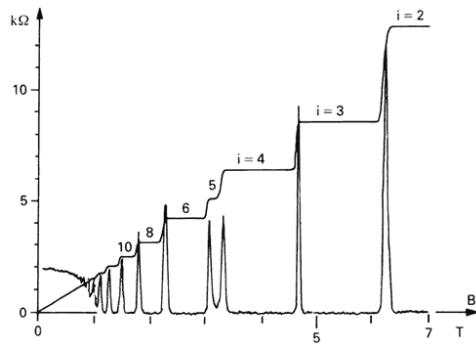
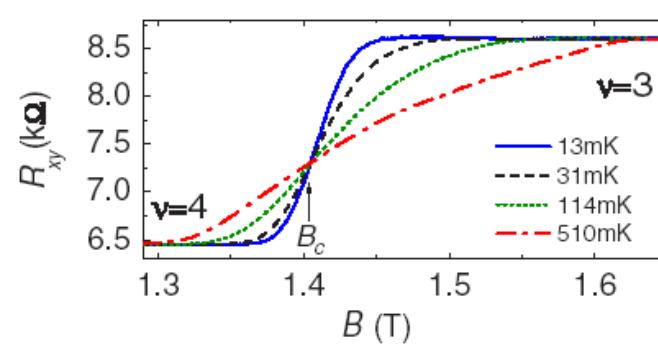
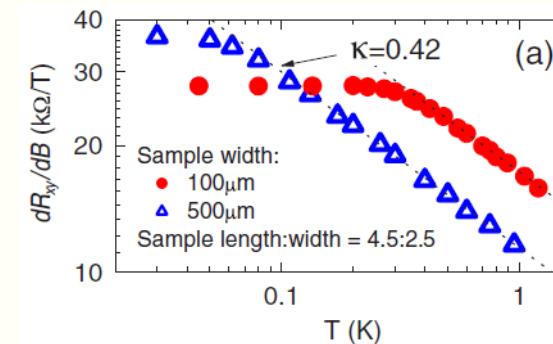
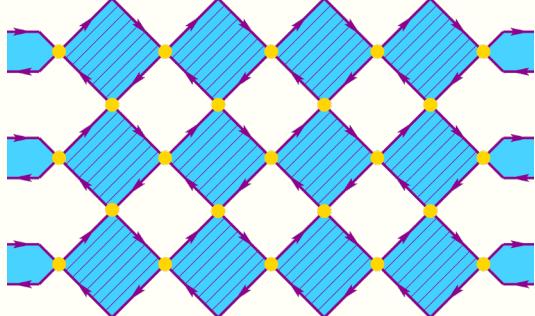
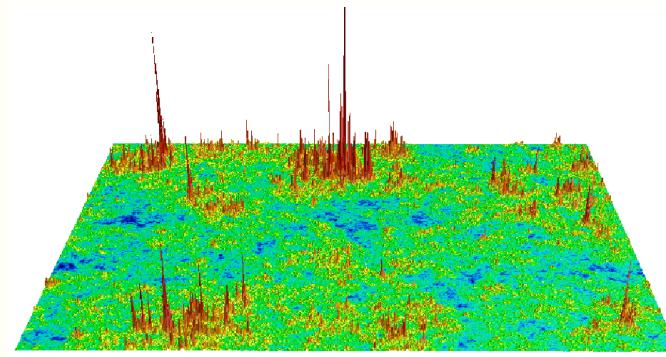
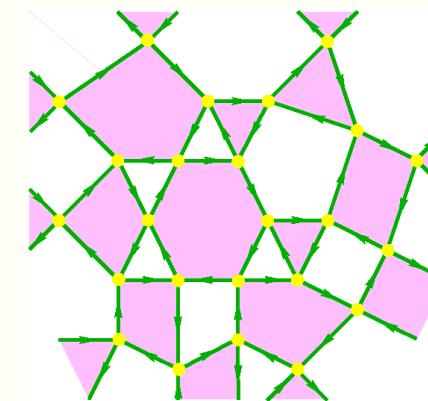


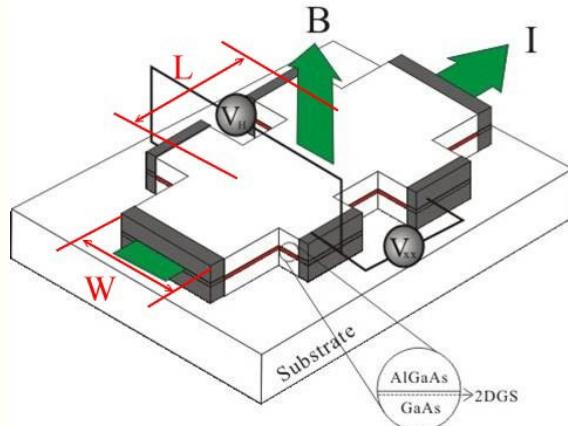
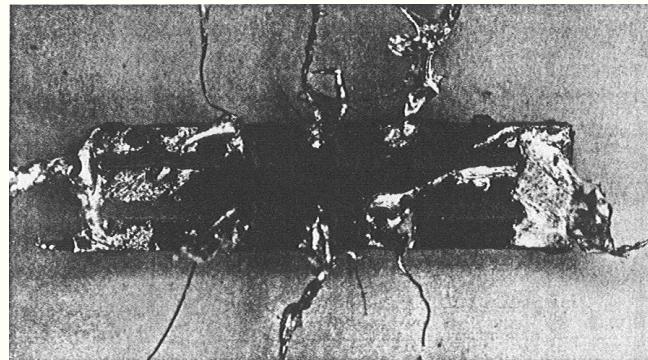
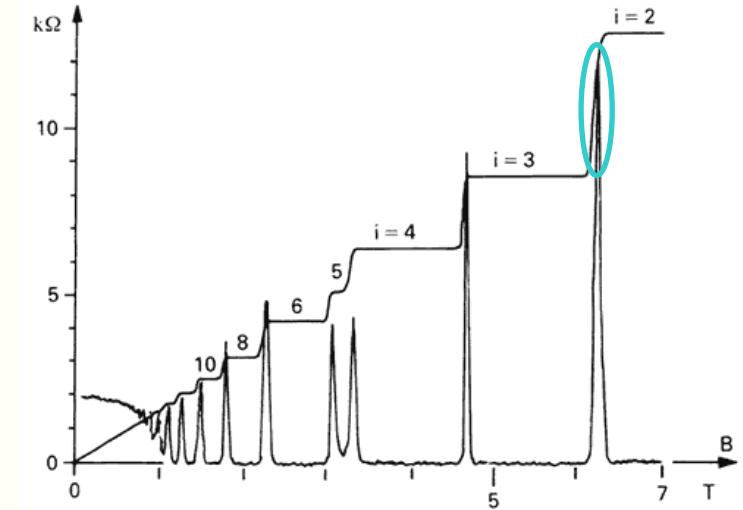
Quantum Hall transitions: history, recent developments, and challenges

Part I

Illya A. Gruzberg
The Ohio State University



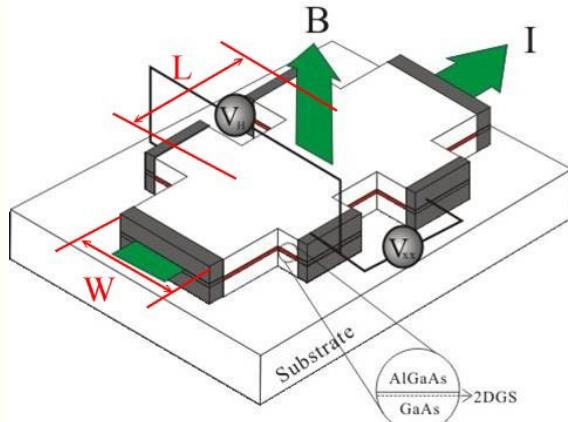
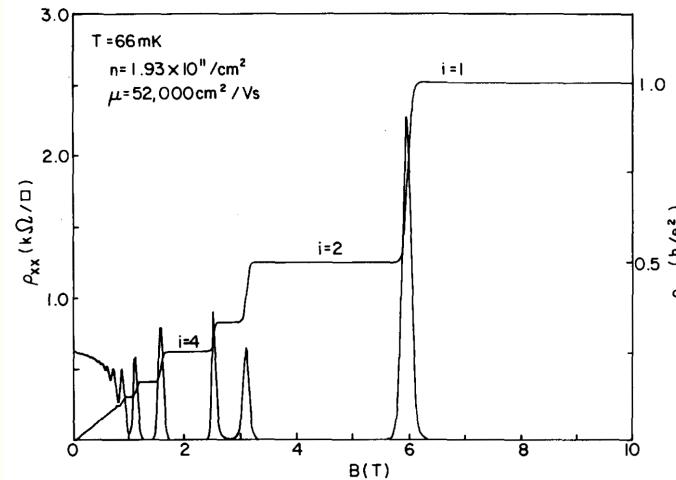
Quantum Hall effect



