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Spin liguids 40 years ago

This is nearly 20% lower than the spin-wave energy (11) of the Néel state.

seems almost certain that it 3 4

represents the energy of a A A Y A A A

qualitatively different state. | 2

Let us make some

brief comments about the nature

of this state. A disclaimer is . /
in order: we really know very / / / \ \ /
little about it. On the other / \ \ /

hand, there are a few very / / \ / / L -
basic things which can be said. b) T / / . /

We note that wherever two
bonds are parallel neighbors, FIG. 3

such as (12) and (34) in Fig. 3a, Random arrangements of pair bonds on a
: _ _ _ triangle lattice. (a) Shows a regular ar-

either (8, 82) or (SS 84) pro rangement with 21& 4 alternative distinct

vides a matrix element to the pairings ('rhombus' approximation).

degenerate configuration (23)(41), (b) An arbitrary arrangement,

P.W. Anderson, Mat. Res. Bull. 8, 153 (1973).



Spin liguids today
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whether these excitations are localized or itinerant. Elastic and inelastic
neutron-scattering measurements, especially on single crystals, provide
crucial information on the nature of correlations and excitations, and
these could perhaps uncover spinons. All told, this is a powerful arsenal
of experimental tools, but the task is extremely challenging. At the heart
of the problem is that there is no single experimental feature that identi-
fies a spin-liquid state. As long as a spin liquid is characterized by what it
is not — a symmetry-broken state with conventional order — it will be
much more difficult to identify conclusively in experiments.

L. Balents, Nature 464, 199 (2010).
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|_attice gauge theories

Lattice gauge theories were studied in the 1970s by
particle theorists as toy models of confinement of particles
with fractional guantum numbers (quarks).

They were adopted in condensed matter physics for
theory of quantum spin liquids. They are toy models of de-
confinement of quasiparticles with fractional quantum
numbers (spinons).

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

E. Fradkin and L. Susskind, Phys. Rev. D 17, 2637 (1978).

A.M. Polyakov, Gauge Fields and Strings (CRC, 1987).

R. Moessner, S.L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2001).
E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge, 2013).



U(1) gauge theory

Bears close resemblance to electromagnetism (E&M),
making It easier to build the theory by analogy with a
familiar subject.

Relevant to some quantum spin models: guantum spin ice
on the pyrochlore lattice and Heisenberg model on the

kagome lattice.

Hermele, M.P.A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).
Savary and L. Balents, Phys. Rev. Lett. 108, 037202 (2012).

8. Lee, S. Onoda, and L. Balents, Phys. Rev. B 86, 104412 (2012).

H. Hao and O. Tchernyshyov, Phys. Rev. B 87, 214404 (2013).
al

M.
L.
S.
/.
/.H. Hao, A.G.R. Day, and M.J.P. Gingras, Phys. Rev. B 90, 214430 (2014).




/2 lattice gauge theory

(tomorrow)

The simplest gauge theory ever: uses binary arithmetics!

Relevant to some qguantum spin models: Heisenberg model
on the square and kagome lattices.

G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89, 137202 (2002).
H.C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424 (2012).

Y. Wan and O. Tchernyshyov, Phys. Rev. B 87, 104408 (2013).

H.J. Ju and L. Balents, Phys. Rev. B 87, 195109 (2013).
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For simplicity | will work with hypercubic lattices (square in
d=2, cubic in d=3). In principle, gauge theory can be
defined on any lattice, regular or not.

In quantum spin ice, the gauge field lives on a diamond
lattice.



In E&M, the gauge potential A(r) is a vector field.

Lattice gauge variables Amn live on edges of the lattice
and are labeled by the two vertices of the edge (here mn).

They can be thought of as the projection of the vector
gauge field onto the link direction.



Regular U(1) gauge theory

—o0 < A < o0

In a regular U(1) gauge theory, gauge variable Amn takes
on values on a straight line.

No restrictions on possible values of electric charge.



