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QMC: what is it good for?
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where N is the number of electrons in the system, and
⇢q = eiq·r̂ is the density operator in reciprocal space.
S(q) is directly related to the Coulomb interactions of
the system [32],

V =
1

(2⇡)D

Z
dq[S(q)� 1]v(q), (2)

where V is the Coulomb energy per particle, D is the di-
mension of the system, and v(q) is the Coulomb interac-

tion in reciprocal space. In two dimensions, v(q) = 2⇡e2

q .

S(q) is the integral of the dynamic structure factor over
frequency space S(q,!):

S(q) =

Z 1

0

d!

2⇡
S(q,!) =

h̄q2

2m

R1
0 d!S(q,!)

R1
0 d!!S(q,!)

. (3)

Here we have applied the f-sum rule for S(q,!). The
dynamic structure factor describes the dielectric response
of the system [19]. It can be directly measured through
inelastic X-ray scattering [20], and can also be computed
using RPA [19, 33].

The first-principles calculations were performed as fol-
lows. DFT calculations were first performed using the
CRYSTAL package [34] with Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functional [35]. The sim-
ulations were performed on a 16⇥ 16 supercell including
512 atoms. Burkatzki-Filippi-Dolg (BFD) pseudopoten-
tials [36, 37] were used to remove the core electrons. The
result of the DFT calculations is a set of Slater determi-
nants made of Kohn-Sham orbitals. A Jastrow correla-
tion factor was then added to these Slater determinants
as the trial wave functions for DMC calculations. DMC
calculations were performed using the QWalk package
[26] to obtain S(q). RPA calculations were performed
using the GPAW package [38, 39] to obtain S(q,!). The
Hubbard model was solved by auxiliary-field quantum
Monte Carlo method (AFQMC) using the QUEST pack-
age [40].

FIG. 1. Band structure of graphene, hydrogen and tight-
binding model (with hopping constant t = 2.7eV).

TABLE I. Systems/models investigated

system/model electrons method

Graphene (G): a=2.46 Å�1 � & ⇡ DMC, S-Ja, RPA
⇡-only graphene (G⇡)b ⇡ S-J

Hydrogen (H): a=2.46 Å�1 s DMC, RPA
Tight-binding (TB): t = 2.7 eVc ⇡ RPA

Hubbard: U/t = 1.6 ⇡ AFQMC
a
S-J: Variational Monte Carlo simulation using Slater-Jastrow

wavefunction.

b
The wave function is a Slater determinant of occupied ⇡
orbitals multiplied by an optimized Jastrow factor.

c
The value has been choosing to match the DFT band structure

at low energy.

In order to disentangle di↵erent contributions to S(!)
from ⇡ and � electrons in graphene, we compared S(q)
among the five systems listed in Tab. I. All systems have
similar low energy band structure but di↵er in the pres-
ence or absence of � electrons, and in the interaction
between electrons (Fig. 1). The s orbital of the hydrogen
lattice has almost the same dispersion as the ⇡ orbitals
in graphene [see Fig. 1], which provides a way to under-
stand the behavior of ⇡ electrons in graphene in the ab-
sence of � electrons while still retaining a 1/r interaction.
Graphene and hydrogen system are studied using DMC.
The tight-binding model is studied using RPA with 1/r
interactions. What is the tight-binding parameter? S(q)
is obtained by integration of S(q,!) according to Eq. (3).
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FIG. 2. S(q) of di↵erent systems obtained through di↵erent
methods. G: graphene; G⇡: ⇡ electrons only graphene; H:
hydrogen; TB: ⇡-band tight-binding model with 1/r interac-
tions; Hubbard: the Hubbard model with U/t = 1.6. Caption
should be |q|