- 2D electron gas in strong magnetic field at low temperature
- Hall resistance (resistivity) shows quantized plateaus
- Universality: localization and topology
- Transitions between plateaus also show universal features

Quantum Hall experiments

- Experiments on low-mobility $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ heterostructures
 - Integer plateaus in the Hall resistivity and peaks in the longitudinal resistivity



H. P. Wei, unpublished

- The role of disorder
- Fundamental constants determine the “resistance quantum” or the von Klitzing constant
- Resistivity and resistance have the same units in 2D

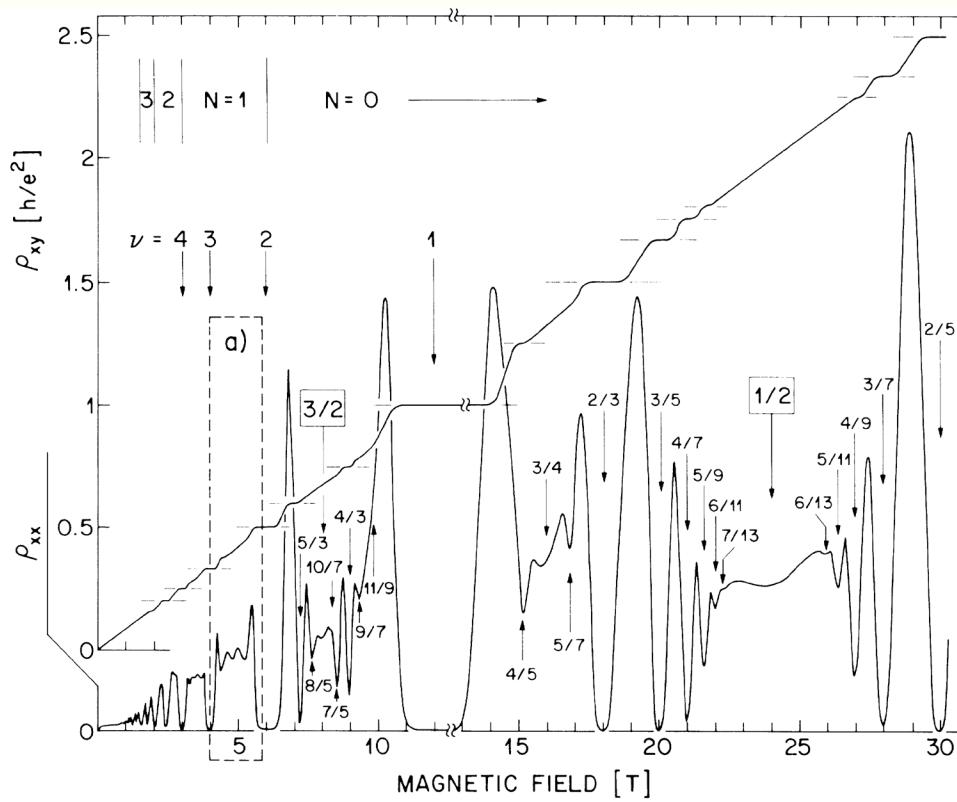
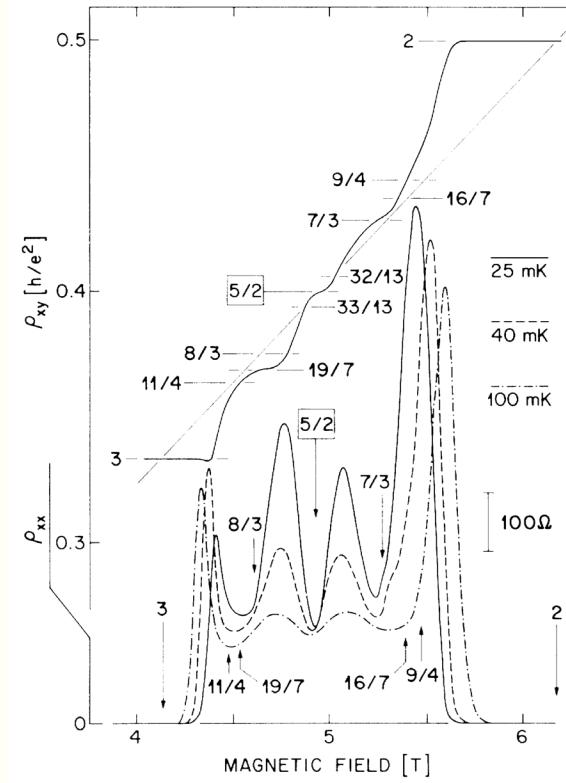
$$R_K = h/e^2 = 25\,812.80745\ldots\Omega$$

$$\rho_{xy} = \frac{1}{i} \frac{h}{e^2},$$

i – an integer

Quantum Hall experiments

- Experiments on high-mobility $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ heterostructures ($\mu = 1.3 \times 10^6 \frac{\text{cm}^2}{\text{V}\cdot\text{s}}$)
 - Fractional plateaus. Notice changes with temperature



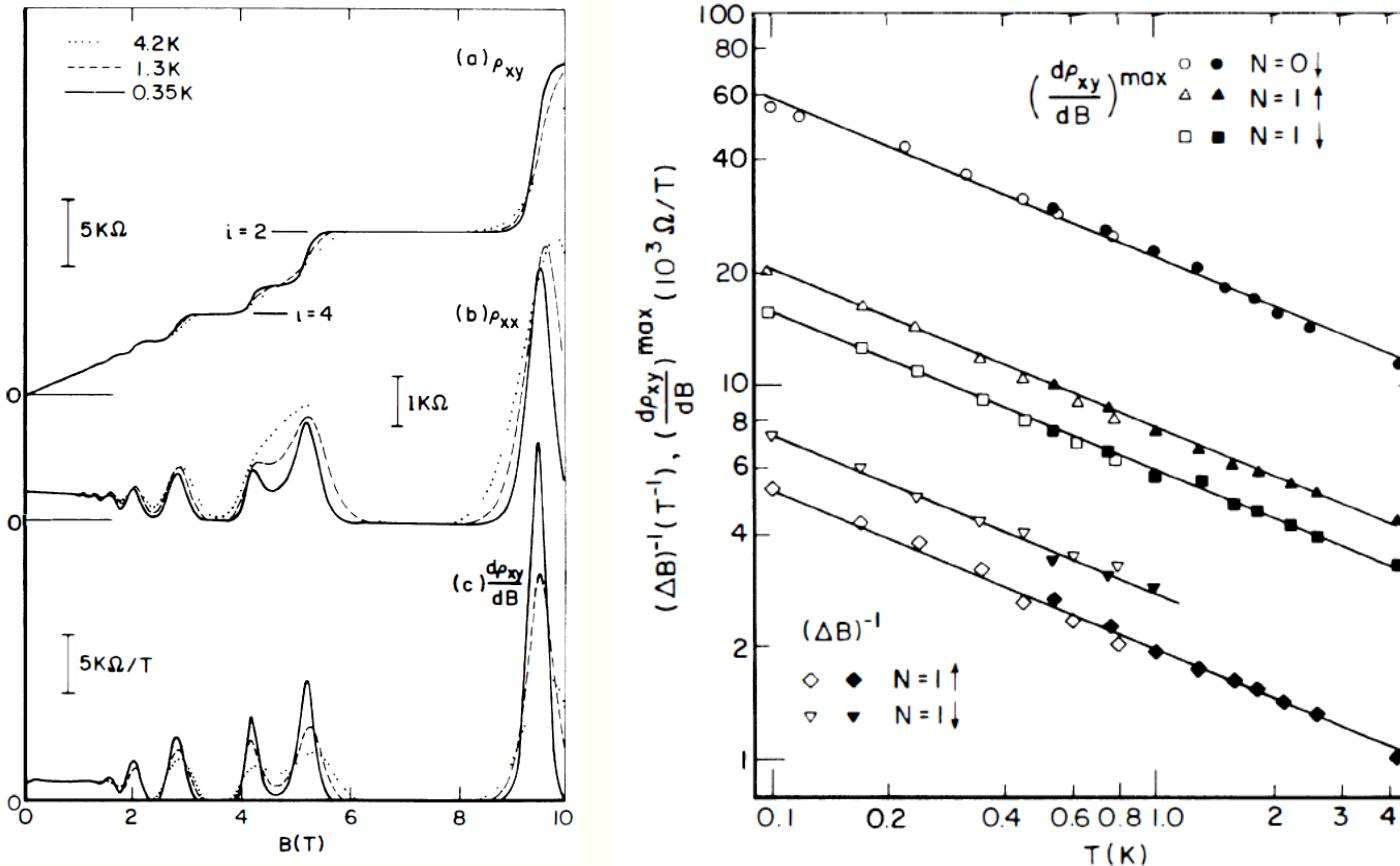
R. Willet et al. PRL, 59, 1776 (1987)

$$\rho_{xy} = \frac{1}{\nu} \frac{h}{e^2},$$

ν – a (simple) fraction

IQH transitions: experiments

- $\text{In}_x\text{Ga}_{1-x}\text{As}/\text{InP}$ heterostructures: temperature dependence



