Twisted BSCCO flakes: Applications

M. Franz, January 2024

 \mathcal{T}

 d_{x-y}

1. Recap: Ginzburg-Landau theory for twisted *d*-wave bilayers

$$\mathcal{F}[\psi_1, \psi_2] = f_0[\psi_1] + f_0[\psi_2] + A |\psi_1|^2 |\psi_2|^2 + B(\psi_1\psi_2^* + c.c.) + C(\psi_1^2\psi_2^{*2} + c.c.)$$

d-wave symmetry dictates $B = -B_0 \cos(2\theta)$

Assuming $\psi_1 = \psi$, $\psi_2 = \psi e^{i\varphi}$ we obtain free energy as a function of the phase

 $\mathcal{F}(\varphi) = \mathcal{F}_0 + 2B_0 \psi^2 \left[-\cos(2\theta)\cos\varphi + \mathcal{K}\cos(2\varphi) \right]$

$$\mathscr{K} = C\psi^2/B_0$$

Applications: Majorana Fermions?

- Topological superconductors often host Majorana zero modes at vortices, corners, or other defects. Are there such zero modes in a $d_{x^2-y^2} + id_{xy}$ superconductor?
- Because of spin degeneracy Majorana zero modes are not expected to appear in a $d_{x^2-y^2} + id_{xy}$ superconductor.
- Can we think of a variant on the construction that could host Majoranas?

TOPOLOGICAL MATTER

Evidence for Majorana bound states in an iron-based superconductor

Dongfei Wang^{1,2*}, Lingyuan Kong^{1,2*}, Peng Fan^{1,2*}, Hui Chen¹, Shiyu Zhu^{1,2}, Wenyao Liu^{1,2}, Lu Cao^{1,2}, Yujie Sun^{1,3}, Shixuan Du^{1,3,4}, John Schneeloch⁵, Ruidan Zhong⁵, Genda Gu⁵, Liang Fu⁶, Hong Ding^{1,2,3,4}⁺, Hong-Jun Gao^{1,2,3,4}⁺

Majorana modes materialize

Condensed-matter physicists are steadily closing in on exotic excitations known as Majorana modes that could advance both fundamental science and quantum computing

Jason Alicea

TOPOLOGICAL MATTER

Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

Stevan Nadj-Perge,¹* Ilya K. Drozdov,¹* Jian Li,¹* Hua Chen,²* Sangjun Jeon,¹ Jungpil Seo,¹ Allan H. MacDonald,² B. Andrei Bernevig,¹ Ali Yazdani¹

Majorana idea 1: Twisted cuprate bilayer on top of a topological insulator Variation on the Fu-Kane construction

- Twisted cuprate bilayer supplies fully gapped high-T_c superconductivity
- TI surface provides the requisite spin-orbit coupling
- Will this setup host Majorana zero mode in the vortex?
- We solve the problem by an approximate analytic approach and exact numerical diagonalization
- Clear evidence for MZM boun

$$H = \begin{pmatrix} v\boldsymbol{\sigma} \cdot \boldsymbol{p} - \mu & \hat{\Delta} \\ \hat{\Delta}^{\dagger} & -v\boldsymbol{\sigma} \cdot \boldsymbol{p} + \mu \end{pmatrix} \qquad \qquad \begin{array}{c} \mu \chi_{\uparrow} \\ \mu \chi_{\downarrow} \end{array}$$

[Mercado, Sahoo and Franz, PRL 128, 137002 (2022).]

Majorana idea 2: Maximally twisted double-layer spin-triplet valley-singlet superconductors [Comm. Physics 6 (1), 47 (2023); arXiv:2206.05599]

- Rhombohedral trilayer graphene, Bernal bilayer graphene and ZrNCI are thought to be spin-triplet valley-singlet superconductors with f-wave order parameter.
- We consider a bilayer formed of such a STVS material close to \bullet 'maximal' twist angle of 30°.

[Zhou, Egan, Kush, Franz, Comm. Physics 6 (1), 47 (2023)]

- Gapped trivial SC (disconnected FS)

- For a range of electron density and twist angles the combined system forms a spontaneously T-broken phase with f + if' order parameter.
- This chiral phase exhibits non-Abelian topology: it hosts an odd number of chiral Majorana edge modes and a single Majorana zero mode in the vortex core.

Majorana idea 2: Maximally twisted double-layer spin-triplet valley-singlet superconductors [Comm. Physics 6 (1), 47 (2023); arXiv:2206.05599]

- 1. Odd number of chiral Majorana edge modes at the sample boundary
- 2. Unpaired Majorana zero modes bound to each vortex

Part 3: d-mon: Improved transmon qubit [PRL 132, 017002 (2024) with H. Patel, V. Pathak, O. Can, A. C. Potter]

- Nearly all superconducting quantum computers currently in operation rely on the 'transmon' qubit architecture
- Transmon stands for 'transmission line shunted plasma oscillation qubit' and is a variant on an earlier 'Cooper pair box' design which is a type of a charge qubit.
- This is to be contrasted with the flux qubit which is used in D-Wave quantum annealers.

