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Measurements of the Hall voltage of a two-di '

1 I
~ ] 0 ~ ~

wo- imensiona electron gas, realized with a
si icon metal-oxide-semiconductor field-effect transistor, show that the Hall resi
at particular, experimentall well-d

ow a e a resistance

which de end onl
y we - e ined surface carrier concentrations h f' d

p y on the fine-structure constant and speed of li ht d '
as ixe va ues

the come trg ry of the device. Preliminary data are reported.~ ~ ~

o ig, an is insensitive to

PACS numbers: 73.25.+i, 06.20.Jr, 72.20.My, 73.40.Qv

In this paper we report a new, potentially high-
accuracy method for determining the fine-struc-
ture constant, n. The new approach is based on
the fact that the degenerate electron gas in the in-
version layer of a MOSFET (metal-oxide-semi-
conductor field-effect transistor) is fully cluan-
tized when the transistor is operated at helium
temperatures and in a strong magnetic field of
order 15 T.' The inset in Fig. 1 shows a schem-
atic diagram of a typical MOSFET device used in
this work. The electric field perpendicular to the
surface (gate field) produces subbands for the mo-
tion normal to the semiconductor-oxide interface,
and the magnetic field produces Landau quantiza-
tion of motion parallel to the interface. The den-
sity of states D(E) consists of broadened 5 func-
tions'; minimal overlap is achieved if the mag-
netic field is sufficiently high. The number of
states, NL, within each Landau level is given by
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where we exclude the spin and valley degenera-
cies. If the density of states at the Fermi ener-
gy, N(EF), is zero, an inversion layer carrier
cannot be scattered. , and the center of the cyclo-
tron orbit drifts in the direction perpendicular to
the electric and magnetic field. If N(FF) is finite
but small, an arbitrarily small rate of scattering
cannot occur and localization produced b th l
lxf t

y e ong
e arne is the same as a zero scattering rate,

i.e., the same absence of current-carrying states
occurs. ' Thus, when the Fermi level is between

n=Q -n=l n=2

= Vg/V

FIG. l. Recordings of the Hall voltage U and th
vol

H, an e

f
tage drop between the potential prob Uo es, &&, asa

unction of the gate voltage V at T = 1.5 K. The con-
stant magnetic field {B) is 18 T and the source drain
current, l, is 1 A.p, . The inset shows a top view of the
device with a length of I =400 pm, a width of 8' =50 pm,
and a distance between the potential probes f I
p,m.
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• Two types of energies: kinetic and interaction.

• Magic of quantum mechanics: In a magnetic field, 
the kinetic energy takes certain special values, that 
is, it becomes quantized! (Landau levels.)

• First forget about the interaction and minimize the 
kinetic energy.

Minimize energy
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Origin of the IQHE
• At general filling factors, we have many possibili9es:
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• At integer filling factors, however, unique gapped states are obtained.
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• The IQHE is well understood. (Disorder also plays a crucial role, but 
that is not directly relevant to this talk.)
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The IQHE mystery solved!



Thouless

Topological interpretation

Haldane

The IQHE mystery solved!



Yet another 
surprise!

RH =

h

1

3
e2

The  effect1/3



Yet another 
surprise!

RH =

h

1

3
e2

z j = x j� iy jΨ1/3 = ∏
j<k

(zj − zk)3e−∑j |zj|
2/4

The  effect1/3



This was still only the beginning!

Improved experiments revealed an incredibly rich 
structure.

Not over yet!
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Willett et al.
R → 0

The fractional quantum Hall effect (FQHE)



• The FQHE is among the most stunning manifestations of quantum 
mechanics at the macroscopic scale. It is one of the most striking 
mysteries nature has presented in quantum condensed matter. 

The fractional quantum Hall effects

Pan, Stormer et al.

~100 fractions!
R



• The FQHE is among the most stunning manifestations of quantum 
mechanics at the macroscopic scale. It is one of the most striking 
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Objec9ve:  
• solve this problem as a func9on of the filling factor 
• iden9fy the underlying physics 
• predict, calculate
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• Exact solution not known. 

• No small parameter.

• The most srongly correlated system in the world.

• Infinite possibilities.  At , a system of  
electrons has  distinct configurations, and a system 
of a billion electrons has .

ν = 2/5 100
1069

108×108

• Don’t know where to begin. No hope.

• Interaction essential. 

Impossible ?!
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• Observation: The fractional and the integer quantum Hall effects 
are qualitatively identical.

• Question 2: Can we understand the FQHE as some kind of IQHE?

• Question 3: What are the weakly interacting emergent fermions 
whose IQHE produces the FQHE of electrons?

• Question 1: Can we unify the two? 

The power of the right question at the right time
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Composite-Fermion Approach for the Fractional Quantum Hall Effect
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In the standard hierarchical scheme the daughter state at each step results from the fractional quan-
tum Hall effect of the quasiparticles of the parent state. In this paper a new possible approach for un-
derstanding the fractional quantum Hall effect is presented. It is proposed that the fractional quantum
Hall effect of electrons can be physically understood as a manifestation of the integer quantum Hall
effect of composite fermionic objects consisting of electrons bound to an even number of Aux quanta.

PACS numbers: 73.50.Jt, 73.20.Dx

Even though the experimental observations of the in-
teger' and the fractional quantum Hall effect (QHE)
are essentially identical, except for the value of the quan-
tized Hall resistance, there are, roughly speaking, three
different theoretical schemes for their explanation.
While the integer QHE (IQHE) is thought of essentially
as a noninteracting electron phenomenon, the fractional
QHE (FQHE) is believed to arise from a condensation
of the two-dimensional (2D) electrons into a "new col-
lective state of matter" as a result of interelectron in-
teractions. Even within the FQHE the "fundamental"
fractions —,', 5, . . . play a special role and the other frac-
tions are obtained in a hierarchical scheme in which a
daughter state is obtained at each step from a condensa-
tion of the quasiparticles of the parent state into a corre-
lated low-energy state.

The purpose of this Letter is to present a theoretical
framework which enables an understanding of both the
IQHE and the FQHE in a unified scheme as two
diA'erent manifestations of the same underlying physics.
It is argued that the possibility of QHE at fractional
filling factors p/(2mp ~ 1), where m and p are integers,
arises because the correlations in the phase factors at
these filling factors are very similar to the correlations
present at integer filling factors p. This approach not
only gives all the observed fractions (except —', , which
therefore requires some additional physics ), and ex-
plains in doing so why only fractions with odd denomina-
tors are observed, but also provides the order of their sta-
bility, in agreement with experiments. Furthermore, it
suggests a generalization of the Laughlin wave functions
to other fractions.

I start by proposing a remarkably simple picture for
understanding the origin of the FQHE. The important
parameter is the ratio of the total number of flux quanta
(po =bc/e) to the total number of electrons, which is the
inverse of the filling factor v (in the thermodynamic lim-
it) and specifies the average number of flux quanta avail-
able to each electron. Consider a 2D electron gas in the
presence of a transverse magnetic field at an integer
filling factor v=p, so that there is an average flux po/p
per electron. The electronic wave function ++.~ (+

corresponds to magnetic field in the + z direction) in
this situation is rather insensitive to the details of the in-
terelectron interactions and is determined mainly by vir-
tue of the fermionicity of the electrons. Thus, the long-
range correlations due to the Fermi statistics provide ri-
gidity to the electron system at integer filling factors
which results in the phenomenon of IQHE. It is useful
to think in the path-integral language: The partition
function gets contributions from the closed paths in the
configuration space (for example, a path in which one
electron moves in a loop while the others are held fixed,
or a cooperative ring exchange path ). The phase associ-
ated with each closed path has two contributions: the
Aharonov-Bohm phase which depends on the flux en-
closed in the loop, and the statistical phase which de-
pends on how many electrons participate in the path. An
incompressible state is obtained at integer filling factors
presumably because of some special correlations (which
may not be easily identified) built in the phase factors
corresponding to the various paths. Now attach to each
electron an infinitely thin magnetic solenoid carrying a
flux ago (pointed in the —z direction). For lack of a
better name, we term an electron bound to a flux tube a
"composite particle. " As is well known, ' the statistics
of the composite particles is in general fractional, and is
such that an exchange of two composite particles pro-
duces a phase factor ( —1)'+' (Ref. 11). The relevant
case here is when a is equal to an even integer (a =2m),
and the composite particles are fermions. It is easy to
see that in this case the phase factor acquired along a
given closed path is identical to the phase factor acquired
in the absence of the flux tubes, implying that the corre-
lations in the phase factors for a=2m are the same as
those for a=0. Since these correlations are responsible
for rigidity and QHE at integer filling factors, one can
expect the composite fermion state +~~, which is ob-
tained by adding to each electron in @~~ a flux 2mpo, to
also be rigid and show QHE.

To determine the filling factor of +wz we exploit an
ingenious observation due to Arovas et al. ' and Laugh-
lin:'' A (uniform) liquid of electrons, each carrying
with it a flux ago, is equivalent, in a mean fteld sense to
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ϕ0 = hc
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composite fermion =  electron +  quan9zed vor9ces 
oMen pictorially viewed as  

composite fermion =  electron +  magne9c flux quanta
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2m

A sudden insight



148 Foundations of the Composite Fermion Theory

Fig. 5.5. The golden path from the IQHE to the FQHE. We begin with an
IQHE state (a); attach to each electron two magnetic flux quanta to convert
it into a composite fermion (b); and spread out the attached flux to obtain
electrons in a higher magnetic field, which is a FQHE state (c).

Fig. 5.6. Each electron captures two flux quanta to turn into a composite
fermion. Composite fermions sense the residual magnetic field, which is much
smaller than the applied magnetic field.

will undergo a complex evolution. Nonetheless, if our assumption is
correct, then Fig. (5.2) also represents, qualitatively, the spectrum at B.

The absence of a phase transition is an assumption that remains to
be verified, and will surely not be valid for all n and p. If it is valid for
some parameters, however, then the above construction gives a possible
way of seeing how a gap can result at the fractions of Eq. (5.20). Three
remarkable features already provide a strong hint that we are on the right
track. First, these fractions are precisely the observed fractions. Second,
they have odd-denominators. Third, we naturally obtain sequences of
fractions.

The three steps are depicted schematically in Fig. (5.5). The net
effect, in a manner of speaking, is that each electron has absorbed 2p flux
quanta from the external magnetic field to transform into a composite
fermion. Composite fermions experience the residual magnetic field B∗.
This is shown in Fig. (5.6). See Fig. (5.7) for a humorous portrayal of
composite fermions.

Step IV: Quantitative theory. The CF physics described above
is sufficient for an explanation of much of the phenomenology of the

 = densityϕ0 = hc/e, ρ

BCF = B − 2mρϕ0 νCF = ν
1 − 2mν

ν = νCF

2mνCF ± 1
CF filling factorνCF = ρϕ0/ |BCF | =

B BCF

• Postulate: Strongly interacting electrons at  transform into weakly 
interacting composite fermions at . The CFs form their own 
Landau-like levels called “  levels,” and have a filling factor .