Compact U(1) gauge theory

In a compact U(1) gauge theory, gauge variable Amn takes
on values on a circle (a compact manifold). In other words,
it Is an angular variable.

Any physical variable (e.qg., potential energy U) must be a
periodic function of A. Yields quantized values of charge.
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n E&M, the gauge field A
IS not a physical variable.
Physical fields E and B
and magnetic flux ® can
be obtained from it.

o o o
o <0 o
d P
\ 4 A
o > 0 o
28, [
Emn — _Amn

(I)mnpq — Amn + Anp
—I_qu —I_ Aqn

Similar recipes work on a
lattice for electric flux E
and magnetic flux .



Next steps

Deftine kinetic energy U(A) and potential energy 7(A).
Construct the Lagrangian L(A A) = T(A) — U(A).
Deduce momenta: p = 0L/0A = OT/0A.

Quantize the theory: [p,A] = —ih.

Construct the Hamiltonian: H(A,p) = pA - L.

|dentity conserved quantities.

Determine the quantum ground state.



Kinetic energy and
canonical momentum

E&M:

12 2
T:/fﬁwlszﬁﬂa
2 2

£o 1S “vacuum permittivity.”

Conjugate momentum:

— EoA(I‘) — —EoE(I')

Lattice gauge theory:

2
Pmn

IA2
=2 o1

edges edges

[ Is "moment of inertia” of A.

Conjugate momentum:
0T :
o A

—IA,. . for convenience

_Emn

Emn —



Quantization &,

8

OT :
P= 7 p; Al E, A
Quantum state of A is given by the wavefunction Y(A).
E operator acts on it thus: Ei(A) = ZdiA (A)

Take periodic wavefunctions: ¥(A + 2m) = ¢(A)

Convenient basis: ¥m(A) = e 4 /\/2r, m =0, +1,+2, ...

Evi(A) = map, (A)
Electric field is quantized: £ =0, +1,+2, ...

We use units such that h =1.



Quantization &,
oT

P= 7 P, A] B, A

m(A) = eV
Evm(A) = mippm(A)

F A (A) = Yy (A)

ezziAEeiiiA — F+1

etAand e are lowering and raising operators for E.
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Potential energy | 7

o >0
8

E&M: Lattice gauge theory:

) , U must be 2rr-periodic in A
U = /d% 57 /d3r (V < A) and depend on fluxes

2140 2440
(I)mnpq — Amn + Anp
_I_qu _|_ Aqn

E.g., U=- Z A oS @y g

A

faces

If @ values are small,

Compare » U = const + Z il



Conserved charges

H = Z B Z Acos Ponngs [ Emns Amnl = 1.

edges faces
Electric charge = net electric flux: Po--»---@5
Qm — Emn _|_ Emp _|_ qu _|_ Emr QA @ ?
Electric charges are quantized: q® .m ” .n
A 4
Qm:O,zzl,ZZQ... r®

Electric charges are constants of motion:

[QmaH] =0

States split into different charge sectors.



Properties of ground states
H = Z B Z)\cos D inpg

edges faces

The ground state depends on the product /A.

We will explore the nature of the ground state(s) in the
two limits: A< 1Tand /A >» 1.

We will work in the vacuum sector (no charges) and in
the sector with two probe charges +Q and -Q.

We will see that electric charges are confined in one limit
but not in the other.



GGround state for A «1//

H=Ho+Hy, Ho= ) =" H =

edges

Neglect the weak magnetic term.
No-charge sector:Emn = O everywhere.
Sector with two minimal charges Q = +1:
ground state with a minimal electric flux

iIne connecting the charges.

