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Goal of today’s lecture

• Yesterday: physical picture of quantum spin liquids (QSLs) in terms of formation/
condensation of strings

• Today: Parton gauge theory, and Z2 QSLs via condensation of double vortices



How do we make string pictures into theories?

• Questions we might like to answer…

• Given a particular model, does it have a QSL ground state, and if so what kind? 
(Often hard! But there has been & continues to be exciting progress along these 
lines.)

• Given a class of models, what kinds of QSL phases can occur in principle? 
What are their physical properties that can be detected in experiments and in 
numerical simulations? (Parts of this question are manageable, parts of it are 
very hard. Very much an active topic of research!)

• What is meant by class of models? Specify degrees of freedom, symmetries and 
how they act on d.o.f., range of interactions (e.g. finite-range). These are 
physical requirements, appropriate for some material or class of materials, and 
thus appropriate to learn what is possible in realistic models.

Example: square lattice S=1/2 Heisenberg 
models…

H = J
X

hrr0i

~Sr · ~Sr0 + · · ·



Tools to generate effective theories of QSLs

• Given a class of models, there are well-developed tools to generate effective 
gauge theories of QSLs. These tools go under the general heading of parton 
theories.

• Parton theories do not provide reliable information about any particular model, 
except maybe as a means to construct trial wave functions.

• Instead, their purpose is to demonstrate emergeability. That is, a given effective 
(gauge) theory can emerge in a given class of microscopic models.

• Demonstrating non-emergeability is also interesting, but requires different 
methods.

Credit for this term 
goes to Senthil; blame 
for using it goes to me



Partons in practice

• Focus on S=1/2 Heisenberg antiferromagnet on square lattice

H = J
X

hrr0i

~Sr · ~Sr0 + · · ·

• Represent a single S=1/2 spin using S=1/2 fermions:
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Partons in practice

• Nearest-neighbor exchange is quartic in partons. Decouple using complex 
Hubbard-Stratonovich field living on lattice links…

Z =

Z
[dfd ¯fd�d�] exp(�S0

)

• U(1) gauge redundancy. (Often called gauge symmetry, but this is misleading 
terminology)
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Time component of 
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Spatial components of 
vector potential
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Partons in practice

• So far we have only discussed formal properties of a change of variables.

• In particular, the partons should not be thought of as low-energy degrees of 
freedom (e.g. quasiparticles) of a putative QSL phase:

partons ≠ spinons
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• Now, imagine obtaining a low-energy effective theory, by integrating out high-
frequency modes.

• Many terms will be generated, including terms that can pin           to some 
value, and other terms that suppress fluctuations in magnetic flux of the vector 
potential.

• If such terms dominate, they drive the gauge theory into its deconfined phase (if 
this phase is stable).

• Effective theory for deconfined phase: constant         and        +  fluctuations 
(not restricted to perturbative fluctuations)

|�rr0 |

�rr0 �r



Partons in practice

• Many different QSL effective theories can be generated this way (for same class 
of models), e.g. background magnetic flux can be different.

• Properties of these different QSL phases can then be studied (doing this can be 
highly non-trivial for gapless states; interesting/challenging quantum field 
theory problems)

• Issue 1: little information about specific Hamiltonians

• Issue 2: hard to connect low-energy degrees of freedom to microscopic model. 
For example, effective theories are gauge theories, but not obvious what the 
electric field (string) is microscopically … symmetry analysis usually the best 
we can do.



Example parton effective theory

• Example Hamiltonian effective theory:

(div e)r = f†
r↵fr↵ � 1 ārr0 gives background flux; let’s say π flux / plaquette

⇡
⇡

⇡

⇡
⇡

⇡ ⇡

⇡
⇡

Fermions have 
Dirac dispersion

• Deconfining limit: K large, expand cosine, derive continuum Dirac theory for 
fermions…

L =  ̄(@µ + iaµ) +
1

2e2

X

µ

�X
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+ · · ·
Now the fermions are low-energy 
degrees of freedom, and I will call 
them spinons
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Example parton effective theory

• Example Hamiltonian effective theory:

(div e)r = f†
r↵fr↵ � 1 ārr0 gives background flux; let’s say π flux / plaquette

• Confining limit:  h large, e ≈ 0. Degenerate perturbation theory in t/h recovers 
Heisenberg antiferromagnet at leading order, generates other local spin 
interactions at higher order

• Taking the confining limit basically “runs backward” the procedure we used to 
arrive at the effective theory in the first place.