B
BCF

Λ νCF

The composite fermion: pictorial view
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In particular:  νCF = p ⇔ ν = p
2mp ± 1
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• A single equation provides ansatz wave functions for all eigenstates 
(from which eigenenergies may be obtained) at all filling factors. 

• Unique, parameter-free wave functions for the ground states and their 
low-energy charged and neutral excitations at , i.e. at  

.
νCF = p

ν = p/(2mp ± 1)
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Effective (Chern-Simons) field theory of CFs



• A vortex is an inherently quantum mechanical (carries quantum 
mechanical phases), topological, and collective entity. 

• Hence the CF is also a quantum mechanical, topological, and 
collective particle. The Berry phases due to the vortices partly 
cancel the AB phase from the external magnetic field to 
produce .BCF

Ψvortex(η) =
N

∏
j=1

(zj − η) =
N

∏
j=1

|zj − η |eiθj

The composite fermion is inherently quantum

η

zj

θj
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Of course, experiments have the final word.  The theory needs to 
make (nontrivial) predictions and explain experimental facts.

How real are composite fermions?

We shall see that the CF theory successfully predicts thousands 
of nontrivial facts in a unified, natural and unambiguous fashion.  
Observations that would appear bewildering are seen as trivial 
and unavoidable consequences of CFs.
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ν = p
2mp ± 1Consider νCF = ν

1 − 2mν
= ± p⇒

Ψ1/3 = PLLLΦ1∏
j<k

(zj − zk)2 Ψ2/5 = PLLLΦ2∏
j<k

(zj − zk)2 Ψ3/7 = PLLLΦ3∏
j<k

(zj − zk)2

ν = 1
3 νCF = 1⇒ ⇒ ⇒ν = 2

5 νCF = 2 ν = 3
7 νCF = 3

At these filling factors, the infinite choices of the electron problem 
disappear when we view the problem in terms of non-interacting 
composite fermions, and unique, gapped states are obtained !!

IQHE of CFs =  FQHE of electronsp/(2mp ± 1)
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only at elevated temperatures, probably above the point at
which the solid has melted.

The quantum well is 500 Å wide and d-doped sym-
metrically from both sides at a distance of 2200 Å. The
electron density of n ! 1.0 3 1011 cm22 and mobility of
m ! 10 3 106 cm2"Vsec are established after illumina-
tion by a red light emitting diode. At this density, only one
electric subband is occupied. The specimen has a size of
5 mm 3 5 mm, with 8 indium contacts around its perime-
ter. The data were taken in dilution refrigerators with dif-
ferent base temperatures placed in three different magnets:
!35 mK in 18 T, !70 mK in 33 T, and !70 mK in 42 T.
Low frequency #!3 4 Hz$ lock-in amplifier techniques
were employed to measure Rxx, with an excitation current
of 0.1–1 nA to avoid electron heating.

The high quality of this sample (Fig. 1) is evident from
the FQHE sequences p"#2p 6 1$ showing Rxx features
up to n ! 10"19 and 10"21, the sequences p"#4p 6 1$
showing features up to n ! 6"23 and 6"25, and the ob-
servation of novel FQHE states, e.g., at n ! 4"11, be-
tween n ! 1"3 and n ! 2"5. Most remarkable is the
flat background around n ! 1"4. All previous quantum
Hall samples show a rising background starting around
n ! 2"7, indicating that the sample is approaching the in-
sulating regime. No such background is apparent here and
Rxx at n ! 1"4 is practically temperature independent as
expected for CF liquid at an even-denominator filling fac-
tor. This extremely high quality 2DES allows us to pursue
our transport measurement to very low filling factors.

Figure 2 shows Rxx at different temperatures for filling
factors 1"5 $ n $ 1"7. In all traces the n ! 1"5 state is
well developed, showing vanishing resistance in Rxx and
a clean quantized Hall plateau in Rxy (not shown). Simi-
lar to all high-quality samples, as T ! 0, Rxx diverges
for n , 1"5 and for 2"9 , n , 1"5 (just to the left off
the graph). The 80 mK trace clearly shows this divergent
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FIG. 1. Diagonal resistance Rxx of a sample of n ! 1.0 3
1011 cm22 and m ! 10 3 106 cm2"V sec. Arrows mark several
key fractional Landau level filling factors.

behavior. In fact, Rxx at n ! 0.21 shows activated behav-
ior with a characteristic energy of 1.1 K. This value is
very close to those obtained earlier in samples of similar
density but with poorer FQHE features and a rising back-
ground around n ! 1"4 [18,19]. This seems to suggest
that a limiting state has been reached. The reentrant insu-
lating phase and, by extension, the insulating phase beyond
n ! 1"5 appear to be of intrinsic origin and no longer
dominated by appreciable disorder. These data are taken as
indicating the formation of a pinned Wigner solid ground
state for filling factors n , 2"9, interrupted solely by a
FQHE state at n ! 1"5. In particular, for n , 1"5 the
2DES becomes insulating and no further FQHE features
are observed for T ! 0. However, raising the temperature
to 115 mK through 165 mK uncovers multiple minima in
Rxx that occur at distinct, rational fractional filling factors
n ! 2"11, 3"17, 3"19, 2"13, and 1"7. They represent the
p"#6p 6 1$ series of FQHE states, emanating from the
CF liquid at n ! 1"6. The observation of this sequence
is a demonstration of the applicability of the CF model
even to these very low filling factor FQHE states within
the regime of the Wigner solid, albeit at elevated tempera-
tures. Jumping ahead to the data of Fig. 3, taken at the
yet more extreme conditions of a hybrid magnet, one can
even discern features at n ! 2"15, 2"17, and 1"9. These
are the first representatives of the p"#8p 6 1$ sequence
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FIG. 2. Rxx above 20 T at various temperatures. The verti-
cal, dashed lines show the positions of the Landau level filling
factors n ! 1"5, 2"11, 3"17, 3"19, 2"13, and 1"7. The inset
summarizes high-T limits (open squares) and low-T limits (solid
dots) for the observation of features in Rxx at various n. The
dashed line is only a guide to the eye. The low-T limits may be
viewed as the melting line from Wigner crystal to FQHE liquids
and the high-T limits are measures of the energy gap of FQHE
states (see text for details).
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only at elevated temperatures, probably above the point at
which the solid has melted.

The quantum well is 500 Å wide and d-doped sym-
metrically from both sides at a distance of 2200 Å. The
electron density of n ! 1.0 3 1011 cm22 and mobility of
m ! 10 3 106 cm2"Vsec are established after illumina-
tion by a red light emitting diode. At this density, only one
electric subband is occupied. The specimen has a size of
5 mm 3 5 mm, with 8 indium contacts around its perime-
ter. The data were taken in dilution refrigerators with dif-
ferent base temperatures placed in three different magnets:
!35 mK in 18 T, !70 mK in 33 T, and !70 mK in 42 T.
Low frequency #!3 4 Hz$ lock-in amplifier techniques
were employed to measure Rxx, with an excitation current
of 0.1–1 nA to avoid electron heating.

The high quality of this sample (Fig. 1) is evident from
the FQHE sequences p"#2p 6 1$ showing Rxx features
up to n ! 10"19 and 10"21, the sequences p"#4p 6 1$
showing features up to n ! 6"23 and 6"25, and the ob-
servation of novel FQHE states, e.g., at n ! 4"11, be-
tween n ! 1"3 and n ! 2"5. Most remarkable is the
flat background around n ! 1"4. All previous quantum
Hall samples show a rising background starting around
n ! 2"7, indicating that the sample is approaching the in-
sulating regime. No such background is apparent here and
Rxx at n ! 1"4 is practically temperature independent as
expected for CF liquid at an even-denominator filling fac-
tor. This extremely high quality 2DES allows us to pursue
our transport measurement to very low filling factors.

Figure 2 shows Rxx at different temperatures for filling
factors 1"5 $ n $ 1"7. In all traces the n ! 1"5 state is
well developed, showing vanishing resistance in Rxx and
a clean quantized Hall plateau in Rxy (not shown). Simi-
lar to all high-quality samples, as T ! 0, Rxx diverges
for n , 1"5 and for 2"9 , n , 1"5 (just to the left off
the graph). The 80 mK trace clearly shows this divergent
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FIG. 1. Diagonal resistance Rxx of a sample of n ! 1.0 3
1011 cm22 and m ! 10 3 106 cm2"V sec. Arrows mark several
key fractional Landau level filling factors.

behavior. In fact, Rxx at n ! 0.21 shows activated behav-
ior with a characteristic energy of 1.1 K. This value is
very close to those obtained earlier in samples of similar
density but with poorer FQHE features and a rising back-
ground around n ! 1"4 [18,19]. This seems to suggest
that a limiting state has been reached. The reentrant insu-
lating phase and, by extension, the insulating phase beyond
n ! 1"5 appear to be of intrinsic origin and no longer
dominated by appreciable disorder. These data are taken as
indicating the formation of a pinned Wigner solid ground
state for filling factors n , 2"9, interrupted solely by a
FQHE state at n ! 1"5. In particular, for n , 1"5 the
2DES becomes insulating and no further FQHE features
are observed for T ! 0. However, raising the temperature
to 115 mK through 165 mK uncovers multiple minima in
Rxx that occur at distinct, rational fractional filling factors
n ! 2"11, 3"17, 3"19, 2"13, and 1"7. They represent the
p"#6p 6 1$ series of FQHE states, emanating from the
CF liquid at n ! 1"6. The observation of this sequence
is a demonstration of the applicability of the CF model
even to these very low filling factor FQHE states within
the regime of the Wigner solid, albeit at elevated tempera-
tures. Jumping ahead to the data of Fig. 3, taken at the
yet more extreme conditions of a hybrid magnet, one can
even discern features at n ! 2"15, 2"17, and 1"9. These
are the first representatives of the p"#8p 6 1$ sequence
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FIG. 2. Rxx above 20 T at various temperatures. The verti-
cal, dashed lines show the positions of the Landau level filling
factors n ! 1"5, 2"11, 3"17, 3"19, 2"13, and 1"7. The inset
summarizes high-T limits (open squares) and low-T limits (solid
dots) for the observation of features in Rxx at various n. The
dashed line is only a guide to the eye. The low-T limits may be
viewed as the melting line from Wigner crystal to FQHE liquids
and the high-T limits are measures of the energy gap of FQHE
states (see text for details).
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n ≈ 1.0 × 1011 cm–2. The specific layer structure for this sample is 
provided in Supplementary Table 1. Figure 3a shows a full-field 
longitudinal magnetoresistance (Rxx) trace of the sample, while  
Fig. 3b,c focuses on specific regions near zero magnetic field and 
near ν = 1/2, respectively; ν = hn/eB is the Landau-level filling  
factor, where h is the Planck constant, e is the fundamental charge 
and B is the perpendicular magnetic field. It is clear from the data 
that the sample has very high quality. For example, as seen in Fig. 3b, 
there are prominent signatures of Shubnikov–de Hass oscillations 
up to ν = 106 at B < 0.04 T. This implies that the Landau-level broad-
ening in this sample is smaller than the B = 0.04 T cyclotron energy 
gap of heB/m* ≈ 68 μeV (m* = 0.067 is the effective mass of electrons 
in GaAs in units of the free-electron mass). In addition, the data 
plotted in Fig. 3c display high-order FQH states up to ν = 16/31 and 
ν = 14/29 on the left and right flanks of ν = 1/2. We compare these 
results to those reported previously for epitaxially grown samples 
and 2D materials with ultra-high quality. In total, compared to pre-
vious ultra-high-quality GaAs samples with similar density42, nine 
extra FQH states are observed near ν = 1/2 in our sample, whose 
lowest-order and highest-order Landau-level fillings are marked 
in red on each side of ν = 1/2. By comparison, in ultra-high-quality 
monolayer graphene samples, high-order FQH states have been 
observed up to ν = 8/15 and ν = 7/15 on the left and right flanks of 
ν = 1/2 at similar temperatures but higher magnetic fields (~14 T)24; 
the data presented in Fig. 3 exhibit 15 additional FQH states with 
respect to these samples.