Let us first consider the S(q) results for ab-initio

graphene, denoted by G in Fig 2. For comparison, we
have plotted S(q) of a non-interacting Slater determi-
nant of Kohn-Sham orbitals [G(Slater)] in that plot,
and that of a Slater-Jastrow wavefunction [G(S-J)]. Both
RPA and DMC results are very close to the experimental
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FIG. 4. (Color online) A slice through the ac plane of the three cuprates considered in this study. The column marked “tetragonal” denotes
the undistorted p4/mmm structure, while the A1g and B1g columns denote frozen phonon vibrations with each of these symmetries. Contour
lines are logarithmically spaced, with red denoting down-spin and blue up-spin. The projected positions of the atoms are denoted by filled
circles: Cu (yellow), O (red), Ca (magenta), and La (green).

experiments [12]. By calculating the expectation value of J (u)
on the phonon wave function for different atomic masses,
we find that the calculated isotope effect on J is negligibly
small, which is also observed in experiments [37]. Finally,
the magnetostructural coupling allows for the existence of
phonon side bands in the magnetic spectrum, which have been
observed [38,39].

In summary, the results presented here are twofold. The first
is that we have demonstrated that the base state of the cuprates
can be described accurately with a fully first-principles im-
plementation of quantum Monte Carlo techniques. Since this
method has no adjustable parameters, it is predictive and can
be used in searches for new exotic materials. In addition, since
we calculate rather than presuppose the electronic correlations,
the method can be used to study electron correlation on an even
footing with one-body effects. The second main result is that
the coupling between magnetism and the lattice is quite large.
For the B1g mode in La2CuO4, this is close to what one would
expect from a simple hopping theory. However, in the A1g

mode, the interlayer prevents the magnetostructural coupling
from occurring, mainly by shifting the phonon frequency up,
but also partially by disrupting the AFM exchange pathways.
This mechanism may explain why experiments show a shift
in the B1g mode but not the A1g mode upon entrance into the
superconducting state.

The results contained herein emphasize the importance of
treating the electron correlations explicitly and on an equal
footing with the one-body effects in a simulation of strongly
interacting systems like the cuprates. Even one-body proper-
ties such as delocalization are affected by electron correlation
and cannot be taken at face value from a DFT calculation.
The FN-DMC method, with modern techniques, is so far able
to cleanly connect the first-principles Hamiltonian to observed
phenomena in these materials, without artificially adding terms
to account for their strongly correlated nature. This new
capability in electronic structure calculations has tremendous
potential to provide a detailed microscopic description of the
physics of these challenging many-body systems.

We would like to acknowledge many useful conversations
with David Ceperley, Laura Greene, Jim Eckstein, Jeremy
Morales, and Brian Busemeyer. This material is based upon
work supported by the US Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Scientific Discovery through Advanced Computing (SciDAC)
program under Award No. DE-FG02- 288 12ER46875. We
gratefully acknowledge computer resources from the Blue
Waters friendly user period, a PRAC JMP award, and an
Illinois JPL award. P.A. was supported by DOE Grant No.
DE-FG02-06ER46285.

[1] G.-H. Gweon, T. Sasagawa, S. Y. Zhou, J. Graf, H. Takagi, D.-H.
Lee, and A. Lanzara, Nature 430, 187 (2004).

[2] D. J. Pringle, G. V. M. Williams, and J. L. Tallon, Phys. Rev. B
62, 12527 (2000).

[3] M. K. Crawford, M. N. Kunchur, W. E. Farneth, E. M. McCarron
III, and S. J. Poon, Phys. Rev. B 41, 282 (1990).

[4] O. Gunnarsson and O. Rsch, J. Phys.: Condens. Matter 20,
043201 (2008).

[5] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
[6] Z. P. Yin, A. Kutepov, and G. Kotliar, Phys. Rev. X 3, 021011

(2013).
[7] S. D. Conte, C. Giannetti, G. Coslovich, F. Cilento, D. Bossini,

T. Abebaw, F. Banfi, G. Ferrini, H. Eisaki, M. Greven et al.,
Science 335, 1600 (2012).

[8] W. E. Pickett, D. J. Singh, H. Krakauer, and R. E. Cohen, Science
255, 46 (1992).