Energy grows linearly with the distance.
Electric charges are confined.

faces
i
nRaN
€(l) =1£/21



GGround state for A «1//

H:HO_I_Hl, HO: Z 277}”, le—Z)\COSq)mnpq
edges faces

Treat the magnetic term as a perturbation. t...i..g=li ...
It induces quantum fluctuations of the
electric flux line connecting the charges. A
Tension o of the electric flux line is SRR R
reduced by quantum fluctuations. +1

1 R S -

o= CIN +...,C>0 ((0) = ot

21



GGround state for A «1//

H=Hy+ H;, Hy= Z 2”}”, le—Z)\coscI)mnpq
edges faces

Treat the magnetic term as a perturbation.  -..i..gmli ...
't induces guantum fluctuations of the
electric flux line connecting the charges.
Tension o of the electric flux line is SRS R
reduced by guantum fluctuations. S S

| A S S

o = CIN +...,C>0 () = ot

21



GGround state for A «1//

H:HO_I_Hl, HO: Z 277}”, le—Z)\COSq)mnpq
edges faces

Treat the magnetic term as a perturbation. t...i..g=li ...
It induces quantum fluctuations of the
electric flux line connecting the charges. A
Tension o of the electric flux line is SRR R
reduced by quantum fluctuations. +1

1 R S -

o= CIN +...,C>0 ((0) = ot

21



GGround state for A «1//

H=Hy+ H;, Hy= Z 2”}”, le—Z)\coscI)mnpq
edges faces
Treat the magnetic term as a perturbation. t-..i..gmli ...

't induces guantum fluctuations of the
electric flux line connecting the charges. : L

Tension o of the electric flux line Is
reduced by quantum fluctuations. SRREEE SR

1 :
0'22]_ C I\ .., C>0 E(K)ZO'K




GGround state for A «1//

H:HO_I_Hl, HO: Z 277}”, le—Z)\COSq)mnpq
edges faces

Treat the magnetic term as a perturbation. t...i..g=li ...
It induces quantum fluctuations of the
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GGround state for A «1//

H:HO_I_Hl, HO: Z 277}”, le—Z)\COSq)mnpq
edges faces

Treat the magnetic term as a perturbation.  L...1...g71li ..
It induces quantum fluctuations of the N EI
electric flux line connecting the charges. L
Tension o of the electric flux line is SRR R
reduced by quantum fluctuations. +1

1 A S R

o= CIN +...,C>0 ((0) = ot

21



GGround state for A «1//

H:HO_I_Hl, HO: Z 277}”, le—Z)\COSq)mnpq
edges faces

Treat the magnetic term as a perturbation. t...i..g=li ...
It induces quantum fluctuations of the
electric flux line connecting the charges. A
Tension o of the electric flux line is SRR R
reduced by quantum fluctuations. +1

1 R S -

o= CIN +...,C>0 ((0) = ot

21



Ground state for A »>1//

H=Hy+Hy, Hy=-)% Acos®uupg, Hi= ) 2
faces edges
Neglect the weak electric term. The ,
magnetic term is minimized if all @ = 0.
This condition is independent of the """""""""
charge sector (® and Q commute). LT
Energy of two charges does not depend AR S .
N the distance between them.

0
Electric charges are not confined.



Ground state for A »>1//

B
H=Hy+Hy, Hy=-)% Acos®uupg, Hi= ) ¥
faces edges

reat the electric term as a perturbation ’ _______
inducing small fluctuations of @around 0. & & :
H = Z Y | Z 5 - const
edges faces . . : . .

This yields regular (non-compact) E&M
with a speed of light ¢ = v/ A/I R SERTTEEE
Qz L -i- . | of

no confinement!

Coulomb’s law, €(£) = 577




String tension in d=3

confinement Coulomb’s law

0 (IN)e 1B

Two distinct phases of matter: confined and deconfined.
String tension can be used as an order parameter whose
presence or absence determines which phase we are in.




String tension in d=2

confinement
>
0 1B

One confining phase of matter for all couplings IA < oo.