The quality of our samples in this density range also stands out 
at higher Landau-level fillings. Figure 4a,b shows expanded Rxx 
traces of the Fig. 3 sample near ν = 3/2 and ν = 5/2, respectively. 

Remarkably, even at this relatively low density, FQH states up to 
ν = 20/13 are observable in the vicinity of ν = 3/2. Furthermore, 
the ν = 5/2 and other FQH states in the second orbital Landau level 
(N = 1) are extraordinarily strong, considering that they occur at 
B < 1.9 T. In fact, the activation gap we measure for the ν = 5/2 FQH 
state is 5/2Δ ≈ 820 mK (Supplementary Fig. 4), surpassing the value 
of 5/2Δ ≈ 625 mK measured in previous ultra-high-quality samples 
by a considerable margin47. This observation is particularly note-
worthy given that the density of this sample is only ~1/3 of that of 
the 2DESs used in previous evaluations.

Given the potentially non-Abelian nature of the ν = 5/2 FQH 
state48,49, the data presented here have exciting implications for 
the realization of fault-tolerant, topological quantum computing 
devices. Using optimistic estimates for qubit error rate48, our larger 
5/2Δ value implies a factor of ~106 improvement compared to previ-
ous ultra-high-quality samples when operations are performed at 
T = 5 mK. In principle, if the samples presented here do not suf-
fer from severe detrimental effects caused by lithographic proce-
dures and are amenable to gating, one should be able to perform 
substantially more robust qubit operations at much lower magnetic 
fields. Previously, samples with similar structure have been used for 
interferometry experiments that can be considered a basis for qubit 
operation in GaAs 2DESs49, so we are optimistic that the technical 
details can be worked out.

Figure 4c shows magnetotransport data of a different sample 
with a similar density of n ≈ 1.1 × 1011 cm–2 in magnetic field ranges 
that correspond to higher (N = 2 and 3) orbital Landau levels. 
Well-quantized, reentrant integer quantum Hall states, as well as 
signatures of stripe or nematic phases, are observable at magnetic 
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Fig. 3 | Low-temperature (T!≈!30!mK) magnetoresistance data of a GaAs 2DES with density n!≈!1.0!×!1011!cm–2. a, A full-field Rxx versus magnetic 
field trace. The Landau-level fillings (ν) of several quantum Hall features are marked. b, Expanded view of the low-field magnetoresistance near B!=!0. 
Resistance minima at fillings as high as ν!=!106 can be seen in the Shubnikov–de Hass oscillations. c, Expanded view of the magnetoresistance near ν!=!1/2. 
High-order FQH states up to ν!=!11/21 and 10/21 have been observed in previous ultra-high-quality samples with similar electron density (marked in 
black)42. New FQH states at ν!=!12/23, 13/25, 14/27, 15/29 and 16/31 are seen on the left of ν!=!1/2, and FQH states at ν!=!11/23, 12/25, 13/27 and 14/29 
on the right flank of ν!=!1/2. The lowest-order and highest-order new FQH state on each side of ν!=!1/2 is marked in red.
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insulating Rxx [27]. These are the Jain-sequence FQHSs of
6CFs [ν ¼ p=ð6p# 1Þ], emanating from ν ¼ 1=6, analo-
gous to the standard Jain-sequence FQHSs of 2CFs and
4CFs observed on the flanks of CF Fermi seas at ν ¼ 1=2
and 1=4; see Fig. S4 in Supplemental Material (SM) [28]
for data near ν ¼ 1=2 and 1=4. Our observation is con-
sistent with recent calculations that indicate that, in the
low-disorder limit, Jain-sequence FQHSs of 6CFs should
prevail at ν ¼ 1=7 and 2=13 [17]. The appearances of the
very-high-order FQHSs near ν ¼ 1=2 and 1=4, and the
rarely observed FQHSs near ν ¼ 1=6 [23–25], collectively
demonstrate the exceptionally high quality of our 2DES,
specially at such a low density (n ¼ 4.4, in units of
1010 cm−2, which we use throughout the Letter).
Our main finding is the pronounced, sharp minimum in

Rxx at the even-denominator filling ν ¼ 1=6. Aswe illustrate
below, the characteristics of thisminimumarevery similar to
those of the nearby, emerging, odd-denominator FQHSs.
Our data signal a developing even-denominator FQHS at
ν ¼ 1=6, likely stabilized by the pairing of 6CFs.
Figure 1(a) also shows high-field Rxx vs B traces at

different temperatures. As T increases from 80 to 121 mK,
Rxx at ν < 1=5 decreases by more than an order of
magnitude. Meanwhile, Rxx minima at ν ¼ 1=6 and ν ¼
p=ð6p# 1Þ gradually weaken and eventually turn into
inflection points [28,39]. To highlight FQHS features, in
Fig. 1(b), we present ΔRxx vs B traces, with ΔRxx
representing resistance after subtracting the smooth back-
ground; see Sec. I of SM for details [28]. We observe
sharp ΔRxx minima at ν ¼ p=ð6p# 1Þ for p ¼ 1, 2, 3, 4,
and at ν ¼ 1=6. The ν ¼ p=ð6p# 1Þ minima are weaker

for larger p and weaken with increasing T, consistent with
standard Jain-sequence FQHSs. The ν ¼ 1=6 minimum
is sharp and exhibits similar temperature dependence to
those at Jain-sequence fillings, signaling a developing
FQHS at ν ¼ 1=6.
We note that with decreasing temperature, instead of

approaching zero, Rxx at ν¼ 1=6 and p=ð6p#1Þ increases.
This is because an insulating behavior, which is a mani-
festation of a pinned WC [18–22], is dominant in the whole
range of ν < 1=5. Our observation signals a close com-
petition between the FQHSs and WC states. More specifi-
cally, the energies of WC and FQHSs are so close that
FQHSs only win in a very narrow range of ν [17].
Therefore, in a realistic 2DES, a small local variation of
filling factor caused by a minuscule density inhomogeneity
or disorder can lead to the formation of WC domains
and prevent the percolation of the fractional quantum
Hall (FQH) liquid [40]. Our data are reminiscent of what
was historically observed at ν ¼ 1=5 in GaAs 2DESs
[19,20,37,38,41,42]. Initially, in modest-quality samples,
only an Rxx minimum that rose with decreasing temper-
ature was seen because of the significant amount of
disorder [41,42]. With improved sample quality, perco-
lation of the FQH liquid was eventually achieved, exhib-
iting a vanishing Rxx accompanied by a quantized Hall
plateau, firmly establishing that the ground state at
ν ¼ 1=5 is a FQHS [19,37,38].
We measured a second sample from the same wafer [43].

Figure 2(a) shows the Rxx vs 1=ν traces measured at
T ≃ 80 mK with n ranging from 2.77 to 5.10, while
maintaining symmetric charge distribution. We observe a

FIG. 1. (a) Longitudinal resistance (Rxx) vs perpendicular magnetic field (B) traces for our ultra-high-mobility 2DES in the extremely
small filling regime (1=5 > ν > 1=7), measured at different temperatures [27]. The 2DES is confined to a 70-nm-wide QW, and has a
density of 4.4 × 1010 cm−2 and a record mobility of 22 × 106 cm2=Vs at this density. The magnetic field positions of several LL fillings
are marked. Our data exhibit numerous local minima in Rxx at odd-denominator fillings 1=5, 2=11, 3=17, 1=7, 2=13, and 3=19. These
fillings correspond to the Jain-sequence states of six-flux CFs (6CF). Remarkably, we also observe a local minimum in Rxx at the even-
denominator filling ν ¼ 1=6, suggesting a developing FQHS. (b) ΔRxx vs B traces for the same set of data, where ΔRxx is the resistance
after subtracting the increasing, smooth background [28]. (c) Self-consistent charge distribution (red) and potential (black) for the 2DES.
(d) A possible origin of the 1=6 FQHS: each electron captures six flux quanta to turn into a 6CF. Then 6CFs undergo a pairing instability
and condense into a FQHS.
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clear inflection point at ν ¼ 1=6. It becomes weaker at
lower densities [44]. In addition, well-defined Rxx minima
are observed at ν ¼ 2=11 in the whole range of n, and at
ν ¼ 1=7 in the lower density traces where we could reach
ν ¼ 1=7with our magnet. Figure 2(b) displays a color-scale
plot of ΔRxx as a function of 1=ν and n. Distinct ΔRxx
minima are observed at ν ¼ 2=11, 3=17, 3=19, 1=6, 2=13,
and 1=7, with their 1=ν positions remaining consistent
across different n, indicating that the signatures of the even-
denominator FQHS at ν ¼ 1=6, as well as the high-order
Jain-sequence FQHSs at ν ¼ p=ð6p# 1Þ, are intrinsic to
our ultra-high-quality 2DES.
Figure 2(c) data show the fate of the FQHSs at

yet smaller ν. Here, we observe Rxx minima at odd-
denominator ν ¼ 1=9, 2=17, and 2=15. Hints of developing
FQHSs were previously reported at ν ¼ 1=9 by optical and
transport measurements [24,45]. Recent calculations also
suggest that the ground state at ν ¼ 1=9 is likely a FQHS
[17]. Our data revealing Rxx minima at fixed fillings over a
range of densities provide strong evidence for the existence
of FQHSs at ν ¼ p=ð8p# 1Þ, namely at ν ¼ 1=9, 2=17,
and 2=15 [46]. Furthermore, the traces also exhibit an Rxx
minimum (or an inflection point) at the even-denominator
filling ν ¼ 1=8. The qualitative resemblance of the data
near ν ¼ 1=8 in Fig. 2(c) to Fig. 2(a) data suggests that the
physics for 6CFs for 1=7 < ν < 1=5 can be extended to
8CFs for 1=9 < ν < 1=7.
The signatures of the ν ¼ 1=6 FQHS are not specific to

one wafer. In Fig. 3 we present data for another ultra-high-
quality GaAs 2DES from a different wafer with a higher
density of 7.1 and a narrower QW width of 58.5 nm. We
find a clear, sharp Rxx minimum at ν ¼ 1=6 at 108 mK [47],
and an inflection point at a slightly higher temperature
of 116 mK.
One potential competitive ground state at ν ¼ 1=6 is a

metallic Fermi sea of 6CFs at zero effective magnetic field.