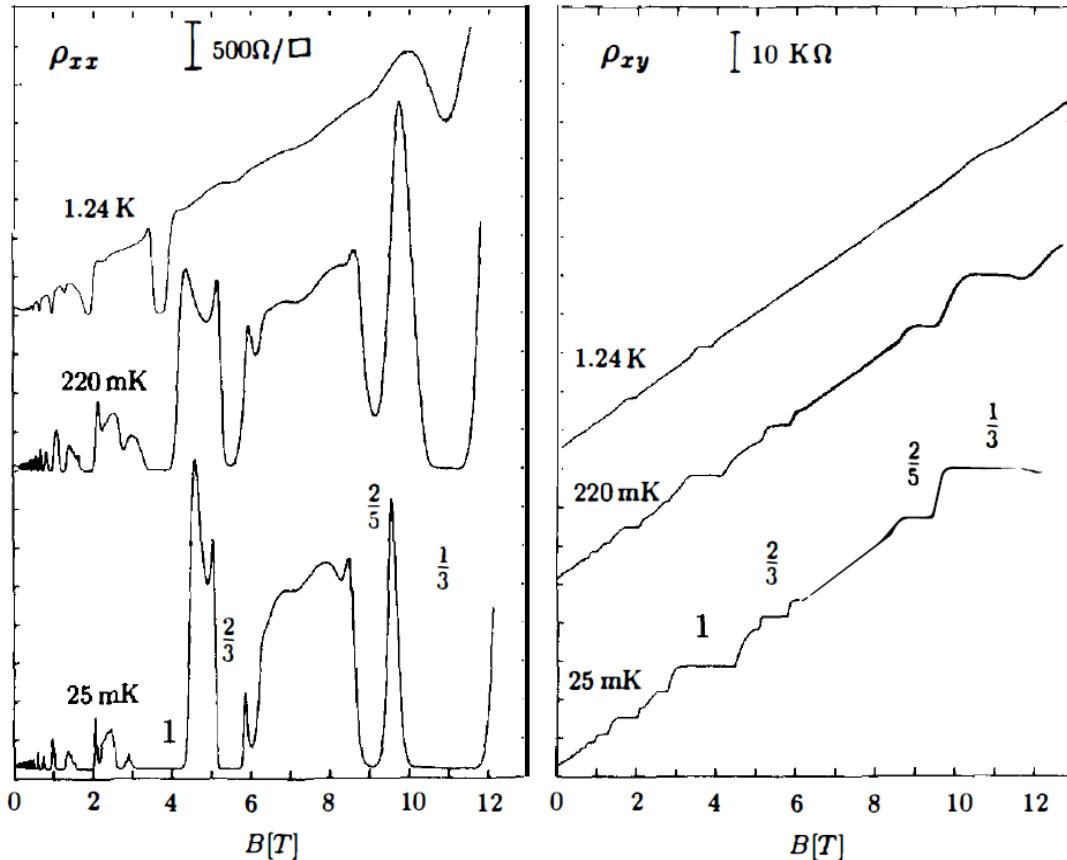
$$\left(\frac{dR_{xy}}{dB} \right)^{\max} \sim T^{-\kappa}, \quad \Delta B \sim T^\kappa, \quad \kappa \approx 0.42 \pm 0.04$$

H. P. Wei et al. "Experiments on Delocalization and Universality in the Integral Quantum Hall Effect" PRL 61, 1294 (1988)

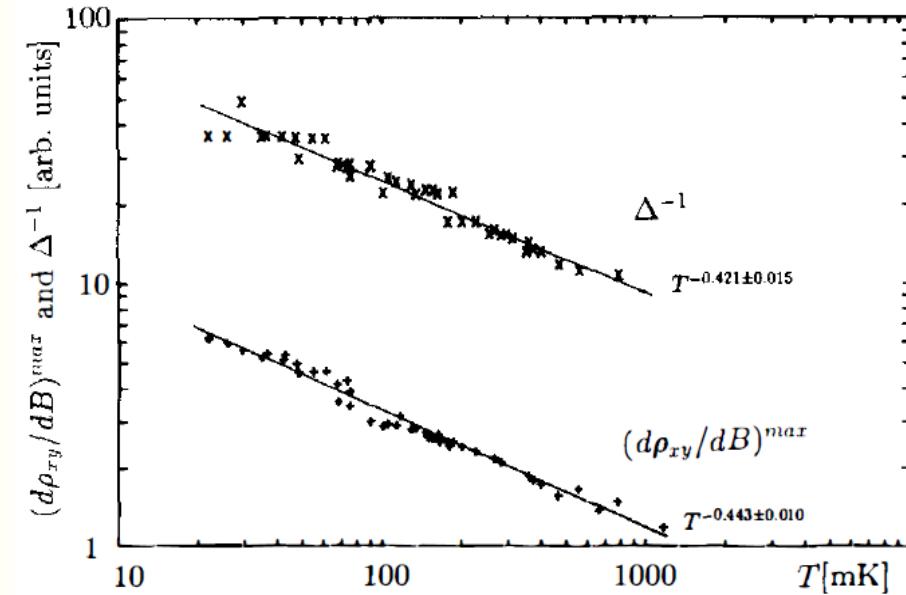
- The widths and steepness of transitions scale as powers of temperature

FQH transitions: experiments

- $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ heterostructures: direct transition between



L. Engel et al, "Critical Exponent in the Fractional Quantum Hall Effect" Surf. Sci. 229, 13 (1990)



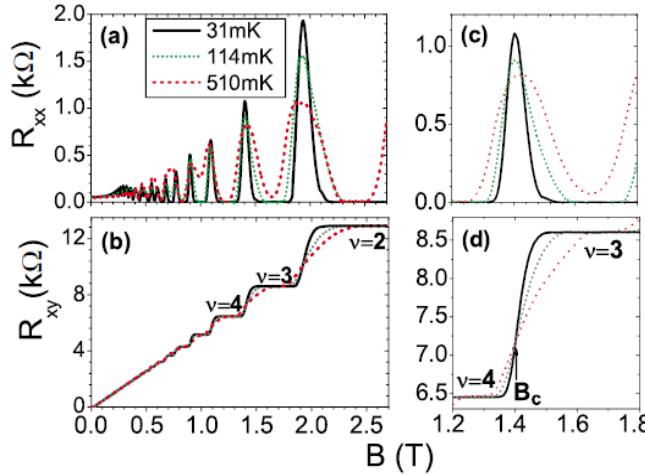
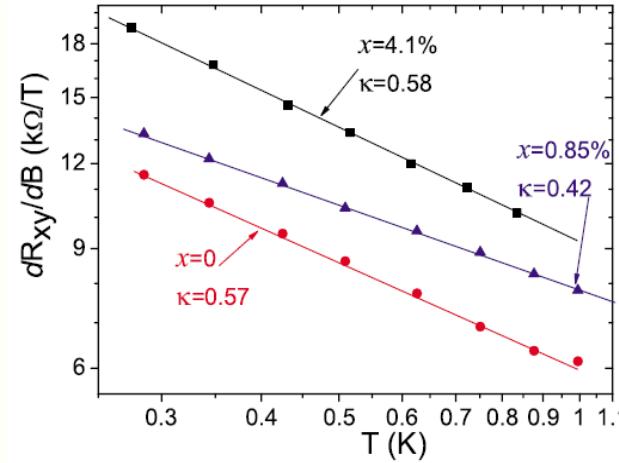
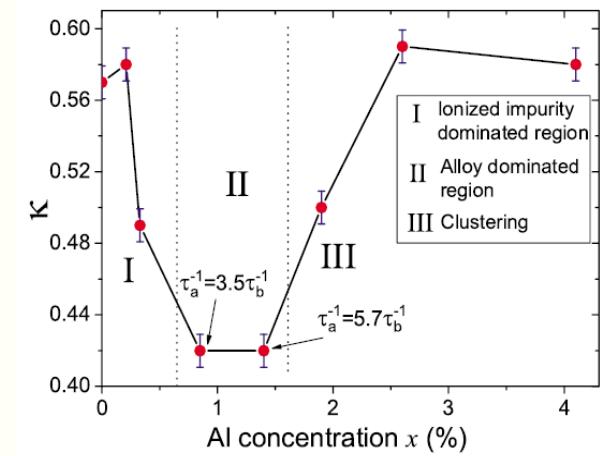
$$\left(\frac{dR_{xy}}{dB} \right)^{\max} \sim T^{-\kappa}, \quad \Delta B \sim T^\kappa,$$