• In practice, we often establish emergeability by writing down a gauge theory 
Hamiltonian like this one, then taking the confining limit.

Hgauge = h
X
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Vortices and Z2 spin liquids

 

• Different approach to QSLs: start with an ordered phase, and disorder it 
somehow

• Essentially the idea is to describe a QSL in terms of the excitations of some 
ordered phase.

• Advantage: excitations of ordered phases are easy to understand physically and 
often easy to connect to microscopic physics

• Disadvantage: usually have to disorder via mechanisms that are fine in 
principle, but might be hard to achieve in realistic models. On the other hand, 
we already know QSLs are not easy to find, so this should not discourage us too 
much.

• Today: basic intuition for one example, description of Z2 spin liquids as 
condensates of double vortices



Bose Hubbard model

 

• On every site of the square lattice, put an O(2) quantum rotor:

Nr 2 Z �r 2 [0, 2⇡)

Conjugate number and phase

[�r, Nr0 ] = i�rr0 [Nr, e
±i�r ] = ±e±i�r

� angular coordinate

N angular momentum

 

• Hamiltonian:

• Boson filling:

• Not exactly a model of bosons, but can view this is an effective model for 
bosons at integer filling, Nr gives deviations from the background density.

H = U
X

r

N2
r � t

X

hrr0i

cos(�r � �r0)

n =
X

r

Nr/Nsites = 0



Bose Hubbard model: phase diagram

U/t

0
(U/t)c

Superfluid Mott insulator

hei�i = 0hei�i 6= 0

Gapless excitations 
(Goldstone bosons)

Energy gap to all 
excitations



Mott insulator phase

 

• Very large-U: excitations are just adding/removing bosons from lattice sites

E

k

Flat dispersion

U

 

• Turn on small t, excitations 
begin to disperse

E

k

bandwidth ⇠ t

 

• Eventually, at critical t/U, 
excitations come down to E=0 
and condense
E

k



Superfluid phase

 

• Large t/U, expand cosine to get a quadratic effective Hamiltonian

H = U
X

r

N2
r � t

X

hrr0i
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Continuum limit
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K
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k

Linearly dispersing 
superfluid sound mode 
(Goldstone boson)

Can we get from this effective 
theory back to the Mott 
insulating state?

No! This theory does not know 
about the discreteness of charge, 
cannot have a Mott insulator 
phase.

Suggests that also we are missing 
some aspect of the superfluid 
phase…



Superfluid vortices

 

• Superfluid also has vortex excitations

� ! �+ 2⇡

I
r� · d` = 2⇡

Boson phase winds 
by 2π going around 
vortex

In general, vorticity is an 
integer; for n-fold vortex:
I

r� · d` = 2⇡nv

Usually, single vortices 
(nv=1) are lowest energy



Mott insulator via vortex condensation

 

• When vortices come down to zero energy, they condense. This leads back to the 
Mott insulator

• Only integer charge excitations are free to propagate in the vortex condensate - 
discreteness of charge is restored.

+1 vortex -1 vortex (anti-vortex)

Boson, feels 
vortex as 2π 
flux 

Half-boson, 
feels vortex 
as π flux 

Constructive 
interference

Destructive 
interference



Z2 QSL via double vortex condensation

Boson, feels 
double 
vortex as 4π 
flux 

Half-boson, 
feels double 
vortex as 2π 
flux 

Constructive 
interference

Constructive 
interference

+2 vortex -2 vortex (anti-vortex)

 

• If double-vortices condense, half-integer charge excitations can also propagate 
(but not other fractions of a boson).



Z2 QSL via double vortex condensation

Wavefunction 
picks up a minus 
sign when half-
boson encircles a 
vison

+2 vortex -2 vortex (anti-vortex)

vison

Single vortices are not 
condensed and become 
gapped visons.

In the language we used earlier, we identify the half-boson as the 
spinon, while the vison is a flux excitation