However, several observations suggest that the Rxx mini-
mum we observe at ν ¼ 1=6 is not indicative of a 6CF
Fermi sea: (i) At ν ¼ 1=2, where a Fermi sea of 2CFs is well
established, typically a smooth and broad minimum in Rxx
is observed; see, e.g., Figs. S4 and S5 in SM [28]. In
contrast, the Rxx minimum at ν ¼ 1=6 is sharp; see Figs. 1
and 3, and also the sharp peak in d2Rxx=dB2 [Fig. S2(b)].
The sharp Rxx minimum observed in the WC regime at
ν ¼ 1=6 indicates that the ν ¼ 1=6 state is flanked by WC
states. This strongly favors the interpretation of FQHS over

∆Rxx (MΩ)

-1.0

1.0
(b)(a) (c)

T    80 mK

FIG. 2. Density dependence. (a) Rxx vs 1=ν traces measured at T ≃ 80 mK for different densities n. Each trace is vertically shifted by
3 MΩ for clarity. n is tuned by symmetrically gating the 2DES from both the top and bottom. (b) Color-scale plot of ΔRxx as a function
of 1=ν and n. Several fillings are marked by white dotted lines. (c) Rxx vs 1=ν traces measured at T ≃ 100 mK and at very small ν. Rxx
minima are observed at ν ¼ 1=9, 2=17, 1=8, and 2=15.

FIG. 3. Data for a different sample. Rxx vs B traces for a sample
with a density of 7.1 × 1010 cm−2. Left inset: schematic diagram
showing the energies of WC and FQHSs vs 1=ν, indicating the
possibility of a downward cusp in energy at 1=ν ¼ 6, similar to
cusps at 1=ν ¼ 5 and 7. Right inset: self-consistent charge
distribution (red) and potential (black) for the 2DES confined
to a 58.5-nm-wide QW; w̃ denotes the electron layer thickness
(see text).
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only at elevated temperatures, probably above the point at
which the solid has melted.

The quantum well is 500 Å wide and d-doped sym-
metrically from both sides at a distance of 2200 Å. The
electron density of n ! 1.0 3 1011 cm22 and mobility of
m ! 10 3 106 cm2"Vsec are established after illumina-
tion by a red light emitting diode. At this density, only one
electric subband is occupied. The specimen has a size of
5 mm 3 5 mm, with 8 indium contacts around its perime-
ter. The data were taken in dilution refrigerators with dif-
ferent base temperatures placed in three different magnets:
!35 mK in 18 T, !70 mK in 33 T, and !70 mK in 42 T.
Low frequency #!3 4 Hz$ lock-in amplifier techniques
were employed to measure Rxx, with an excitation current
of 0.1–1 nA to avoid electron heating.

The high quality of this sample (Fig. 1) is evident from
the FQHE sequences p"#2p 6 1$ showing Rxx features
up to n ! 10"19 and 10"21, the sequences p"#4p 6 1$
showing features up to n ! 6"23 and 6"25, and the ob-
servation of novel FQHE states, e.g., at n ! 4"11, be-
tween n ! 1"3 and n ! 2"5. Most remarkable is the
flat background around n ! 1"4. All previous quantum
Hall samples show a rising background starting around
n ! 2"7, indicating that the sample is approaching the in-
sulating regime. No such background is apparent here and
Rxx at n ! 1"4 is practically temperature independent as
expected for CF liquid at an even-denominator filling fac-
tor. This extremely high quality 2DES allows us to pursue
our transport measurement to very low filling factors.

Figure 2 shows Rxx at different temperatures for filling
factors 1"5 $ n $ 1"7. In all traces the n ! 1"5 state is
well developed, showing vanishing resistance in Rxx and
a clean quantized Hall plateau in Rxy (not shown). Simi-
lar to all high-quality samples, as T ! 0, Rxx diverges
for n , 1"5 and for 2"9 , n , 1"5 (just to the left off
the graph). The 80 mK trace clearly shows this divergent
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FIG. 1. Diagonal resistance Rxx of a sample of n ! 1.0 3
1011 cm22 and m ! 10 3 106 cm2"V sec. Arrows mark several
key fractional Landau level filling factors.

behavior. In fact, Rxx at n ! 0.21 shows activated behav-
ior with a characteristic energy of 1.1 K. This value is
very close to those obtained earlier in samples of similar
density but with poorer FQHE features and a rising back-
ground around n ! 1"4 [18,19]. This seems to suggest
that a limiting state has been reached. The reentrant insu-
lating phase and, by extension, the insulating phase beyond
n ! 1"5 appear to be of intrinsic origin and no longer
dominated by appreciable disorder. These data are taken as
indicating the formation of a pinned Wigner solid ground
state for filling factors n , 2"9, interrupted solely by a
FQHE state at n ! 1"5. In particular, for n , 1"5 the
2DES becomes insulating and no further FQHE features
are observed for T ! 0. However, raising the temperature
to 115 mK through 165 mK uncovers multiple minima in
Rxx that occur at distinct, rational fractional filling factors
n ! 2"11, 3"17, 3"19, 2"13, and 1"7. They represent the
p"#6p 6 1$ series of FQHE states, emanating from the
CF liquid at n ! 1"6. The observation of this sequence
is a demonstration of the applicability of the CF model
even to these very low filling factor FQHE states within
the regime of the Wigner solid, albeit at elevated tempera-
tures. Jumping ahead to the data of Fig. 3, taken at the
yet more extreme conditions of a hybrid magnet, one can
even discern features at n ! 2"15, 2"17, and 1"9. These
are the first representatives of the p"#8p 6 1$ sequence
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FIG. 2. Rxx above 20 T at various temperatures. The verti-
cal, dashed lines show the positions of the Landau level filling
factors n ! 1"5, 2"11, 3"17, 3"19, 2"13, and 1"7. The inset
summarizes high-T limits (open squares) and low-T limits (solid
dots) for the observation of features in Rxx at various n. The
dashed line is only a guide to the eye. The low-T limits may be
viewed as the melting line from Wigner crystal to FQHE liquids
and the high-T limits are measures of the energy gap of FQHE
states (see text for details).
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FIG. 3. Rxx of the same sample as in Fig. 2 placed in a hybrid
magnet with fields up to 42 T at two different temperatures.

associated with the CF liquid state at n ! 1!8. Both ob-
servations attest to the wide applicability of the CF classi-
fication scheme.

Returning to Fig. 2 one notices that the resistance val-
ues are high compared to typical Rxx values in the FQHE
regime. They are in the MV range, rather than the usual
kV range (see Fig. 1). For any temperature, as the mag-
netic field is raised, Rxx becomes increasingly noisy and
ultimately collapses [25], taking on even negative values
as illustrated in the 135 mK trace. This is accompanied by
a sharply increasing out-of-phase component, indicating
resistances in the range of R " 1!#vC$ " 1 GV (using
"3 Hz and "100 pF stray capacitance). However, Rxx
is well behaved up to the turnaround point (e.g., 27 T
at 135 mK) for all temperatures measured. We limit our
analysis to this regime.

There seems to be an optimum temperature for the de-
velopment of any given fraction and a lowest and highest
temperature cutoff for its observation. The high-T limit,
as usual, is a measure for its energy gap. At temperatures
comparable with this gap the number of thermally excited
quasiparticles becomes appreciable and floods the charac-
teristic transport features of the FQHE. The existence of
a low-T limit is unusual, is not observed for higher filling
factors, and characteristic of the Wigner crystal regime.
The inset to Fig. 2 summarizes these limits as determined
in a qualitative manner from many traces such as seen
in Fig. 2. As expected, the high-T limit is maximum at
n ! 1!5 and n ! 1!7 and drops towards the center. This
reflects the decreasing energy gap of the FQHE states in
the CF model as the CF liquid at n ! 1!6 is approached.

In contrast to the high-T limits, the low-T limits show a
monotonic increase with increasing 1!n (higher B-field).
The origin of this transport behavior at such low filling
factors remains unclear, but is most probably intimately
related to electron solid formation. The most likely in-

terpretation of a low-T limit for FHQE observation in
Fig. 2 involves a two-phase picture in this low-filling fac-
tor regime and, with increasing temperature, a transition
from a Wigner crystal to an electron liquid, which as-
sumes FQHE correlation at the relevant filling factors. The
Wigner crystal is the T ! 0 ground state, whereas the
different fractions of the FQHE form the ground state at
elevated temperatures. This progression seems to be at
odds with a simple thermodynamic argument [24]: The
ground state is determined by the free energy, F ! E 2
TS, where E is the energy at T ! 0 and S is the entropy.
If the Wigner solid is the ground state at T ! 0 it is ex-
pected to remain the ground state for nonzero T , since its
excitations are gapless and hence TS grows rapidly com-
pared to the case of a FQHE state, which is gapped. While
this argument always holds for infinitesimal temperatures
Price et al. [24] have shown that it fails as T becomes a
substantial fraction of the FQHE gap energy. At this stage
the very high density of states for excitations at the edge
of the FQHE gap gives rise to an exponential growth in TS
and wins out over TS of the Wigner solid, which rises only
as a power law. Hence the magnitude of the energy gap is
the decisive parameter for this phase transition rather than
any small difference in the ground state energies between
solid and liquid.

The calculated transition temperature for the n ! 1!7
state is "600 mK for a clean sample with parameters
close to those of our specimen [24]. This value drops
to "400 mK when disorder is taken into account phe-
nomenologically and approximate FQHE gap energies are
inferred from experiment. Both values considerably ex-
ceed the low-T limit of "135 mK for n ! 1!7. How-
ever, given our very limited ability to treat disorder and
its impact on transport in these highly correlated phases
and given our present inability to determine experimentally
the n ! 1!7 energy gap —not to mention the magneto-
roton gaps, which set the energy scale for the entropy— an
agreement within a factor of 3 may be quite satisfactory.
In particular, the trend of increasing disorder moving the
transition to lower temperatures allows for a simple ratio-
nale to account for the discrepancy.

On the other hand, the general features of the inset of
Fig. 2 seem not to be consistent with the essence of the
melting calculations. According to the model, melting oc-
curs when T has reached a substantial fraction of the FQHE
gap energy. Taking the high-T limit of the inset to Fig. 2
as a measure for the energy gap of the FQHE liquid one
would expect the lower limit —taken to reflect the melting
temperature—to track the former. This is definitely not
the case. In fact, both seem to be rather independent from
each other: the “gaps” (high-T limit) show the characteris-
tic minimum around n ! 1!6, whereas the “melting tem-
perature” (low-T limit) rises monotonically with inverse n.
Calculations for higher-denominator states than 1!7 (and
1!9) may well reveal such a dependence, but it appears
that a more general consideration may be more fruitful in
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FQHS at ν = 9/11. Hall quantization is evidence for an edge state
dominated transport and thus establishes 9/11 as a topological invar-
iant at this filling factor.