$$\kappa \approx 0.43 \pm 0.02$$

- The widths and steepness of transitions scale as powers of temperature

Universality?

- $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{Al}_{0.33}\text{Ga}_{0.67}\text{As}$ heterostructures

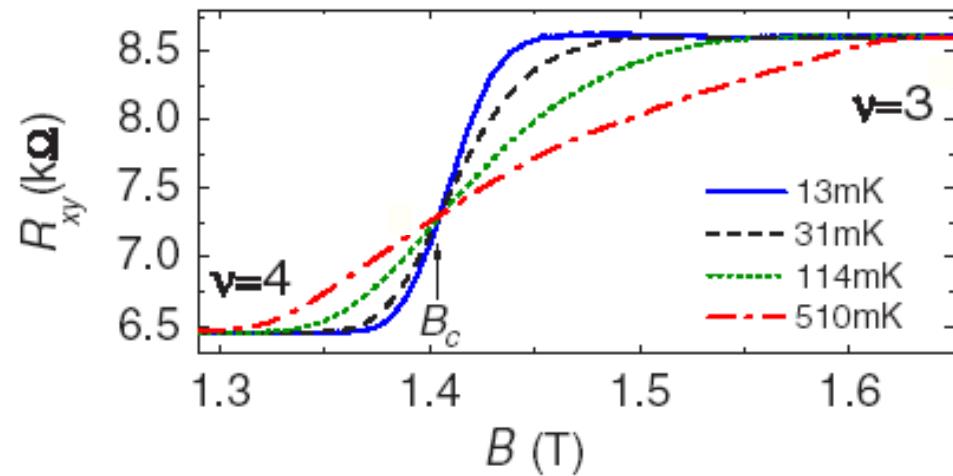
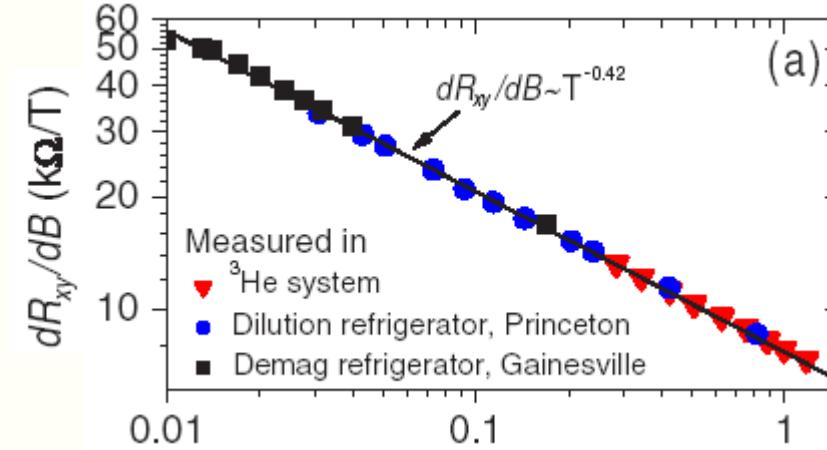


W. Li et al. "Scaling and Universality of Integer Quantum Hall Plateau-to-Plateau Transitions" PRL 94, 206807 (2005)

- Exponent κ depends on disorder?
- Universal scaling observed for short-range (alloy) disorder
- The issue of universality keeps coming up

Universal critical scaling near IQH transition

- $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{Al}_{0.33}\text{Ga}_{0.67}\text{As}$ heterostructures with $x = 0.85\%$



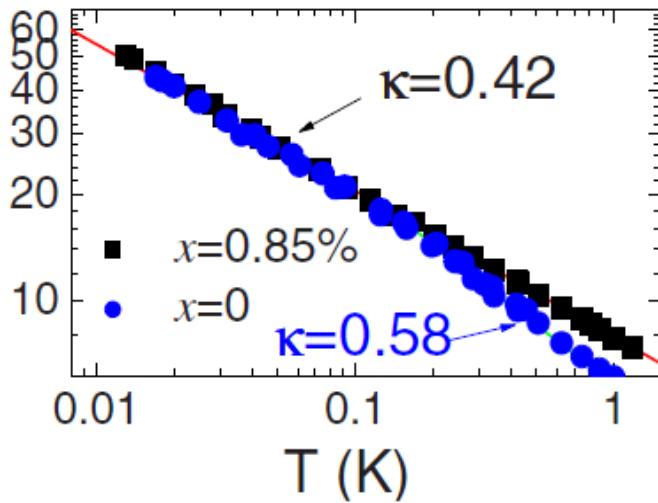
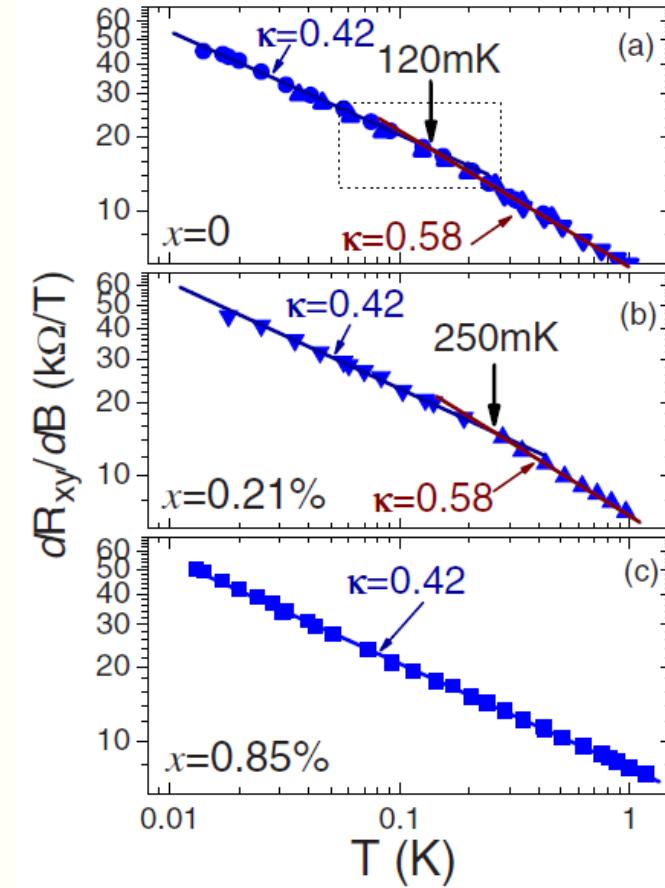
W. Li et al. "Scaling in Plateau-to-Plateau Transition: A Direct Connection of Quantum Hall Systems with the Anderson Localization Model" PRL 102, 216801 (2009)

- "Perfect scaling through two full decades of temperature from 1.2 K down to 12 mK"

$$\left. \frac{dR_{xy}}{dB} \right|_{B_c} \sim T^{-\kappa}, \quad \kappa = 0.42 \pm 0.01$$

Crossover to universal critical scaling near IQH transition

- $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{Al}_{0.33}\text{Ga}_{0.67}\text{As}$ heterostructures with different x



W. Li et al. "Crossover from the nonuniversal scaling regime to the universal scaling regime in quantum Hall plateau transitions" PRB 81, 033305 (2010)