125129-5

Cr

Mn

Fe

Co

Ni

Cu

(a) DFT-PBE0

F
M

C
ol

F
li
p

C
h
ec

k

U
n
p

B
ic

ol

Cr

Mn

Fe

Co

Ni

Cu

(b) DMC

0.0

0.1

0.2

0.3

0.4

0.5

E
n
er

gy
(e

V
/f

.u
.)

Ground states of 
magnetic systems
Narayan, Busemeyer, 
Wagner (in 
preparation)



Water on boron nitride
Wu, Aluru, Wagner 
J. Chem. Phys. 142, 234702 (2015), 144 
164118 (2016) 
Al-Hamdani, Ma, Alfè, Lilienfeld 
& Michaelides 
J. Chem. Phys. 142, 181101 (2015).

4

of the potential wells for different water orientations are
similar, while the depths of the potential well vary by less
than 10 meV. So putting the vdW center at point M is
appropriate, compared to putting the center at oxygen.
Shifting the center from oxygen is physical, given that the
ratio between the valence electrons of the two hydrogen
and those of the one oxygen is not close to zero. Shift-
ing the vdW center by 0.15 Å reduces implementation
difficulty, given that the virtual site of the TIP4P water
model is located at the same position. Any simulation
package that supports TIP4P water model supports the
parameters proposed here with no extra implementation
effort (as an example, the force field parameter file for
the GROMACS package is provided in the supplemen-
tary info). With the deviation minimized, it is appropri-
ate to consider one vdW site for water and simplify the
∆EvdW as

∆EvdW =
∑

i∈B

4ϵBM

[

(

σBM

riM

)12

−

(

σBM

riM

)6
]

+
∑

i∈N

4ϵNM

[

(

σNM

riM

)12

−

(

σNM

riM

)6
] (3)

where ϵBM, σBM, ϵNM, and σNM are the four parameters
to fit to the RPA data.
The parameters are obtained by fitting to the Boltz-

mann averaged vdW interaction energies among differ-
ent water orientations. The least squares fit was used.
The parameters are summarized in Table I. Also in-
cluded in the table are force field parameters from the
literature12,17,18 and the water models used in their work.
The quality of different parameters can be evaluated by
predicting properties using MD simulations and compar-
ing to experimental measurements.
Water contact angle on bulk hBN has been reported by

multiple experimental groups40–42 and rigorously studied
with minimal surface contamination40,43. The contact
angle values reported in experiments are in the range
of 40◦ to 55◦. The contact angle is then simulated using
MD following the procedure by Werder et al.44,45 (see the
Appendix “Simulating contact angle in MD” for details
on the simulation setup). The contact angle values for
nano-droplets obtained from MD, θ, are extrapolated to
that of macroscopic droplet, θ∞, as shown in Fig. 4(a),
following the modified Young’s equation, so that a direct
comparison between MD and experiments is possible:

cosθ = cosθ∞ −
τ

γLV
r−1
B (4)

where γLV is the water liquid-vapor surface tension, rB
is the droplet base radius, and τ is the line tension. The
comparison of contact angle values between MD and ex-
periments is shown in Fig. 4(b). The parameters ob-
tained using combinational rule by Won and Aluru12

slightly underestimate the contact angle, while the pa-
rameters obtained using combinational rule by Gordillo
and Mart́ı18 strongly underestimate the contact angle.

FIG. 4. (a) The contact angle, θ, of nano water droplets
on bulk hBN predicted by molecular dynamics (MD) simula-
tions. Three nano droplets composed of nw=2000, 4000, or
8000 water molecules are considered. An extrapolation of θ
to the contact angle of the macroscopic droplet (nw = ∞),
θ∞, is performed. (b) The binding energy between water and
hBN monolayer, Eb, and contact angle values predicted us-
ing water-hBN force field parameters developed by Won and
Aluru12, Gordillo and Mart́ı18 , Hilder et al.17 and from this
work. The side and top view of the configuration used in
simulations are shown in the inset figure.