A study of the temperature dependence of our data, shown in
Fig. 3, reveals that the FQHS at ν = 9/11 is one of themost feeble FQHSs
we measure. Nonetheless, Rxx at ν = 9/11 decreases with a decreasing
temperature. This behavior is shown in Fig. 4. Data for these two fig-
ures was obtained after cycling the sample to room temperature; in
this cool-down the sample was thermalized through themeasurement
wires, rather than with He-3. The linear part of the Arrhenius plot
shown in Fig. 4 present at the lowest temperatures, i.e. at 1/T higher
than0.0137, establishes thatRxx in this region has a thermally activated
form Rxx~exp{-Δ9/11/2kBT}. The lowest temperature data of Fig. 4
therefore provide evidence for the opening of a gap in the energy
spectrum at ν = 9/11. By performing a linear fit, we extract the magni-
tude of the energy gap Δ9/11 = 32mK. The presence of an energy gap at
ν = 9/11 indicates incompressibility and ensures an edge-dominated
transport. We thus conclude that the observation of a Hall plateau
quantized to Rxy= 11 h/9e2, of an Rxx local minimum with a nearly
vanishing value, and of the opening of an energy gap provide strong
evidence for the formation of a topologically protected FQHS at
ν = 9/11.

Discussion
We now focus on the origins of the ν = 9/11 FQHS. As discussed, other
nearby FQHSs develop at filling factors of the form ν = 1-n/(4n + 1). The
filling factor ν = 9/11 is not part of either the ν = 1- n/(4n + 1) or the ν = 1-
n/(2n + 1) sequences, therefore correlations embodied by 4CFs or 2CFs
cannot account for a FQHS at this filling factor. We conclude that
higher order correlations must be at play. In the following we describe
two constructions within the CF theory that can explain the formation
of this FQHS, both relying on the formation of 6CFs. Using the pre-
scriptionsof theCF theory, trial wavefunctions canbewrittendown for
both constructions21.

For the first construction, we notice that 9/11 = 1-2/11, the filling
factor ν = 9/11 is thus related via the ν↔ 1-ν particle-hole symmetry to
ν = 2/1122. As discussed earlier, at ν = 2/11 a fully gapped FQHSs has not
yet been demonstrated. Nonetheless, the CF theory prescribes amany-
body wavefunction for a FQHS at this filling factor. The ν = 2/11 quan-
tum number belongs to the well-known n/(6n + 1) Jain sequence, with
n = −2. A negative integer n indicates that the corresponding FQHS
develops at a effective magnetic field that points against the direction
of the externally applied magnetic field21. Within this construction, the
ν = 9/11 FQHS is described as the ν*=−2 integer quantum Hall effect of
6CFs which are built using the flux attachment procedure starting out
from holes, rather than electrons. We only invoked 6CFs which fill two
Λ-levels. Such a FQHS would necessarily be fully spin polarized21. We
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layer (we illustrate this as blue arrows in Fig. 1b). This construc-
tion renormalizes both the intra- and interlayer interactions, once 
again resulting in a system of nearly non-interacting CF quasipar-
ticles. For this case the effective magnetic field seen by the CFs 
is determined by the electron density in both graphene layers, 

ϕ= − +†B B an bn( )i i j 0, where the subscripts i and j denote the layer 
index, and a and b are the numbers of intralayer and interlayer flux 
attachments, respectively. We note several important features of this 
transformation: (1) the CFs retain their layer index, but the layers 
become nearly independent of one another; (2) the CFs can experi-
ence different effective magnetic fields when the layer densities are 

not matched; (3) while the intralayer flux attachment must be an 
even number, the interlayer flux can be any integer value (but no 
larger than a). In this work we mainly consider two-component CF 
states with a = 2 and b = 1, which we refer to as a (2 + 1)-flux CF or 
CF1

2  for simplicity. While a and b can take on different integer values 
we find that the CF1

2  is dominant in the magnetic field and layer sep-
aration ranges that we discuss here (a detailed study of the interplay 
between different interlayer flux states will be presented elsewhere).

Figure 1d shows the electron transport response for a double-
layer Corbino device with d = 2.7 nm interlayer spacing (this mea-
surement is obtained in the matched-density condition with current 
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νeff = 1/2 locally (Fig. 4c) are a factor of 5 larger than those previously 
reported in macroscopically averaged experiments26,28. Other features 
of the data in Fig. 4a are the observation of νeff = 2/5 and 3/5 states, which 
may be a Jain sequence due to the small mixture of the N = 0 state or 
the predicted Read–Rezayi states50, which, like the Moore–Read state, 
are also expected to be non-abelian51. There is also the observation of 
FQH states at νeff = 5/11, 6/11 and 5/9. Experiments at fillings −3 < ν < −2, 
1 < ν < 2 and 3 < ν < 4 all show clear signatures of even-denominator 
states, with the latter two ranges also showing clear signatures of 
daughter states consistent with the even-denominator states being 
Pfaffian (Supplementary Section IV and Supplementary Figs. 13–15).

Natural questions are how the properties of FQH states vary 
spatially and what is the typical spatial variation of our spectro-
scopic measurements in our BLG samples. In general, we found that 
the moiré structure due to the underlying hBN did not affect our 
measurements. However, in some regions of the sample, there were 
long-range variations of the spectra, which in some cases could be 
attributed to the dilute concentration of defects in our sample. For 
example, Fig. 4d,e shows that a subsurface defect locally suppressed 
the even-denominator state at ν = 3/2 (νeff = 1/2), with ∆t recovering 
about 100 nm away (Supplementary Fig. 16). The local suppression 
of the incompressible FQH gap may have arisen from the trapping of 
quasiparticles or quasiholes near the defect but is not fully understood. 
Future studies could use spatially resolved spectroscopy to investigate 
the distribution of such variations and the impact of the proximity of 
various impurities in the sample to each other on the spectroscopic 
properties of FQH states. The concentration of defects observed in our 
field of view also provides a consistent picture of how these states influ-
ence the gate range for being in the incompressible gap, as described 
above (Supplementary Section V).

The large energy scales for quasiparticle excitations and the lower 
bounds on thermodynamic gaps that we extracted from our measure-
ments away from any defects in our ultra-clean samples indicate that 
we are probing FQH states with high precision, thereby motivating a 
comparison of our results with those of idealized theoretical calcula-
tions. Numerical simulation of the LDOS using screened Coulomb 
interactions that are appropriate for our one-sided-hBN and a single 
gate can be performed within the standard framework for describing 
FQH states (Supplementary Section VI). The exact-diagonalization 
(ED) calculations show signatures of the sharp features like those 
seen in our tunnelling experiments (Supplementary Fig. 17). They also 
provide the tunnelling threshold energy for different system sizes 
that can be used to determine ∆t in the limit of large system size (Sup-
plementary Fig. 20). Given that the theory ignores the particle–hole 
asymmetry, we compared the theoretical results with the average 
value of the experimentally measured ∆t for two equivalent FQH states 
relative to half-filling. By using a reasonable value for the dielectric 
constant #, we found that measurements of ∆t for FQH states in both 
N = 0 and 1 states are in excellent agreement with theory (Fig. 4f). See 
Supplementary Section VIII, Supplementary Figs. 8c, 13d, 14d and 
15d and Supplementary Table 10 for comparisons at other fillings, 
and Supplementary Section VIII and Supplementary Table 9 for small 
changes in ε as a function of LL filling. Similarly, we compared our meas-
urements of eSGδVG for some of the FQH states to ED and the density 
matrix renormalization group calculation of the thermodynamic gaps 
and found them to be somewhat smaller than the idealized situation, 
as expected (Supplementary Sections VI–VIII and Supplementary 
Table 11). However, the large lower bound of the thermodynamic gaps 
for exotic FQH states, such as close to 19 K at 13.95 T for the Moore–Read 
states in our local measurements of ultra-clean BLG devices, show that 
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A two-dimensional electron system in an external magnetic field, with Landau-level filling factor
v= ~, can be transformed to a mathematically equivalent system of fermions interacting with a Chern-
Simons gauge field such that the average effective magnetic field acting on the fermions is zero. If one ig-
nores fluctuations in the gauge field, this implies that for a system with no impurity scattering, there
should be a well defined F-ermi surface for the fermions. When gauge Auctuations are taken into account,
we find that there can be infrared divergent corrections to the quasiparticle propagator, which we inter-
pret as a divergence in the effective mass m*, whose form depends on the nature of the assumed
electron-electron interaction v(r). For long-range interactions that fall off slower than 1/r at large sepa-
ration r, we find no infrared divergences; for short-range repulsive interactions, we find power-law diver-
gences; while for Coulomb interactions, we find logarithmic corrections to m *. Nevertheless, we argue
that many features of the Fermi surface are likely to exist in all these cases. In the presence of a weak
impurity-scattering potential, we predict a finite resistivity p„atlow temperatures, whose value we can
estimate. We compute an anomaly in surface acoustic wave propagation that agrees qualitatively with
recent experiments. We also make predictions for the size of the energy gap in the fractional quantized
Hall state at v=p/(2p + 1), where p is an integer. Finally, we discuss the implications of our picture for
the electronic specific heat and various other physical properties at v= 2, we discuss the generalization
to other filling fractions with even denominators, and we discuss the overall phase diagram that results
from combining our picture with previous theories that apply to the regime where impurity scattering is
dominant.

I. INTRODUCTION

When the fractional quantized Hall effect was
discovered in 1982 by Tsui, Stormer, and Gossard, ' we
were given only a first glimpse of the remarkably complex
behavior of two-dimensional electron systems with a par-
tially filled Landau level. In the intervening decade, as
samples with higher and higher mobility have been
prepared, and measurements have been extended to lower
temperature and stronger magnetic fields, there have
been observed an increasing number of Hall plateaus cor-
responding to various filling fractions v with odd denomi-
nators. ' A few fractions with even denominators have
also been seen in higher Landau levels, ' but not, so far,
in a single-layer system, in the lowest Landau level.