Rigetti Aspen M5

Foxtail (2016)

Bristlecone (2017)

Sycamore (2018)

Another application: Improved transmon qubit [PRL 132, 017002 (2024)]

Brief Review: The original transmon qubit

• Transmon architecture was developed to overcome the "offset charge" problem of earlier qubit variants (e.g. Cooper pair box)

Transmon Schrodinger equation:

$$\left[4E_C\left(-i\frac{d}{d\varphi}-n_g\right)^2-E_J\cos\varphi\right]\psi(\varphi)=E\psi(\varphi),$$

- Here $E_C = e^2/2C$ is the charging energy
- $\hat{n} = -i\frac{u}{d\varphi}$ is the Cooper pair number operator
- n_g denotes the uncontrolled offset charge

Transmon Energy spectrum

$$\left[4E_C\left(-i\frac{d}{d\varphi}-n_g\right)^2-E_J\cos\varphi\right]\psi(\varphi)=E\psi(\varphi),$$

Transmon summary:

- Transmon qubit in the limit $E_J \gg E_C$ becomes insensitive to the offset charge fluctuations
- At the same time it exhibits robustness against other types of noise (e.g. flux).
- A distinct disadvantage is the weak anharmonicity of its energy spectrum that places limits on the maximum speed of operation.

d-mon: transmon with strong anharmonicity [[PRL 132, 017002 (2024)]

$$F[\psi_s, \psi_d] = F_s[\psi_s] + F_d[\psi_d] + A|\psi_s|^2|\psi_d|^2 + B(\psi_s\psi_d^* + \text{c.c.}) + C(\psi_s^2\psi_d^{*2} + \text{c.c.})$$

- When both superconductors respect the C₄ rotation symmetry then *B* must vanish.
- This is because under C₄ we have $\psi_s \to \psi_s$ but $\psi_d \to -\psi_d$.
- If the C₄ symmetry is weakly broken (as happens in BSCCO) then we expect small nonzero *B*.

d-mon Schrodinger equation:

$$\left[4E_C\left(-i\frac{d}{d\varphi}-n_g\right)^2+E_J\cos 2\varphi\right]\psi(\varphi)=E\psi(\varphi)$$

d-mon: origin of strong anharmonicity [[PRL 132, 017002 (2024)]

$$\left[4E_C\left(-i\frac{d}{d\varphi}-n_g\right)^2+E_J\cos 2\varphi\right]\psi(\varphi)=E\psi(\varphi)$$

- The potential can be approximated as two harmonic wells with equally spaced energy levels
- Because of the wavefunction these will be split into bonding/antibonding levels
- The resulting spectrum will generically exhibit a significant and tunable anharmonicity

Ψ_d **Split d-mon: a practical tunable qubit** [PRL 132, 017002 (2024)]

Koch et al., PHYSICAL REVIEW A **76**, 042319 (2007)

Split *d*-mon Schrodinger equation:

$$\left[4E_C\left(-i\frac{d}{d\varphi}-n_g\right)^2+E_J\cos 2\varphi+E_S\cos(\varphi-\phi_{\rm ex})\right]\psi(\varphi)=E\psi(\varphi),$$

$$\phi_{\rm ex} = 2\pi \Phi / \Phi_0 - \pi/2$$

$$\eta = \frac{E_S}{E_J} \ll 1$$

Split *d***-mon:** a practical tunable qubit

Split *d*-mon energy spectrum for $E_J/E_C = 32$

Achieves similar insensitivity to offset charge but also exhibits **tunable and potentially** large anharmonicity.

Split *d*-mon Schrodinger equation:

$$\left[4E_C\left(-i\frac{d}{d\varphi}-n_g\right)^2-E_J\cos 2\varphi+E_S\cos(\varphi-\phi_{\rm ex})\right]\psi(\varphi)=$$

(b)

s/d junction versus twisted d/d

Q: Can one use a twisted d/d junction to make a d-mon qubit?

A: In principle yes, but there is an issue of gapless quasiparticles in the bare dSC. Uncontrolled low-energy quasiparticles are detrimental for the qubit coherence, a.k.a. "quasiparticle poisoning".

By contrast, for a thin dSC flake, the s-wave substrate induces a proximity gap, hence removing the issue of low-energy quasiparticles.

Remarkably, as we show in PRL 132, 017002 (2024) this remains true even in the presence of a fluctuating relative phase — this is not apriori obvious and requires a subtle calculation.

Summary and outlook

- Natural models of coupled layers of *d*-wave SC predict a T-broken phase when the twist angle is close to 45°
- The resulting phase is fully gapped and over much of the phase diagram also topologically non-trivial
- Topological phase will show an even number of protected chiral edge modes
- Gap opening can be detected through various spectroscopies (ARPES, STM)
- T-breaking can be probed directly (polar Kerr effect, SC diode effect, fractional Shapiro steps)

Some interesting open questions:

- 1. What is the best way to observe the topological phase experimentally?
- 2. Are there any interesting uses for this novel topological superconducting phase once identified?
- 3. Are there other 2D systems (beyond graphene, chalcogenides, cuprates) that will produce interesting new behaviors under twist or similar geometries?

e experimentally?