The parameters developed by fitting to the DFT-D data
by Hilder et al.17 strongly underestimate the contact an-
gle since the DFT-D method overestimates the hBN-
water binding energy24. The parameters obtained by fit-
ting to the RPA data in this work, with no adjustable
parameter or no fit from experimental data, are able to
predict the water contact angle in excellent agreement
with experimental measurements. The agreement shows
that the multiscale approach in describing weak interac-
tions between molecules and solid, all the way from DMC
and coupled cluster, with approximations well controlled
in each level up, to accurately predicting macroscopic
properties, is a feasible path.

In summary, a combination of high-level theoretical
electronic structure approaches was used to study the in-
teraction between hBN and water. DMC was used to val-
idate RPA calculations. Then we used the RPA method
to compute the potential energy surface between hBN
and water. We developed force field parameters based
on the RPA data with no fitting to experiments. The pa-
rameters are able to predict water contact angle on hBN
in excellent agreement with experimental measurements.
The agreement shows that it is feasible to develop accu-
rate force field parameters from the hBN-water interac-
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FIG. 5: For each calculation (QMC, PBE, and PBE0): (Right) Total energies for 8 f.u. cell for various magnetic orderings,
as a function of volume, choosing experimental [10] values of zSe. (Left) Same as right, but choosing optimized values of zSe.
For the top QMC plots, energies are referenced to the collinear energy at around 77 Å3. The DFT calculations are referenced
to the zSe minimum energy for that type of calculation. The DMC paramagnetic energies are ⇠ 0.85 eV/f.u. higher than the
reference collinear energy.

as a function z

Se

and pressure. In FN-DMC and PBE0,
which would a priori be expected to be more accurate,
the collinear and bicollinear orders become degenerate
as a function of pressure for reasonable values of z

Se

.
According to FN-DMC, this e↵ect is robust against z

Se

variations, depending mainly on the change in the rela-
tive magnetic energies as a function of pressure.

The energetic cost of reversing a single spin in the
collinear ordered state, labeled “collinear, flip 1” in
Fig 5a, follows the bicollinear energy quite closely. Be-
cause this cost decreases with pressure, we can surmise
that magnetic fluctuations become more energetically
available as pressure is increased.

Optical excitations and magnetism

The direct optical gap was calculated by promoting the
highest energy orbital in the Slater determinant part of
the trial wavefunction to the next excited state orbital.
This constructs a wave function ansatz for an electron-
hole excitation. The results are shown in Fig 6. The re-
sulting DMC(PBE0) energy relative to the DMC(PBE0)
ground state is our estimation of the gap. Interest-
ingly, the DMC(PBE0) gap is within statistical uncer-
tainties of 0 despite the fact PBE0 estimates a rather
large gap, regardless of magnetic ordering. Experimen-
tally [55], the gap is no more than 80 meV at any k-point,
which is consistent with our results for the bicollinear and
collinear magnetic ordering. Only the checkerboard state
is gapped according to DMC(PBE0).

The charge degrees of freedom are therefore coupled to
the spin degrees of freedom. According to these calcula-



Fitting models

1027.5 1023.5 1019.5 1015.5
DMC Energy (eV)

1027.5

1023.5

1019.5

1015.5

Fi
tte

d 
En

er
gy

 (e
V)

t01 = 2.76(1)
U = 10.92(4)
V01 = 7.13(3)
V02 = 5.41(2)
V03 = 4.57

∆Emax=0.28
∆Erms=0.07

Fi
tte

d 
En

er
gy

 (e
V)

DMC

(e)

Figure 6. Comparison of input and fitted energies using the N-AIDMD procedure. The top panels (a)-(c) show the VMC results and the
bottom ones (d)-(f) show the DMC ones. (a)-(d) correspond to the on-site Hubbard model, (b)-(e) the long range Hubbard model and (c)-(f)
with additional third-nearest neighbor hopping.