From a theoretical point of view, the occurrence of
Hall plateaus at filling fractions with odd denominators
can be understood, to a great extent, through the original
theoretical analysis of Laughlin, and various subsequent
extensions, such as the hierarchical construction of quan-
tized Hall states. ' ' The essential correctness of these
explanations is well established in the case of the strong-
est fractional Hall plateaus, such as those at v= —,

' and 3,

where the energy gap is large, and the Laughlin trial
wave function is the exact ground state for a system with
short-range repulsive interactions. Moreover, numerical
solutions of the ground state for sma11 finite systems with
Coulomb interactions show a very high degree of overlap
with the Laughlin trial functions. As one considers filling
fractions with larger and larger denominators, however,
the evidence for the correctness of our general theoretical
picture becomes more and more tenuous, as our ability to
calculate quantitative properties of the quantized Hall
state becomes progressively weaker, the energy
differences between competing states of possible interest
become progressively smaller, and the ability to obtain
meaningful results from finite-size system calculations be-
comes progressively more questionable. Nevertheless, it
is at least plausible to believe that the most essential
features of the observed plateaus with odd denominators
such as the quasiparticle charge and statistics, and the
quantum numbers of the ground state and low-lying ex-
cited states, are correctly described by the conventional
hierarchical constructions. '

By contrast, the behavior of a two-dimensional elec-
tron system in the vicinity of a filling fraction with even
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impurity-scattering potential, we predict a finite resistivity p„atlow temperatures, whose value we can
estimate. We compute an anomaly in surface acoustic wave propagation that agrees qualitatively with
recent experiments. We also make predictions for the size of the energy gap in the fractional quantized
Hall state at v=p/(2p + 1), where p is an integer. Finally, we discuss the implications of our picture for
the electronic specific heat and various other physical properties at v= 2, we discuss the generalization
to other filling fractions with even denominators, and we discuss the overall phase diagram that results
from combining our picture with previous theories that apply to the regime where impurity scattering is
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When the fractional quantized Hall effect was
discovered in 1982 by Tsui, Stormer, and Gossard, ' we
were given only a first glimpse of the remarkably complex
behavior of two-dimensional electron systems with a par-
tially filled Landau level. In the intervening decade, as
samples with higher and higher mobility have been
prepared, and measurements have been extended to lower
temperature and stronger magnetic fields, there have
been observed an increasing number of Hall plateaus cor-
responding to various filling fractions v with odd denomi-
nators. ' A few fractions with even denominators have
also been seen in higher Landau levels, ' but not, so far,
in a single-layer system, in the lowest Landau level.

From a theoretical point of view, the occurrence of
Hall plateaus at filling fractions with odd denominators
can be understood, to a great extent, through the original
theoretical analysis of Laughlin, and various subsequent
extensions, such as the hierarchical construction of quan-
tized Hall states. ' ' The essential correctness of these
explanations is well established in the case of the strong-
est fractional Hall plateaus, such as those at v= —,

' and 3,

where the energy gap is large, and the Laughlin trial
wave function is the exact ground state for a system with
short-range repulsive interactions. Moreover, numerical
solutions of the ground state for sma11 finite systems with
Coulomb interactions show a very high degree of overlap
with the Laughlin trial functions. As one considers filling
fractions with larger and larger denominators, however,
the evidence for the correctness of our general theoretical
picture becomes more and more tenuous, as our ability to
calculate quantitative properties of the quantized Hall
state becomes progressively weaker, the energy
differences between competing states of possible interest
become progressively smaller, and the ability to obtain
meaningful results from finite-size system calculations be-
comes progressively more questionable. Nevertheless, it
is at least plausible to believe that the most essential
features of the observed plateaus with odd denominators
such as the quasiparticle charge and statistics, and the
quantum numbers of the ground state and low-lying ex-
cited states, are correctly described by the conventional
hierarchical constructions. '

By contrast, the behavior of a two-dimensional elec-
tron system in the vicinity of a filling fraction with even
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state becomes progressively weaker, the energy
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meaningful results from finite-size system calculations be-
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is at least plausible to believe that the most essential
features of the observed plateaus with odd denominators
such as the quasiparticle charge and statistics, and the
quantum numbers of the ground state and low-lying ex-
cited states, are correctly described by the conventional
hierarchical constructions. '
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• Subject the theory to a stress test by applying it to an 
extreme limiting case for which the theory was not originally 
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No FQHE has been seen here.
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A two-dimensional electron system in an external magnetic field, with Landau-level filling factor
v= ~, can be transformed to a mathematically equivalent system of fermions interacting with a Chern-
Simons gauge field such that the average effective magnetic field acting on the fermions is zero. If one ig-
nores fluctuations in the gauge field, this implies that for a system with no impurity scattering, there
should be a well defined F-ermi surface for the fermions. When gauge Auctuations are taken into account,
we find that there can be infrared divergent corrections to the quasiparticle propagator, which we inter-
pret as a divergence in the effective mass m*, whose form depends on the nature of the assumed
electron-electron interaction v(r). For long-range interactions that fall off slower than 1/r at large sepa-
ration r, we find no infrared divergences; for short-range repulsive interactions, we find power-law diver-
gences; while for Coulomb interactions, we find logarithmic corrections to m *. Nevertheless, we argue
that many features of the Fermi surface are likely to exist in all these cases. In the presence of a weak
impurity-scattering potential, we predict a finite resistivity p„atlow temperatures, whose value we can
estimate. We compute an anomaly in surface acoustic wave propagation that agrees qualitatively with
recent experiments. We also make predictions for the size of the energy gap in the fractional quantized
Hall state at v=p/(2p + 1), where p is an integer. Finally, we discuss the implications of our picture for
the electronic specific heat and various other physical properties at v= 2, we discuss the generalization
to other filling fractions with even denominators, and we discuss the overall phase diagram that results
from combining our picture with previous theories that apply to the regime where impurity scattering is
dominant.
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behavior of two-dimensional electron systems with a par-
tially filled Landau level. In the intervening decade, as
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nators. ' A few fractions with even denominators have
also been seen in higher Landau levels, ' but not, so far,
in a single-layer system, in the lowest Landau level.

From a theoretical point of view, the occurrence of
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• No gap  no FQHE.⇒

• Shubnikov-de Haas oscillations.

• Fermi wave vector .kF

• Semiclassical cyclotron orbits.  
Direct measurement of , 
which can be negative. 

BCF

• Luttinger area rule.

• Commensurability / 
Weiss oscillations.

• Spin polarization

• Mass anisotropy
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= n is the CF density, and B٣* = B٣ í B٣,v=1/2 is the effective magnetic field seen 
by the CFs near v = ½. (Throughout this article, we use “*” to denote CF 
parameters.) This is consistent with previous reports of GR features for CFs near 
v = ½ [8-11], except that here we see the additional i = 2 and 3 minima, attesting 
to the very high quality of the sample and the periodic potential. Also, there are 
subtle deviations of the positions of these minima from the traditionally expected 
values, as we discuss in Section 3.2. Note that GR resistance minima are also 
seen near v = ¼ at very high fields [Fig. 5(c)], providing evidence for the direct 
observation of ballistic transport and GR for four-flux CFs [24]. The positions of 
these resistance minima also match closely the expected values based on a 
magnetic, fully-spin-polarized GR condition equivalent to the one near v = ½ 
[24]. We will discuss the GR data for four-flux CFs in more detail in Section 5. 

3.2. What determines the Fermi wave vector of composite fermions? 

In earlier experimental studies of the CF Fermi sea through GR measurements, it 
was assumed that the density of the CFs (n*) near v = ½ is fixed and is equal to 
the 2D electron density n [5-13]. This assumption, combined with the assumption 
of the validity of Eq. (1), leads to symmetric field positions of the GR minima 
with respect to the position of v = ½; the positions of the red markers in Fig. 5(b) 
are based on these assumptions. Given the quality of the earlier experimental data 
and the accuracy of the positions of the GR minima, these assumptions sounded 
reasonable, as the agreement with the experimental data was acceptable. The data 
of Fig. 5(b), however, give a clear hint that there is a pronounced asymmetry in 
the magnetic field positions of the GR minima with respect to the field at v  = ½:  

 
Fig. 5  Inset: An L-shaped Hall bar with a periodic superlattices of negative electron-beam resist. (a) 
Magnetoresistance trace, measured at T = 0.3 K, from the [ͳͳͲ] Hall bar of a 40-nm-wide, GaAs QW 
containing a 2DES at density n = 1.74 × 1011 cmí2 and a very small (< 1%) periodic density 
modulation. (b) and (c) Prominent GR resistance minima are seen near v = ½ and ¼. The positions of 
the resistance minima expected for GR of fully spin-polarized CFs with a circular Fermi contour are 
marked with indexed vertical lines (see text).  (After [14]) 

Fig. 5. Inset: An L-shaped Hall bar with a periodic superlattice of negative electron-beam resist.
(a) Magnetoresistance trace, measured at T = 0.3 K, from the [110] Hall bar of a 40-nm-wide,
GaAs QW containing a 2DES at density n = 1.74⇥ 1011 cm�2 and a very small (< 1%) periodic
density modulation. (b) and (c) Prominent GR resistance minima are seen near ⌫ = 1/2 and 1/4.
The positions of the resistance minima expected for GR of fully spin-polarized CFs with a circular
Fermi contour are marked with indexed vertical lines (see text). [Note Ref. 14.]

tent with previous reports of GR features for CFs near ⌫ = 1/2,8–11 except that
here we see the additional i = 2 and 3 minima, attesting to the very high quality
of the sample and the periodic potential. Also, there are subtle deviations of the
positions of these minima from the traditionally expected values, as we discuss in
Sec. 3.2. Note that GR resistance minima are also seen near ⌫ = 1/4 at very high
fields [Fig. 5(c)], providing evidence for the direct observation of ballistic transport
and GR for four-flux CFs,24 The positions of these resistance minima also match
closely the expected values based on a magnetic, fully-spin-polarized GR condition
equivalent to the one near ⌫ = 1/2.24 We will discuss the GR data for four-flux CFs
in more detail in Sec. 5.

3.2. What determines the Fermi wave vector of composite fermions?

In earlier experimental studies of the CF Fermi sea through GR measurements, it
was assumed that the density of the CFs (n⇤) near ⌫ = 1/2 is fixed and is equal to
the 2D electron density n.5–13 This assumption, combined with the assumption of
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Just as electrons exist even without QHE, CFs exist 
even without their QHE. 

The CFs are thus more fundamental than the FQHE. 
The FQHE results from the existence of CFs and 
not vice versa. (In contrast, fractional charge and 
fractional statistics follow from the FQHE, and thus 
ultimately from composite fermions.) 
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VIEWPOINT

Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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“Composite fermions are as real as Cooper pairs.”
                                                    -Horst Stormer 

How real are composite fermions?
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Deep dive into the heart 
of the FQHE: 

Microscopic validation



= +

Ψα
ν= νCF

2mνCF ± 1
= 𝒫LLLΦα

±νCF({z*i , zi})∏j<k
(zj − zk)2m

• Obtain the exact eigenstates / eigenenergies by a brute force 
diagonalization of the Coulomb interaction.

• Obtain the eigenstates / eigenenergies from the CF theory, 
without making any approximations.

• Compare the results from these two independent calculations 
with no parameters.