Universal critical scaling near IQH and FQH transitions

- QH transitions in trilayer graphene

S. Kaur et al., Nature Communications (2024)

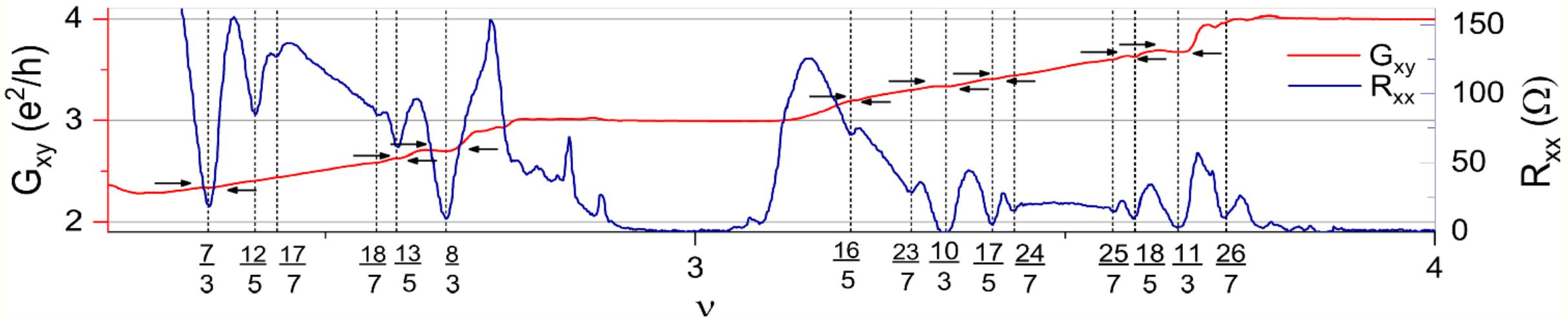
Universality of quantum phase transitions in the integer and fractional quantum Hall regimes

Received: 6 May 2024

Accepted: 24 September 2024

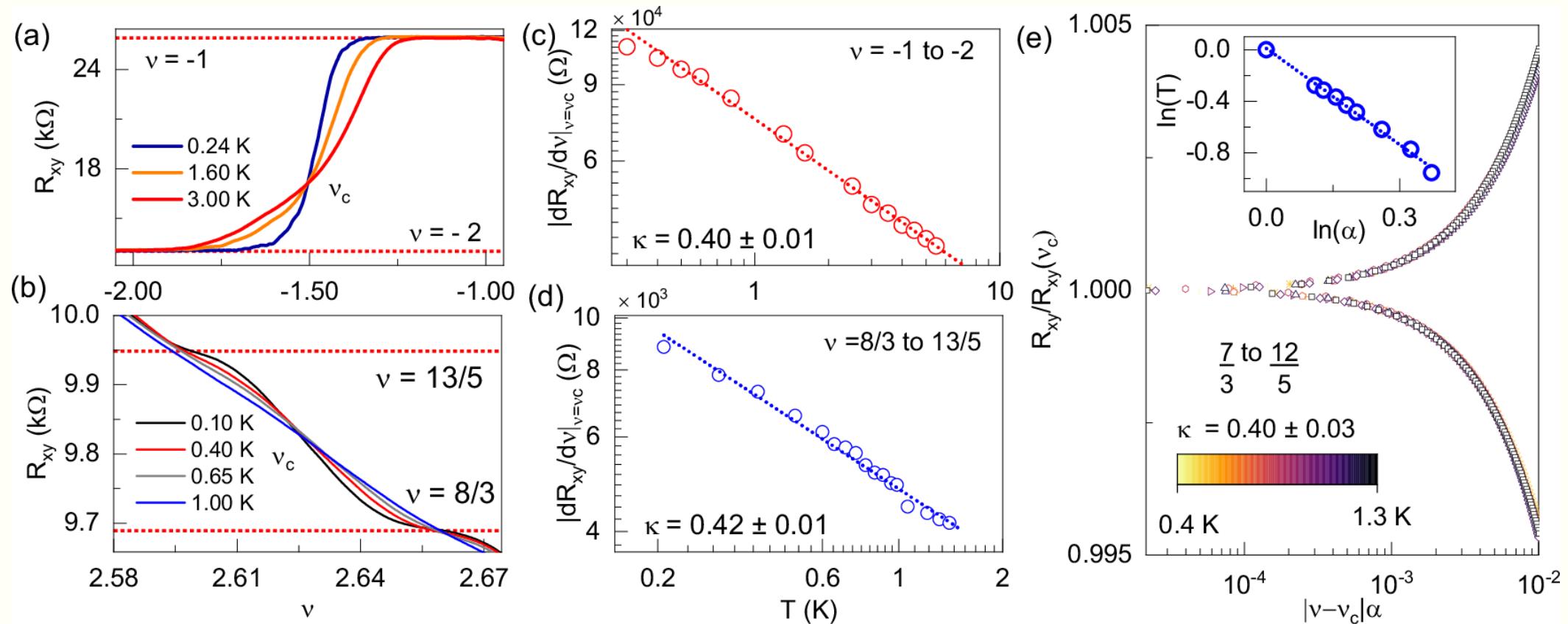
Published online: 02 October 2024

Simrandeep Kaur^{1,8}, Tania Chanda^{1,8}, Kazi Rafsanjani Amin^{2,8}, Divya Sahani¹, Kenji Watanabe³, Takashi Taniguchi⁴, Unmesh Ghorai⁵, Yuval Gefen⁶, G. J. Sreejith⁷ & Aveek Bid¹



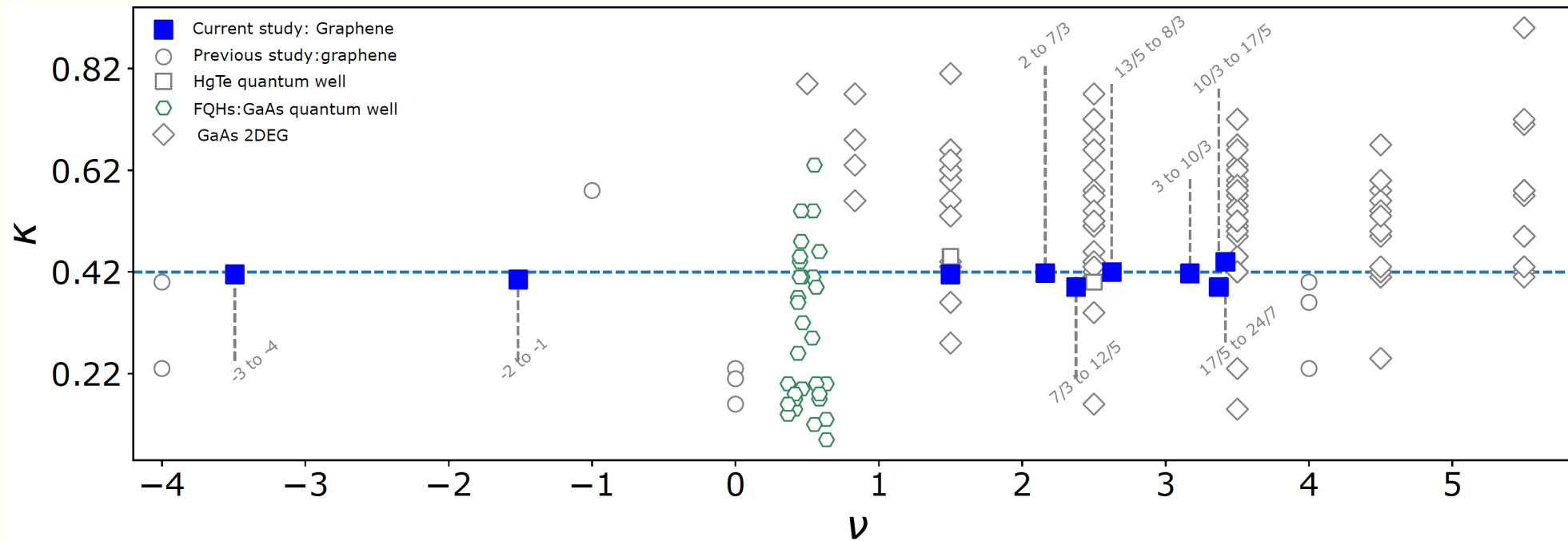
Universal critical scaling near IQH and FQH transitions