(a) (b)

Figure 7. (a) Comparison of experimental energy gaps and reconstructed energy gaps of eigenstates, by solving the extended Hubbard model
or Parisier-Pople-Parr (PPP) model obtained using VMC, DMC and extrapolated parameters. (b) Comparison of experimental energy gaps for
different model Hamiltonians. All experimental values and associated errorbars are taken from Bursill et al. 60, who used these values to fit to
a PPP model with density-density interactions of the Ohno form (28).
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Figure 6. Comparison of input and fitted energies using the N-AIDMD procedure. The top panels (a)-(c) show the VMC results and the
bottom ones (d)-(f) show the DMC ones. (a)-(d) correspond to the on-site Hubbard model, (b)-(e) the long range Hubbard model and (c)-(f)
with additional third-nearest neighbor hopping.

(a) (b)

Figure 7. (a) Comparison of experimental energy gaps and reconstructed energy gaps of eigenstates, by solving the extended Hubbard model
or Parisier-Pople-Parr (PPP) model obtained using VMC, DMC and extrapolated parameters. (b) Comparison of experimental energy gaps for
different model Hamiltonians. All experimental values and associated errorbars are taken from Bursill et al. 60, who used these values to fit to
a PPP model with density-density interactions of the Ohno form (28).
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Starting up
Find 2-3 friends. You are now a group

git clone https://github.com/lkwagner/MagLabWinterSchool2017.git qmc_tutorial 
modify runqmc.py to point to your QWalk installation. 

if you want to run natively on Linux or Mac:
git clone https://github.com/QWalk/mainline qwalk 
cd qwalk/src 
make install  

sudo pip3 install seaborn matplotlib numpy pandas 

https://github.com/lkwagner/MagLabWinterSchool2017.git
https://github.com/QWalk/mainline


Approximate wave functions

�4 �2 0 2 4 6 8

Position (Bohr)

�1 �2

a(�1(r1)�2(r2) + �2(r1)�1(r2))

+b(�1(r1)�1(r2) + �2(r1)�2(r2))

For an up and down electron:

Limits: 
a=b: non-interacting 
b=0: no double occupancy



Non-interacting case

a(�1(r1)�2(r2) + �2(r1)�1(r2))

+b(�1(r1)�1(r2) + �2(r1)�2(r2))

a=b. 

This is the Hartree-Fock (RHF) result. 
The probability of finding two electrons on a given site 
is exactly 0.25



Why Jastrow?

�4 �2 0 2 4 6 8

Position (Bohr)

�1 �2 When the densities overlap  
a lot, then the electrons 
avoid each other on a much 
smaller scale. 

The Jastrow factor includes 
that kind of correlation.



Measurements

Total energy (Hartrees: ~27 eV) 

Double occupancy of atomic orbitals (2-RDM)  

Electron-electron radial distribution function



Wave function ansatz Comment

Restricted Hartree-Fock No electron correlation at all

Multiple Slater determinants Reduces double occupancies of 
orbitals

Multiple Slater-Jastrow Electrons also avoid one another 
at small distances

diffusion Monte Carlo Exact or nearly exact in this 
situation (everything else!)