Rigorous, unbiased tests against exact results



N electrons 
2Q flux quanta

Fairly large system
Only the very low-energy spectrum shown
All structure due to interaction
Huge amount of information

ν = 3/7

Balram, Wójs, Jain 2013

Haldane 1983

: An exampleν = 3/7
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: ground state + neutral excitationsν = 3/7



Balram, Wójs, Jain 2013

Almost exact agreement with 
no parameters!
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Balram, Wójs, Jain 2013

ν = 3/7

– Successively higher energy spectrum can be 
obtained in a systematic manner. 

– The energies can be obtained to whatever accuracy 
we wish or need. 

: ground state + higher energy excitationsν = 3/7



Similar agreement at other fractions
Balram, Wójs, Jain 2013

ν = 1/3



Balram, Wójs, Jain 2013

ν = 2/5

Similar agreement at other fractions
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4 quasiparticles 
of ν = 1/3
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—A.C. Balram, unpublished

The comparisons thus demonstrate that the CF theory accurately 
predicts essentially all observables.

⟨Ψ4/9 = PLLLΦ4∏
j<k

(zj − zk)2 |ΨExact−Coulomb
4/9 ⟩ = 0.9951 (ν = 4/9; N = 16)

Overlaps are close to perfect



Do the CFs do anything else?



The Expanding Universe of CFs
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The Expanding Universe of CFs

ν = p
2mp ± 1

Semiconductor quantum wells
Monolayer / bilayer graphene

CF-IQHE

CF metal

ν = 1/2, 1/4, 3/4

CF crystals

CF-superconductor
 in quantum wells

 
in wide QWs or with LL mixing

 in bilayer graphene

ν = 5/2
ν = 1/2,1/4,3/4,1/6,1/8,3/8,3/10

ν = n ± 1/2

CF FQHE
ν = 4/11,5/13

CF stripes
CF bilayer states

Paired states
ν = 1/2,⋯

CFs in B=0
FQAHE in twisted 
TMD bilayers

CFs with spin 
and valley 
indices

COMPOSITE  FERMION

CF 2 CF 4 CF 6 CF 8



The Expanding Universe of CFs

• Transport gaps
• CF mass
• Charged excitations
• Neutral excitations
• Fractional charge
• Fractional statistics
• Edge modes
• Plateau transition 
• Scaling exponents
• Electron spectral 

function
• Spin polarizations
• Spin wave excitations
• Spin rotons
• Skyrmions 

• CF mass
• CF g-factor
• CF Fermi wave vector
• CF magnetic field 
• Antidot resonance
• Surface acoustic wave 

absorption
• Semiclassical cyclotron 

orbits
• Magnetic focusing
• Berry phase
• S-dH quantum oscillations
• Thermopower
• Bilayer drag

 

BCF

• Fractional charge
• Majorana
• Braid statistics 

COMPOSITE  FERMION

CF 2 CF 4 CF 6 CF 8



What has been accomplished so far



• Prominent fractions predicted successfully: The CF-IQHE physics 
correctly predicts the prominent fractions of the form . 
Predicts sequences. Predicts odd-denominator fractions. These account 
for a large majority of the ~100 observed fractions.

p/(2mp ± 1)
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correctly predicts the prominent fractions of the form . 
Predicts sequences. Predicts odd-denominator fractions. These account 
for a large majority of the ~100 observed fractions.

p/(2mp ± 1)

• Grand unification:                                                                           
-unification of all fractions                                                                
-unification of the FQHE and IQHE                                                     
-unification of the FQHE and non-FQHE metallic states                       
-many other states of CFs such as superconductors, stripes, crystals, 
spin unpolarized states, etc.

ν = p/(2mp ± 1)

• Microscopic theory: Surprisingly accurate.
• Simplicity: Much phenomenology explained without any detailed theory.
• Nontriviality: The emergence of Fermi sea and Landau-like levels within 

the lowest electron Landau level would be utterly unthinkable without 
composite fermions. There would be no reason to expect any Fermi sea 
in terms of electrons.

What has been accomplished so far



Cracking the code



The computer can produce thousands of exact eigenfunctions, each of which 
is a long list of numbers. However, the computer does not tell us what 
underlying physics these numbers convey. 

Cracking the code



It is a remarkable fact that all these eigenfunctions can be synthesized into a 
single equation, which gives all low-energy eigenstates at arbitrary fillings with 
astonishing accuracy, and reveals the underlying physics: the correspondence 
between the FQHE and the IQHE through vortex attachment (i.e. composite-
fermionization).
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ν= νCF
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The LLL projected wave functions are extremely complicated. There is 
no a-priori reason for why the CF theory should have such amazing 
quantitative accuracy (which was initially astounding to me).
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The LLL projected wave functions are extremely complicated. There is 
no a-priori reason for why the CF theory should have such amazing 
quantitative accuracy (which was initially astounding to me).

It is a remarkable fact that all these eigenfunctions can be synthesized into a 
single equation, which gives all low-energy eigenstates at arbitrary fillings with 
astonishing accuracy, and reveals the underlying physics: the correspondence 
between the FQHE and the IQHE through vortex attachment (i.e. composite-
fermionization).

Ψα
ν= νCF

2mνCF ± 1
= 𝒫LLL Φα

±νCF ∏j<k
(zj − zk)2m

The computer can produce thousands of exact eigenfunctions, each of which 
is a long list of numbers. However, the computer does not tell us what 
underlying physics these numbers convey. 

What at first had seemed an impossibility has become perhaps the best 
understood strongly correlated state in nature!! 

Cracking the code



The most recent twist: 
Composite fermions 

in B = 0



VIEWPOINT

In a Twist, Composite Fermions
Form and Flowwithout a
Magnetic Field
Certain twisted semiconductor bilayers are predicted to host a Fermi
liquid of composite fermions—remarkably, without an appliedmagnetic
field.
By Jainendra Jain

M aterials scientists have engineered systems
in the laboratory that yield exotic particles not seen
in nature. In particular, when electrons are confined to

two dimensions, cooled to near absolute zero, and exposed to a
strongmagnetic field, they capture part of this field and turn
into weakly interacting particles called composite fermions
(CFs). CFs display striking phenomena such as the fractional
quantum Hall effect (FQHE). (See [1] for reviews of CFs, the

Figure 1: When the layers of a MoTe2 semiconductor bilayer (blue)
are twisted with respect to each other, the system’s electronic band
structure creates a pseudomagnetic field (black arrows). Electrons
(red) confined to the bilayer capture an even number of field
quanta (blue arrows) and become exotic particles known as
composite fermions.
Credit: APS/Carin Cain

FQHE, and other early developments.) Recently, experiments
showed that a particular twisted semiconductor bilayer exhibits
CFs and the FQHE without an applied magnetic field [2–5]
(Fig. 1). Now, based on a theoretical analysis of these
experiments, two research teams predict that this twisted
bilayer should also realize a state called a CF Fermi liquid [6, 7].
The ability to create a CF Fermi liquid at zero magnetic field
would enable a comprehensive exploration of this peculiar
state, which provides a new paradigm for metallic behavior and
can serve as a parent to other interesting states.

The path to these discoveries runs through several previous
breakthroughs. In the early 1980s, physicists were drawn to the
system of a two-dimensional electron gas in a strongmagnetic
field by the unexpected discoveries of the integer quantum Hall
effect (IQHE) and of the FQHE in this system. The IQHE refers to
the observation of plateaus where a charge-transport
parameter known as the Hall resistance RH is precisely
quantized at values given by RH = h/(ne2). Here, h is Planck’s
constant, e is the electron’s charge, and n is an integer. This
quantization is a property of n filled Landau levels, which are
electronic bands of constant kinetic energy created by the
magnetic field. Materials with filled Landau levels display the
IQHE, instead of the insulating behavior expected from filled
bands, because Landau levels are topological—that is, they
have a nonzero integer value of what mathematicians call the
Chern number C [8]. Any topological band, whether produced
by a magnetic field or by some other means, will exhibit
RH = h/(Ce2) when fully occupied by electrons.
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the quantized values close to 3h/2e2 and 5h/3e2 obtained at v = −2/3 and 
−3/5 are located at the top of the humps in Rxy versus v. Near half-filling, 
Rxy becomes almost linear in v and passes through a value close to 2h/e2 
at v = −1/2. Across the entire range, Rxx remains at just a few kΩ. The 
linear dependence of Rxy versus v suggests that the state is compress-
ible, explaining why no gapped feature at v = −1/2 was seen in optical 
(trion-sensing) measurements30,34. This behaviour of Rxx and Rxy bears a 
clear resemblance to that observed near half-filling of the lowest Landau 
level in a two-dimensional electron gas at high magnetic field, which 
has been found to be a composite Fermi liquid (CFL) state8–11,13,14. Recent 
numerical calculations have predicted that a zero-field CFL state is the 
ground state at v = −1/2 in twisted MoTe2 (refs. 44,49).

We also performed temperature-dependent measurements of Rxx 
and Rxy. Extended Data Fig. 8 shows ∆Rxy, the hysteretic component of 
Rxy, versus temperature. ∆Rxy vanishes for T above approximately 4 K. 
Temperature-dependent Rxx and Rxy near v = −1/2 are plotted in Fig. 4d. 
Here Rxx and Rxy are symmetrized and anti-symmetrized at |µ0H| = 50 mT. 
As temperature increases, the Rxy plateau of about 2h/e2 gradually tapers 
off around 1.7 K and goes to zero above 4 K. Concurrently, Rxx, initially 
around 2 kΩ, starts to increase around 2 K. This behaviour may reflect a 
temperature-driven phase transition from a half-filled anomalous Hall 
state to a topologically trivial higher temperature state.

In summary, we provide transport measurements directly confirm-
ing both integer QAH (C = −1) and FQAH (C = −2/3 and −3/5) states in 
twisted MoTe2 bilayer, the presence of which was first indicated by 
thermodynamic arguments applied to recent optical measurements30. 
Moreover, a new half-filled anomalous Hall state was observed. It has 
a similar electric field dependence (Fig. 1b,c) as the −2/3 FQAH state, 
which remains to be explored. Future experiments are also needed 
to establish whether the anomalous Hall state at half-filling is truly 
a zero-field CFL—a non-Fermi-liquid state resulting from the inter-
play of strong interactions and spontaneous time-reversal symmetry 
breaking. For example, it has been suggested that the CFL state49 could 
exhibit intrinsic commensurability oscillations of the resistance as v 
varies near −1/2. This phenomenon, related to the commensurability 

oscillations in a Landau-level system in which an external periodic 
potential is imposed12,50, would be unique to the zero-field CFL state 
in moiré superlattices, having a characteristic dependence on moiré 
wavelength. Anticipating further improvements in crystal quality and 
contact technology, we expect the family of twisted MoTe2 systems to 
be a powerful playground for exploring the interplay between correla-
tions, topology and magnetism and to serve as a versatile platform for 
topological electronic and spintronic devices.
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Fig. 4 | Anomalous Hall effect at half-filling. All data are taken at D/ε0 = 0 and 
from device D(3.7°). a,b, R xx (a) and R xy (b) versus magnetic field sweeps at 
v ≈ −1/2 and T = 500 mK. c, Symmetrized R xx (red) and anti-symmetrized  
R xy (blue) at ±50 mT versus filling factor v at T ≈ 100 mK. d, Temperature 
dependence of symmetrized R xx and anti-symmetrized R xy at ±50 mT for v near 
−1/2. A phase transition is evident between 2 K and 4 K. R xx and R xy are obtained 
using the contact scheme detailed in Extended Data Fig. 4.