- QH transitions in trilayer graphene



Universal critical scaling near IQH and FQH transitions

- QH transitions in trilayer graphene: comparison with previous studies



Basic theoretical picture: quantum phase transitions at $T = 0$

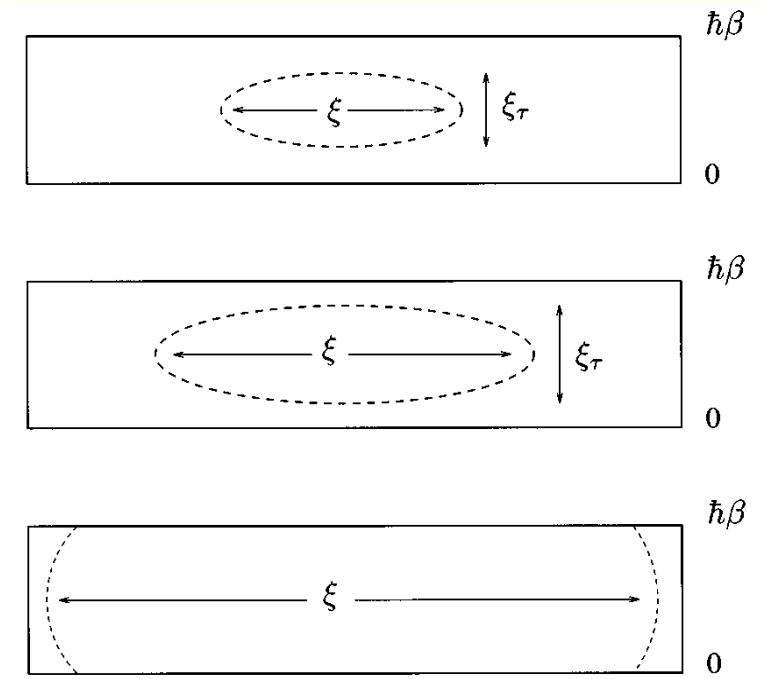
- Quantum phase transitions ($\hbar = k_B = 1$)
 - Change in the ground state upon tuning a parameter K (coupling constant) in the Hamiltonian
 - Diverging (correlation) length scale near the critical coupling K_c , as $\delta = K - K_c \rightarrow 0$: $\xi \sim |\delta|^{-\nu}$
 - Diverging (correlation) time scale near the critical coupling K_c , as $\delta = K - K_c \rightarrow 0$: $\xi_\tau \sim \xi^z \sim |\delta|^{-z\nu}$
 - Closing gap near the critical coupling K_c , as $\delta = K - K_c \rightarrow 0$: $\Delta \sim |\delta|^{z\nu}$
 - Dynamical scaling exponent z relates temporal and spatial scales
- The diverging scales determine the scaling forms of measured observables
 - Scaling at $T = 0$ close to K_c $O(k, \omega, K) = \xi^{\Delta_O} F_O(k\xi, \omega\xi_\tau)$
 - Scaling dimension Δ_O of the observable O is usually different from its naïve (engineering) dimension
- Theory goals: compute critical exponents ν, z , dimensions of observables Δ_O , and scaling functions

Scaling at $T \neq 0$

- Finite-size scaling
 - $T > 0$ imposes a finite length $L_\tau = 1/T$ in the (imaginary) time direction

$$O(\omega, T, K) = \xi^{\Delta_O} F_O(\omega \xi_\tau, L_\tau / \xi_\tau) = L_\tau^{\Delta_O/z} f_O(\omega/T, \delta/T^{1/z\nu})$$

- Temperature cuts off coherent quantum fluctuations at $\omega \sim T$
- Dephasing: finite T destroys coherence of quantum fluctuations
 - Two scaling regimes for frequency scaling separated by $T_\omega \sim \omega$
 - By the dynamic scaling, there is a “dephasing” length $L_\phi \sim L_\tau^{1/z} \sim T^{-1/z}$ beyond which fluctuations are classical
 - Dephasing rate $\xi_\tau^{-1} \sim T$
- Caveat: relevance of interactions (more later)



Quantum critical scaling at QH transitions

- Longitudinal and Hall resistivities $\rho_{L,H}$ have zero scaling dimension

$$\rho_{L,H}(\omega, T, B) = f_{L,H}(\omega/T, \delta/T^{1/z\nu}), \quad \delta = \frac{B - B_c}{B_c}$$

- DC transport, temperature scaling

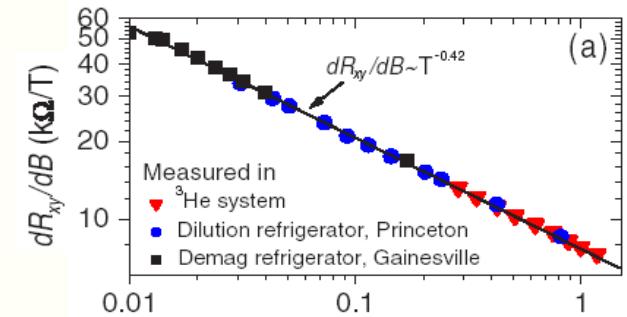
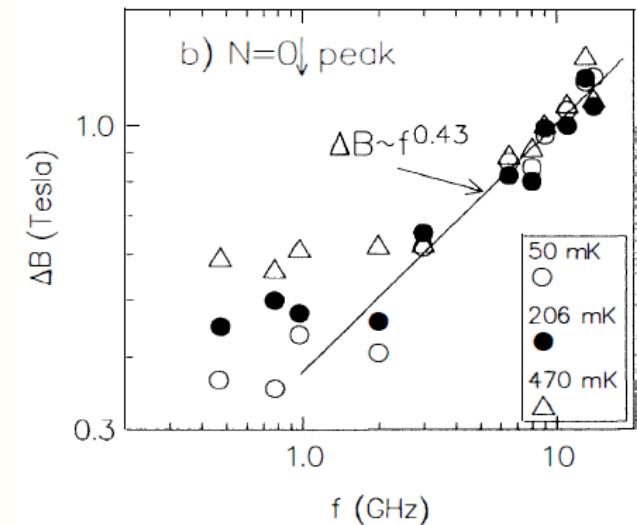
$$\rho_{L,H}(T, B) = f_{L,H}(\delta/T^{1/z\nu}) \Rightarrow \Delta B^{-1}, \frac{d\rho_H}{dB} \Big|_{B_c} \sim T^{-\kappa}, \quad \kappa = \frac{1}{z\nu}$$

- Frequency scaling for $\hbar\omega \gg k_B T$

$$\rho_{L,H}(\omega, B) = f_{L,H}(\delta/\omega^{1/z\nu}) \Rightarrow \Delta B \sim \omega^\kappa, \quad \kappa = \frac{1}{z\nu}$$

L. Engel et al, "Microwave Frequency Dependence of Integer Quantum Hall Effect: Evidence for Finite-Frequency Scaling" PRL 71, 2638 (1993)

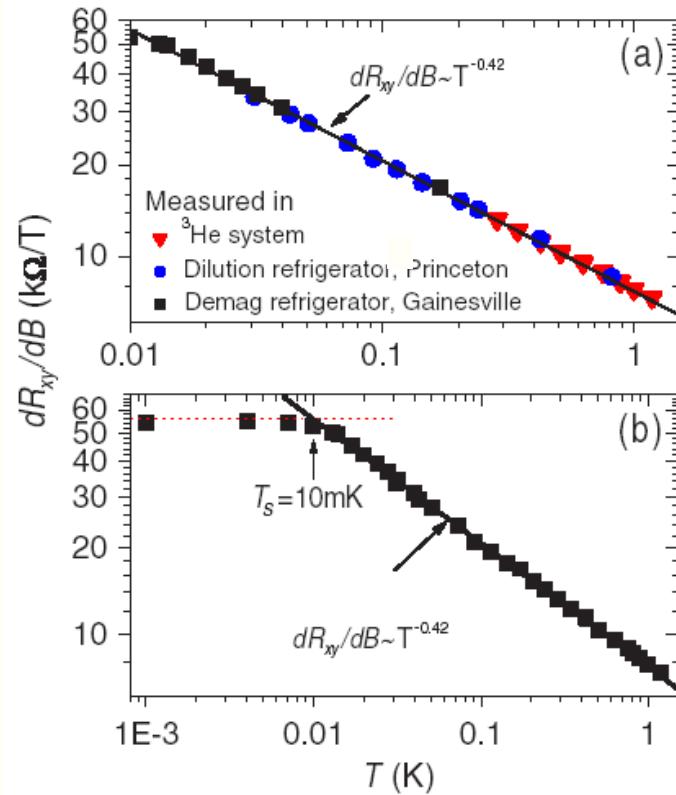
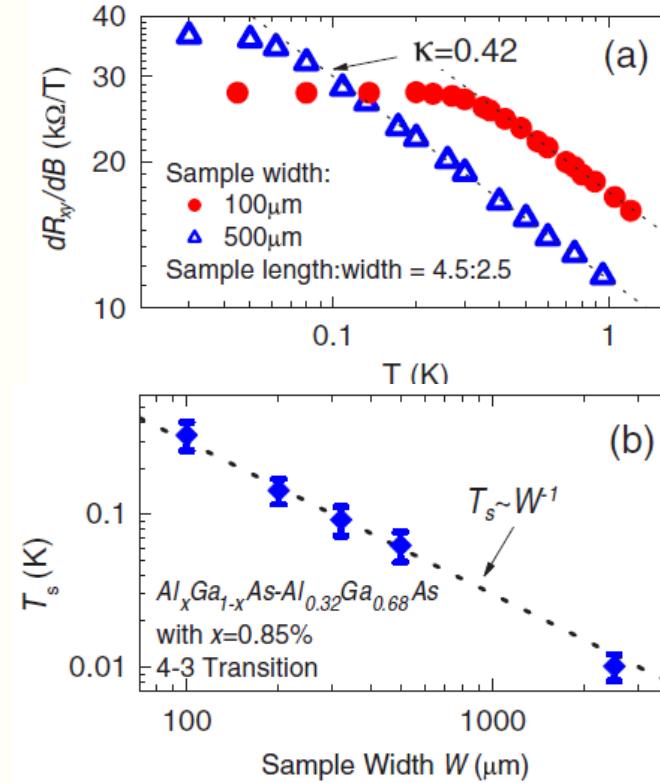
- Is it possible to separately measure z and/or ν ?