Quantization revisited

We assumed that ¥(A + 27) = ¥ (A)
because physical variables are 27-periodic in A.

wm(A) — e—imA/\/%,
m = 0,::1,::2, “ o
Em(A) = mipm(A)

But physical quantities are bilinear in ¢ and ".
Hence a more relaxed boundary condition:

(A +2m) =ePP(A), Y (A+2m)=e "Yp*(A)

¢ = const




Quantization revisited

Antiperiodic boundary conditions:
(A +2m) = —(A)
Y, (A) = e_i”A/\/ 27

Ewy(A) — le/(A)
I 3

V= T—,T—,...
2" 2

Electric field is quantized to half-integer values.



GGround state for A «1//

En
H=Hy+H, Hy=)» T Hi ==Y Acos Py
edges faces
Neglect the weak magnetic term. e SELTEEE SREEEt SEb

No-charge sector: o
Qm=0 everywhere. - - | .
Emn = £1/2 everywhere. ¢ ¢ f ¢

Classical spin ice states! v 4 | ¢



GGround state for A «1//

Neglect the weak magnetic term.

Sector with two probe charges:
Qm=0, except for two Qm= +1.
Emn = £1/2 everywhere.

“Magnetic monopoles™ of spin ice
become unit electric charges.



GGround state for A «1//

En
H=Hy+H, Hy=)» T Hi ==Y Acos Py
edges faces
Neglect the weak magnetic term. R Rt It St

Sector with two probe charges:
Qm=0, except for two Qm= +1.
Emn = £1/2 everywhere.

“‘Magnetic monopoles” of spinice v ¢ v %
become unit electric charges. R L SELEEE e



GGround state for A «1//

H=Hy+ H,, Hy= Z = le—Z)\COSCI)mnpq
edges faces
(A +27m) = —y(A)

Ev,(A) =viy,(A) v==£_

This construction also works on the
pyrochlore lattice. The gauge field
A lives on edges of the diamond
lattice whose vertices are centers
of tetrahedra.




GGround state for A «1//

(A +2m) = —y(A)
Ev,(A)=viu(A) v==%-

This construction also works on the
pyrochlore lattice. The gauge field
A lives on edges of the diamond
lattice whose vertices are centers
of tetrahedra.




GGround state for A «1//

Emn
H=Hy+H, Hy=)» T Hi ==Y Acos Py
edges faces
Treat the weak magnetic term as e ST S T it
a perturbation. + ¢ * *

Operators e+® increment E on all ¢ * f ¢
edges around a face by +1.

Quantum spin ice. ¢ ¢ ; f
L. Savary and L. Balents (2012). SRR N U N
S.B. Lee, S. Onoda, and L. Balents (2012).
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GGround state for A «1//

Emn
H=Hy+H, Hy=)» T Hi ==Y Acos Py
edges faces
Treat the weak magnetic term as e ST S T it
a perturbation. + ¢ * *

Operators e+® increment E on all ¢ ¢ * +
edges around a face by +1.

Quantum spin ice. 1 + ; f
L. Savary and L. Balents (2012). AR S S SRR
S.B. Lee, S. Onoda, and L. Balents (2012).



GGround state for A «1//

E2
H=Hy+H), Hy=)» 2

edges faces

Operators e+® increment E on all
edges around a face by +1.

"‘Magnetic monopoles” become
mobile.

Need to add matter particles:
Hy = —1 Z bl etAmnp, + H.c.

edges



GGround state for A «1//

B
H=Hy+ H;, Hy= Z 07 Hl——Z)\COS(I)mnpq
edges faces
Operators e#® increment £ on all »

edges around a face by +1.

"‘Magnetic monopoles” become
mobile.

Need to add matter particles:
—1 Z l;;fne_iAm”En + H.c.

edges



U(1) gauge theory on kagome

E2.

_ H=Y "
Q=-1/2 _tz T zAjajJ
Q: + | A (17)

\A ( o

/.H. Hao and O. Tchernyshyov, Phys. Rev. B 87, 214404 (2013).



U(1) gauge theory on kagome

EZ?

_ H=Y "
Q=-1/2 _tz T zAjajJ
Q=+| A (17)

\A / o

/.H. Hao and O. Tchernyshyov, Phys. Rev. B 87, 214404 (2013).



