

At a second glance, collective bosons are actually slow because

they are Landau overdamped. Then Eliashberg-type treatment
is possible, but bosonic polarization must be included.

Which parameter controls vertex corrections?

None. Vertex corrections are generally of order one,
but in most cases are very small numerically.




There is another difference, which acts "“in favor” of
pairing mediated by overdamped collective modes.

For el-phonon interaction, fermionic self-energy diverges
when Debye frequency vanishes. One has to keep oy finite

The spectrum of collective excitations generally has strong

momentum dependence ]
P x(q,Q2,)=

m? + q2 +a | o |
q
Near a ferromagnetic

or a nematic transition

As a result, when bosonic mass vanishes, quasiparticle
self-energy acquires a non-Fermi liquid form

(Z(w) \sim w??3 at a nematic QCP in 2D),
but does not diverge. Then one can do analysis right at the
critical point, without a fear of having to deal with divergencies.



The set:

T A Consider a situation when a system of itinerant fermions
approaches an instability towards some electronic order

There are three basic facts
about system behavior

in the vicinity of a QCP

doping
< ~

pressure, field




Basic fact #1: interaction, mediated by a

gapless boson, destroys Fermi liquid behavior
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Basic fact #2: the same interaction mediates pairing

T Interaction, mediated by a soft boson, gives rise
b o an attraction in at least one pairing channel

(d-wave-or c=- for an AFM cace  n-wave for 2 EM cace)

If there were no non-Fermi liquid,
there definitely would be
superconductivity at a QCP
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Basic fact #3: competition

Pairing

Pairing wants to make electrons coherent,
Non-Fermi liquid tends to keep them incoherent

It is not clear a’priori that superconductivity out of
a non-Fermi liquid actually develops



This competition is built into Eliashberg theory
(coupled equations for fermionic self-energy and pairing vertex)

Let’s apply Eliashberg theory to electronic mediated pairing

Let’s focus on system behavior right at a QCP



The equations are formally the same as in the el-phonon case

()
Pairing O(Q =17 TZMQ (a)mz) 2 /(@ —Q)
vertex \/(a)m + Z(a)m)) +d (Cf)m)
Self- 2(Q,)=xTY _ o +2(o) (0 —O)
energy o+ \/(Cf)m +3(@ ) + Do)
D (Q
Superconducting gap |A () =€, o +(ng§ )

v. (©2) is a propagator of collective excitations,
integrated along the Fermi surface

The term with ©,,=Q,

is eliminated by the same reason as for el-phonon case



Examples:
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I will combine all these cases into

XL (€2) = (9/<Y)

and will keep y as a continuous parameter

The y-model



For these models,
the normal state is a non-Fermi liquid

Z(0m) ~ (o)

Self-energy does not diverge fory <1



Let’s solve fo

r T. and check whether it is zero or finite.
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Is this superconductivity associated
with the Cooper logarithm?

www.shutterstock.com - 37885354



A way to detect Tc analytically (and check Cooper logs)
is to depart from the normal state
and analyze the pairing susceptibility.
It should diverge at Tc and become negative at T <Tc
BCS: interaction is frequency independent,

d(T
cD(T)=nTA2wﬁ+ @,

The kernel is marginal,
iterations yield Cooper logarithms

)
1 —Alog%

w w
B(T)= P, (1 +/110g?0 + 22 log2?0+...) =

Pairing susceptibility ®(T)/®,diverges at T, ~ w,e1/*
and is negative at smaller T



Let's now depart from a non-FL normal state (Z(w,) ~ (0,))
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No indication of pairing instability.
Pairing susceptibility remains positive and finite at T=0.




Did our best friend betray us?

You do not have a weak coupling limi
to justify logarithmic approximati



Let’s then go beyond summing up the logarithms
and look more carefully into the low-frequency region:
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Small Q

D (Q) =

1
|Q|y/2

(C, 1" +C] 1) Inconsistent

(O
A N

Large Q

d(Q) =Py +
positive corrections

Perturbative expansion breaks down, and one

needs a finite ® (o) (i.e., a finite pairing gap) to

modify the low-frequency behavior and match
with the high-frequency one

This is non-BCS pairing mechanism:

complex exponents instead of Cooper logarithm
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One can see all this more clearly by extending the
model to non-equal interactions in the particle-hole and
particle-particle channels (rescale pp interaction by 1/N)

1—y P(w)
() = — |dw + @
(1) oY lw—QfY ||t 7Y 0
25 S
T=0
20l o Ncr(V)
Real
15} \ [ &xponents
= .l\x
10} SC state \ Normal state
| complex ™
exponents
0 oz o4 o6 08 10
Y
ALN =N, | ©@= 750 +a logla)




Let’s connect pairing by collective modes
and el-phonon superconductivity
at vanishing op



For el-phonon case
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There are model systems for y>1: dispersion-less fermions
interacting with an Einstein phonon via a random
Yukawa coupling (Yukawa SYK model)

O<y<2

Depending on the number of fermionic and bosonic flavors

Esterlis, Schmalian, Y. Wang, Classen...



Dynamical vortices



Let's compare interaction on the Matsubara axis and
on the real axis

Matsubara axis Real axis

%L (Qm) = (9/19m )" L (Q) = (g/ Q) eim/2 sgn ©
Attractive for all y

attractive fory <1
Re v, (Q) =(g/|€])r cos(my/2) |repulsive for y >1

Real
axis _
Im . (€2) = (9/1€2)) sin(ny/2) sgn (€2)

vanishes at y =2

At y=2, interaction is purely attractive on the Matsubara axis
and purely repulsive on the real axis (el-ph. case at wp=0)

Carbotte, Marsiglio; R. Combescot



Matsubara axis:

Solve the non-linear gap equation at T=0
1.5
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A rather conventional behavior:
« gap function A(w,,) tends to a finite value at =0
e gap magnitude scales with g

Nothing special happens at y=2



Convert the gap equation onto the real axis and solve

1<y<2
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If there are m 2xn phase slips on the real axis,
and the gap function is purely real on the
Matsubara axis, there must be m 2x vortices
in the upper frequency half-plane.

A dynamical vortex: a point in the upper frequency
half-plane, where the gap function vanishes.
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Imaginary o (Matsubara axis)

As vy increases, dynamical vortices
penetrate into the upper half-plane, one-by-one
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y=2. Number of vortices becomes infinite,
and they penetrate up to infinite frequency.
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There is more at y=2
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Vortices — zeros of A(2), z = o' +i ®”

Anti-vortices — poles of A(z) Pade approximants
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The gap function is analytic in the upper half-plane of
z =00 +io” (as the physical function must be).
Poles (anti-vortices) are in the lower half-plane.



As vy increases towards 2

Vortices (zeros of A)
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As the line of anti-vortices moves towards the real axis,
vortices are pushed into the upper V2 plane of frequency



A highly non-trivial behavior of an el-phonon
superconductor along real frequency axis in
the limit of vanishing wp

The density of states:
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Conclusions:

« Pairing out of a Non-FL is fundamentally different from BCS

Pairing develops in most cases, but the reason is
complex exponents rather than Cooper logarithms

As the exponent y increases, dynamical vortices penetrate into
the upper V2 plane, one by one.

The y=2 model (el-phonon interaction at vanishing wp)
is a critical one: the number of vortices is infinite,
and there is an essential singularity at an infinite frequency.
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