Universal critical scaling near IQH transition

- Experiments at very low temperature

W. Li et al, 102 (2009); PRB 81 (2010)



- Saturation of scaling when $L_\phi \sim T^{-1/z} \approx W$ (sample width)
- Localization length exponent and dynamical exponent $\nu \approx 2.38$, $z = 1$

Nonlinear critical current scaling

- Theoretical scaling picture
 - Finite electric field E introduces finite length and time scales l_E and l_E^z
 - At $T = 0$ these scales replace the “dephasing” scales
 - Relate $eEl_E \sim \hbar l_E^{-z}$. This gives $l_E \sim E^{-1/(z+1)}$
 - Scaling form of nonlinear resistivities

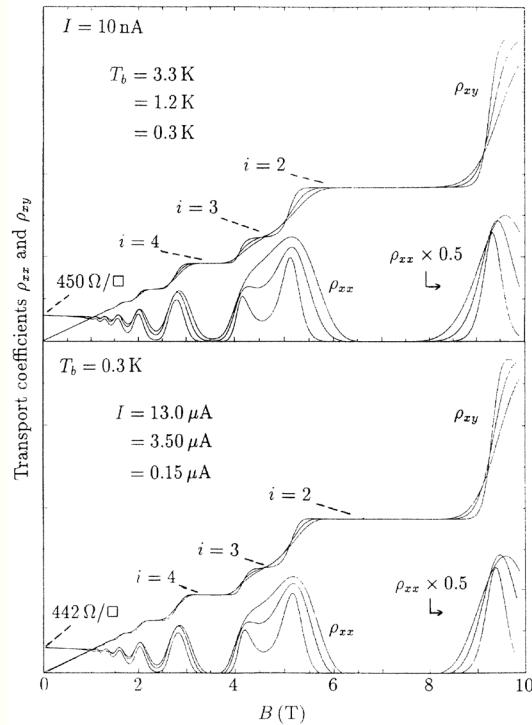
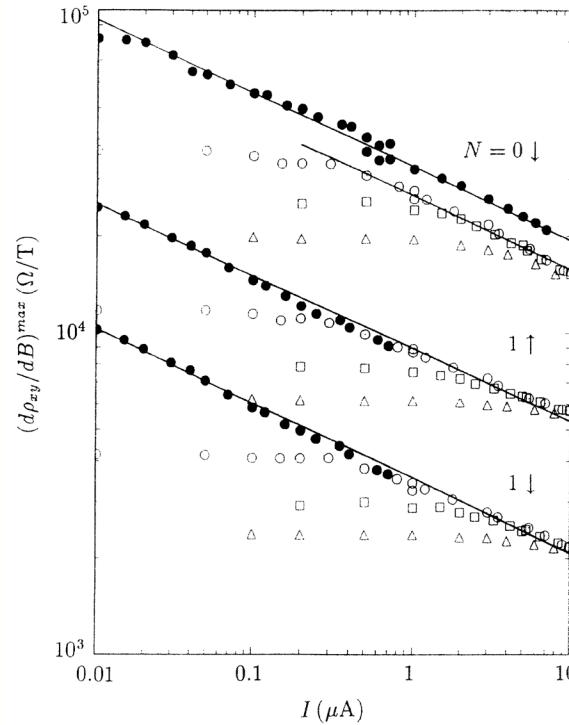
$$\rho_{L,H}(\omega, T, B) = g_{L,H}(\delta/T^{1/z\nu}, l_E/\xi) = \tilde{g}_{L,H}(\delta/T^{1/z\nu}, \delta/E^{1/(z+1)\nu})$$

- Can separately determine $z\nu$ and $(z+1)\nu$
- Two scaling regimes separated by $T_0(E) \sim l_E^{-z} \sim E^{z/(z+1)}$
- Current scaling for $T \ll T_0(E)$ (high E)

$$\rho_{L,H}(E, B) = f_{L,H}(\delta/E^{1/(z+1)\nu}) \Rightarrow \Delta B^{-1}, \frac{d\rho_H}{dB} \stackrel{\text{max}}{\sim} E^{-b}, \quad b = \frac{1}{(z+1)\nu}$$

Nonlinear critical current scaling

- Experiments on $\text{In}_x\text{Ga}_{1-x}\text{As}/\text{InP}$ heterostructures



$$b = \frac{1}{(z+1)\nu} \approx 0.23 \pm 0.02$$

H. P. Wei et al. "Current scaling in the integer quantum Hall effect" PRB 50, 14609 (1994)

- All data is consistent with $\nu \approx 2.4$, and $z = 1$

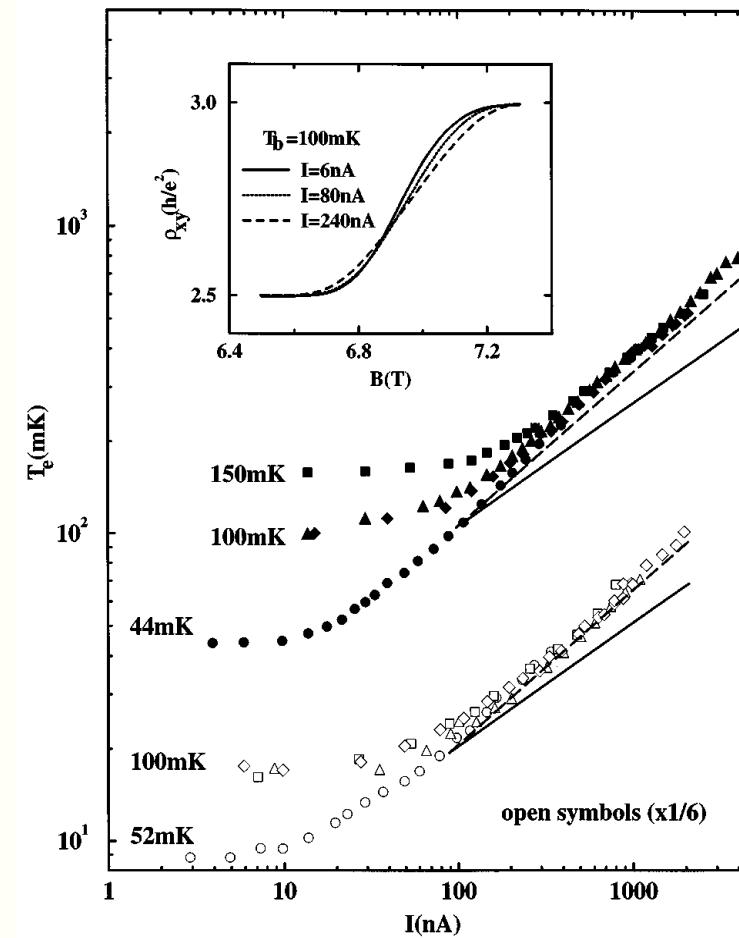
Nonlinear critical current scaling

- Experiments on $\text{Al}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ heterostructures
- Crossover temperature $T_0(E) \sim E^{z/(z+1)}$ as the effective electronic temperature