File Purpose

runqmc.py Interface to QWalk

scan.py Run an ensemble of jobs -
> .pickles

plot.py, plot_gr.py, plot_double.py Plot scripts

hubbard.py Find best Hubbard model



Define the Hamiltonian
Define the Hamiltonian (qwsinglet1.0.hf)

SYSTEM { MOLECULE  
  NSPIN { 1  1 }  
  ATOM { H  1  COOR 0   0  0.0 } 
  ATOM { H  1  COOR 0   0  1.0 } 
}  

Position in Bohr

One up, one down

Atomic charge



Multiple slater determinant

TRIALFUNC {  
  SLATER 
  ORBITALS { 
  CUTOFF_MO 
    MAGNIFY 1 
    NMO 2 
    ORBFILE qwsinglet1.44.orb 
    INCLUDE qwsinglet1.44.basis 
    CENTERS { USEATOMS }  
  } 
  STATES { 1 2    2 1    1 1    2 2   }  
  CSF { 1.0 1.0 1.0 } 
  CSF{ 1.0 1.0 1.0 }  
  OPTIMIZE_DET 
} 

�1,�2

a(�1(r1)�2(r2) + �2(r1)�1(r2))

+b(�1(r1)�1(r2) + �2(r1)�2(r2))



Procedure: evaluate wave function

method { vmc nstep 1000   
  average { gr }  
  average { tbdm_basis  
    npoints 1 
    ORBITALS { CUTOFF_MO MAGNIFY 1 NMO 2  
               ORBFILE qwsinglet1.44.orb INCLUDE qwsinglet1.44.basis  
               CENTERS { USEATOMS }  
    } 
  } 
} 

Evaluate the wave function and average the radial 
distribution function and two body density matrix on the 
atomic basis.



Define Jastrow factorTRIALFUNC { slater-jastrow  
wf1 {  
  SLATER 
  ORBITALS { 
  CUTOFF_MO 
    MAGNIFY 1 
    NMO 2 
    ORBFILE qwsinglet1.44.orb 
    INCLUDE qwsinglet1.44.basis 
    CENTERS { USEATOMS }  
  } 
  STATES { 1 2    2 1    1 1    2 2   }  
  CSF { 1.0 1.0 1.0 } 
  CSF{ 1.0 1.0 1.0 }  
  OPTIMIZE_DET 

}  
wf2 {  

  JASTROW2 
  GROUP {  
    TWOBODY_SPIN {  
      FREEZE 
      LIKE_COEFFICIENTS { 0.25  0   }  
      UNLIKE_COEFFICIENTS { 0  0.5   }   
    }  
    EEBASIS { EE CUTOFF_CUSP GAMMA 24 CUSP 1 CUTOFF 7.5 } 
    EEBASIS { EE CUTOFF_CUSP GAMMA 24 CUSP 1 CUTOFF 7.5 } 
  } 
  GROUP {  
    ONEBODY { COEFFICIENTS { H 0. 0. 0. } }  
    TWOBODY { COEFFICIENTS { 0. 0. 0. }  }  
    EIBASIS { H POLYPADE RCUT 7.5 BETA0 -0.4 NFUNC 3 } 
    EEBASIS {  EE POLYPADE RCUT 7.5 BETA0 -0.02 NFUNC 3 } 
  } 
} 
} 

exp

2

4
X

i,↵

(onebody)X

k

ckak(ri↵) +
X

i,j

(twobody)X

k

ckbk(rij)

3

5

Define a’s and b’s



Optimize: 

method { LINEAR total_nstep 250 } 

method { vmc nstep 1000   
  average { gr }  
  average { tbdm_basis  
    npoints 1 
    ORBITALS { CUTOFF_MO MAGNIFY 1 NMO 2  
               ORBFILE qwsinglet1.44.orb INCLUDE qwsinglet1.44.basis  
               CENTERS { USEATOMS }  
    } 
  } 
} 

Optimize and then 
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Discussion questions

Where do the singlet and triplet state become degenerate for 
the different wave function ansatz? Why the differences? 

Where is the multiple slater without Jastrow good, and where is 
it poor? 

Why does DMC have the highest double occupancy in the 
singlet state around r=3 Bohr? 
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Why does RHF always 
result in zero effective U? 

Why does multiple Slater 
result in larger U values 
than when short-range 
correlation is included? 