$$a = \frac{z}{z+1} \approx 0.49 \pm 0.03$$

- All data is consistent with $\nu \approx 2.4$, and $z = 1$

E. Chow et al “Experiments on inelastic scattering in the integer quantum Hall effect” PRL 77, 1143 (1996)



Relevance of interactions and dephasing

- Mesoscopic physics point of view: start with noninteracting or weakly-interacting quasiparticles (electrons) subject to disorder and strong magnetic field
- This system in 2D has an (Anderson localization) integer quantum Hall transition – an interesting and important problem in itself, and I will focus on it later
- Then add various interactions (electron-electron, electron-phonon, etc.) and treat them perturbatively
- This leads to various dephasing mechanisms with dephasing rates $\tau_\phi^{-1} \sim T^p$ and lengths $l_\phi \sim T^{-1/z_T}$, with $z_T = 2/p \neq z$ and a mechanism-specific exponent $p \geq 1$
- Whether this picture survives at the quantum critical point depends on the (ir)relevance of interactions at the non-interacting fixed point and is determined by an RG treatment of interactions
- It turns out that the (ir)relevance of interactions depends on their range:
 - Short-range interactions are irrelevant, long-range (Coulomb) interactions are relevant

Short-range interactions and critical scaling

D.-H. Lee and Z. Wang PRL 76, 4014 (1996)
Z. Wang et al. PRB 61, 8326 (2000)
I. S. Burmistrov et al. Ann. Phys. 326, 1457 (2011)

- Temperature scaling at Anderson transitions cannot be explained within the single-particle picture
- Short-range (irrelevant) interactions nontrivially modify the critical scaling with temperature

$$\rho_{L,H}(\omega, T, B) = f_{L,H}(T\xi^{z_T}, \omega\xi^z) \quad \Rightarrow \quad \Delta B \sim \min(\omega^{1/z\nu}, T^{1/z_T\nu})$$

- The new exponents are determined by the scaling dimension $-\alpha$ of the interaction strength:

$$p = 1 + \frac{2\alpha}{z}, \quad z_T = \frac{2}{p} = \frac{2z}{z + 2\alpha}$$

- In turn, α is determined by the (multifractal) scaling of a certain correlator of critical wave functions of the disordered non-interacting system

$$M_{jk} = \int d\mathbf{r}_1 d\mathbf{r}_2 K_{jk}(\mathbf{r}_1, \mathbf{r}_2) U(\mathbf{r}_1 - \mathbf{r}_2), \quad K_{jk}(\mathbf{r}_1, \mathbf{r}_2) = |\psi_j(\mathbf{r}_1)\psi_k(\mathbf{r}_2) - \psi_j(\mathbf{r}_2)\psi_k(\mathbf{r}_1)|^2$$

Composite fermions and universality of FQH transitions

J. K. Jain, S. A. Kivelson, and N. Trivedi “*Scaling Theory of the Fractional Quantum Hall Effect*” PRL 64, 1297 (1990)
S. Pu, G. J. Sreejith, and J. K. Jain “*Anderson Localization in the Fractional Quantum Hall Effect*” PRL 128, 116801 (2022)

- Composite fermions (CFs) theory maps FQH transitions of electrons to IQH transitions of CFs
- Attaching $2m$ vortices to electrons at integer filling ν_{CF} gives a variational FQH state at the Jain fractions

$$\nu = \frac{\nu_{\text{CF}}}{2m\nu_{\text{CF}} \pm 1}$$

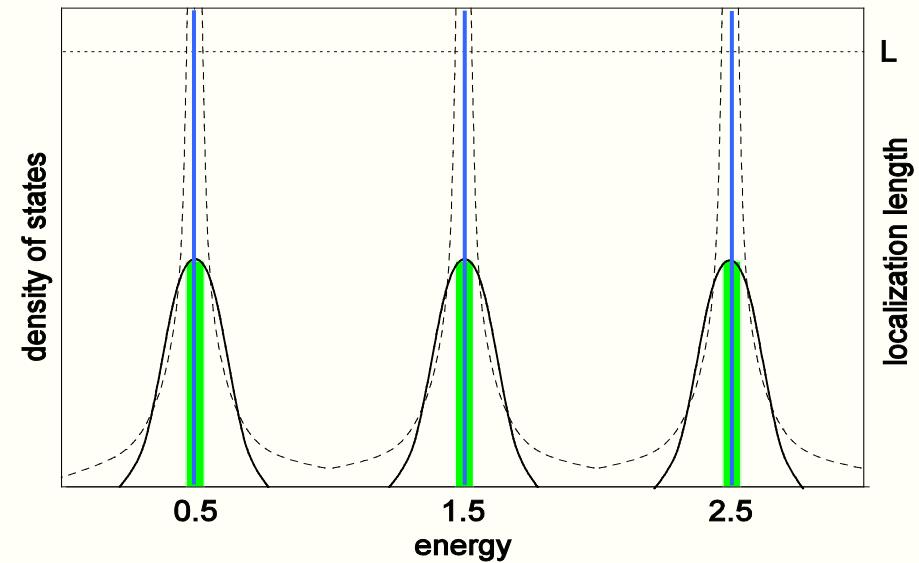
- Including disorder (for $m = 1$), the IQH transition $1 \rightarrow 2$ maps to FQH transition $1/3 \rightarrow 2/5$
- More in J. Jain’s lectures

IQH and localization in strong magnetic field

- Single electron in a magnetic field and a random potential
- Without disorder: Landau levels
- Disorder broadens the levels and localizes most states
- Extended states near E_c (green)
- IQH transition upon varying E_F or B
- Diverging scale is the localization length

$$\xi(E) \propto |E - E_c|^{-\nu}$$

$$H = \frac{1}{2m} \left(-i\hbar\nabla + \frac{e}{c} \mathbf{A} \right)^2 + U(\mathbf{r})$$



- An Anderson (localization-delocalization) transition: a non-interacting quantum phase transition
- DOS is smooth (non-singular) across the transition, which implies $z = 2$
- All observables are random, a complete theory would describe their distributions

Symmetries and AZ classes

Conventional (Wigner-Dyson) classes

A. Altland, M. Zirnbauer '96

	T	spin	rot.	chiral	p-h	symbol
GOE	+	+	–	–	–	AI
GUE	–	+/-	–	–	–	A
GSE	+	–	–	–	–	AII

- Integer quantum Hall effect

Chiral classes

	T	spin	rot.	chiral	p-h	symbol
ChOE	+	+	+	–	–	BDI
ChUE	–	+/-	+	–	–	AIII
ChSE	+	–	+	–	–	CII

Bogoliubov-de Gennes classes

	T	spin	rot.	chiral	p-h	symbol
	+	+	–	–	+	CI
	–	+	–	–	+	C
	+	–	–	–	+	DIII
	–	–	–	–	+	D

- Spin quantum Hall effect (exact results)

- Thermal quantum Hall effect

Methods, models, and recent results in theory of Anderson transitions

- No small parameter, no perturbation theory. Expect conformal field theory (CFT) with $c = 0$
- A lot of intuition comes from network models amenable to numerics J. T. Chalker, P. D. Coddington '88
- Recent advances include
 - High-precision numerics (irrelevant operators) K. Slevin, T. Ohtsuki '09
W. Nuding, A. Klümper, A. Sedrakyan '15
F. Evers et al., T. Vojta et al., R. Roemer et al.... '18-'25
 - Field theory: non-linear sigma model, symmetry analysis of multifractal (MF) wave functions N. Charles, IAG, J. F. Karcher, A. W. W. Ludwig, A. D. Mirlin, M. R. Zirnbauer '11-'24
 - Constraints from conformal symmetry on MF spectra R. Bondesan, D. Wieczorek, M. R. Zirnbauer '14-'19
J. Padayasi, IAG '23
 - Mapping to classical models, statistical mechanics and CFT E. Bettelheim, IAG, A. W. W. Ludwig '12
IAG, J. F. Karcher, A. D. Mirlin '22
 - Random networks and quantum gravity H. Topchyan, IAG, W. Nuding, A. Klümper, A. Sedrakyan '17-'25
A. Mukherjee, IAG, V. Kazakov '25
E. Bettelheim, IAG, E. F. M. Ramirez '25