The observations of quantized Rxy and the corresponding dips in Rxx at fractional filling factors, 

together with the hysteresis enclosing zero magnetic field indicate FQAH states in our graphene-based 

moiré superlattice. These states resemble the Jain sequence of fractional quantum Hall states14–17, but at 

zero magnetic field. Compared with t-MoTe2 where FQAHEs are only observed at v > 1/210–13, the fractional 

states we observed reside at both sides of the half-filling. This is likely due to the better electrical contact 

in graphene devices than that has been achieved in semiconductor devices at low charge densities. The 

narrowest plateau width of FQAH states we have observed is ~1010 cm-2, which is about 10 times narrower 

than the 3/5 state observed in t-MoTe211.  

 

Fig. 3. Fractional quantum anomalous Hall effects. a & b. Zoomed-in diagrams of symmetrized Rxx and 

anti-symmetrized Rxy (we present the positive values for convenience) at B = ± 0.1 T as functions of v (ne) 

and D. Fine features that could not be identified in Fig. 1d&e can be seen in the vicinity of v = 1/2, 

especially in the Rxx diagram. Data is collected using a constant voltage bias measurement. c. Rxx and Rxy 

along the dashed lines in a & b, taken with a constant current measurement. Clear plateaus of Rxy at ,!(#!, 
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“absolutely mindboggling! weirder than we ever 
thought.”
                            -Horst Stormer
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An exchange of two anyons  produces a phase factor of . eiπθ*

They are generalizations of  bosons ( ) and fermions ( ).θ* = 0 θ* = 1

The quasiparticles of the FQHE are fractionally charged 
anyons (Laughlin 83, Halperin 84). 
This follows from general topological arguments and has 
experimental support. 

Anyons



The CF theory gives an account of the FQHE without 
appealing to fractional charge and fractional statistics.

How about quasiparticles and quasiholes in the CF theory?



quasiparticle 
   = isolated CF

quasihole
   = missing CF

neutral excitation
    = CF exciton

Quasiparticle = an isolated CF in a  levelΛ

Unified description of all excitations



Quasihole/quasiparticle 
of 1/3

• There are  electrons in a disk of radius .∼ 6 6

N = 12 N = 12
Quasihole Quasiparticle

ν = 1/3 ν = 1/3

Gattu, Sreejith, JKJ, 2023



Quasihole/quasiparticle 
of 2/5

• The radius is  magnetic lengths.  A single quasiparticle of 
 spreads over approximately  electrons.

∼ 7 − 8
2/5 7 − 9

N = 13 N = 13
Quasihole Quasiparticle

ν = 2/5 ν = 2/5

Gattu, Sreejith, JKJ, 2023



• Even a single quasiparticle / quasihole is a very complex 
collective state. For , it has a radius  and spreads over 
a region containing  electrons. 

3/7 ∼ 8ℓ
13 − 14

N = 14 N = 16
Quasihole Quasiparticle

ν = 3/7 ν = 3/7

Quasihole/quasiparticle 
of 3/7

Gattu, Sreejith, JKJ, 2023
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No paradox really. It’s a question of what’s the 
reference state — the state with no particles, 
or the background FQH state — and what’s 
the measurement.



Quasiparticle = an excited CF

Is it a charge-one fermion or a fractionally 
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Fractional charge

q* = − 1 + 2mν = − 1 + 2m
p

2mp ± 1 = ∓ 1
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 can also be obtained by integrating the density. q*
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we add a unit charge overall. 

• However, as it gets dressed by vortices to become a CF, the unit 
charge is screened into a fractional charge, with the remainder 
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Fractional statistics

• Because of fractional charge, the excess flux associated with each 
quasiparticle is a fractional:   thereby 
producing fractional statistics . 

• Berry phase for a closed loop of a CF:  

• The change in the Berry phase when another quasiparticle is inserted 
inside the loop (confirmed by direct evaluation):

•

2mq* = 2m /(2mp ± 1)

Φ* = − 2π ( BA
ϕ0

− 2mNe)

ΔΦ* = 2π × 2m × ΔNe = 2π × 2m × q* = 2π
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CF “superconductivity”:
Second mechanism of FQHE 



• FQHE has been observed at many even-denominator fractions. 
These cannot be understood as IQHE of noninteracting CFs. 

 in quantum wellsν = 5/2

CF pairing

• These FQHE states are understood in terms of pairing of CFs.  
This provides a second mechanism for FQHE.

• Pairing from purely repulsive interactions?!
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Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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Editorial

Fractional computing

We highlight how an abstract piece 
of condensed-matter physics — the 
fractional quantum Hall e!ect — 
may be ideally placed to implement 
quantum computers.

One of the few subfields of phys-
ics that routinely breaks though 
into public consciousness is 
quantum computing. Quantum 
computation offers either tan-

talizing options for speeding up certain types 
of computation, or a terrifying vision where 
current-day digital security is compromised, 
depending on one’s outlook.

Unfortunately, the qubits used to build 
these devices are never perfect. The imper-
fect qubits introduce errors into any compu-
tation and limit the potential utility of these 
machines. One way to combat this is to build 
logical qubits that utilize many physical qubits 
operating with error-correcting codes, but 
this has the substantial downside of increas-
ing the number of physical qubits required.

Another possibility is to implement topo-
logical quantum computing, where the qubits 
are encoded in a protected degree of freedom 
that is — at least to a large extent — unaffected 
by external perturbations and therefore 
free from errors. There are many potential 
platforms for doing this, but all require the 
presence of exotic entities known as anyons: 
emergent quasiparticles that are neither fer-
mions nor bosons. Additionally, the anyons 
must also be non-Abelian, meaning that 
exchanging particles in a different order will 
result in a different ground state of the overall 
system. The existence of such quasiparticles 
may seem counterintuitive, but evidence sug-
gests they exist.

In addition to proving the existence of these 
non-Abelian anyons, one must work out how 
to control them to carry out the basic com-
puting operations. This means being able to 
create the anyons as required, implement 
protocols to do particle exchange — two such 
exchanges are called a braid — and bring them 
back together to measure them.

One option is to use Majorana modes asso-
ciated with the edge states of a topological 

superconductor. The most prominent 
implementation of this are one-dimensional 
semiconductor nanowires that become super-
conducting via the proximity effect, but claims 
that Majoranas have been observed in such 
devices are still controversial because trivial 
effects can mimic these zero-energy states. 
And, while some are confident that fabricat-
ing higher-quality materials will remove those 
trivial explanations1, reliably moving the Majo-
ranas around to braid them is also still beyond 
our capabilities.

Three-dimensional topological supercon-
ductors will also feature Majorana modes on 
their edges and at the core of magnetic vorti-
ces. Candidate materials include UTe2 (ref. 2)  
and various iron-based superconductors3. 
However, these materials may also be unsuit-
able for practical implementation because 
it is not clear how to braid edge states of 
three-dimensional materials, and moving 
vortices around is difficult to scale to many 
qubits.

Enter the quantum Hall effect. This is one of 
the more abstract areas of condensed-matter 
physics, but on the positive side it is largely 
accepted that non-Abelian anyons exist in 
this setting4 and that they can be braided5 in 
interferometer devices like the one pictured6.

When a strong magnetic field is applied 
perpendicular to a two-dimensional system, 
the allowed energy states for the electrons 
or holes in that system are highly degenerate 
bands called Landau levels. When a Landau 
level is completely filled, current can only flow 
via the topological edge states (producing a 
transverse response) and the bulk of the sam-
ple is insulating, meaning that the longitudinal 
conductivity goes to zero. This is known as the 
integer quantum Hall effect.

When a Landau level is fractionally filled, 
a similar transport response can occur. This 

happens because electrons in the partially 
filled level can group themselves with the 
quanta of magnetic flux to create composite 
particles. This flux attachment mechanism 
gives states that fill the resulting Landau lev-
els, providing an analogue of the integer fill-
ing. For example, when a level is one-third full 
of electrons, each electron can team up with 
three fluxes to account for all of the magnetic 
field and mimic a full level. The fractionali-
zation of the electrons associated with these 
states indicates that the composite particles 
are anyons.

However, these composite anyons are merely 
Abelian and so are not helpful for topological 
quantum computation. But if these composite 
particles pair up with the correct symmetry of 
the combined wave function, it elevates their 
statistics to become non-Abelian. Among the 
various available theoretical proposals for how 
this can happen, one of the more straightfor-
ward is that the composite anyons pair with 
p-wave symmetry, a bit like a standard topo-
logical superconductor. This is predicted to 
happen when two-and-a-half Landau levels are 
filled, and experimental evidence looks promis-
ing that this is true4.

There are still many practical challenges 
associated with implementing a topological 
qubit from fractional quantum Hall anyons, 
as there are with all of the platforms we have 
discussed. In particular, the fractional states 
are rather fragile (although perhaps less so in 
graphene than in semiconductors7) and the 
degree of control needed to isolate and manip-
ulate them will require exquisitely engineered 
devices. So, perhaps another platform might 
win the race to perform the first topologically 
protected quantum computations, but for 
now we would not bet against the dark horse 
of quantum Hall systems getting there first.
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"perhaps another platform might win the race to perform 
the first topologically protected quantum computation, but 
for now we would not bet against the dark horse of 
quantum Hall systems getting there first."  

One can always dream! 



• Certain open problem / future directions:                                                                            
-Puzzles remain regarding the nature of pairing of the  state.  The 
nature of pairing of other even-denominator states also needs to be 
verified.                                                                                        
-Need better understanding of composite fermions in FQAHE / periodic 
potentials.                                                                                                                                                                              
-Dream 1: Application to future technology?                                                               
-Dream 2: The structures revealed in the study of CFs / FQHEs provide a 
clue for unraveling some other profound mysteries of nature.                                  
-More surprises??

ν = 5/2

Open problems / Future prospects

Thank you!



• Two variational parameters:  and .  

• The CF-BCS wave function reduces to the CF Fermi sea for  or 
. 
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The BCS wave function of CFs (fully polarized)
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• By going to a higher LL

• By increasing the quantum well width / 
density

• By enhancing LL mixing

Pairing from purely repulsive interaction?!

Empirically: The inter-CF interaction becomes 
attractive as the strength of the short range repulsion 
between the electrons is reduced. This may be done in 
three ways:



• A -wave pairing instability occurs at .

• No instability at .

p ν = 5/2
ν = 1/2

BARDEEN-COOPER-SCHRIEFFER PAIRING OF … PHYSICAL REVIEW B 104, 205303 (2021)

FIG. 1. The configurations of Fermi sea used in our calculations for N = 12 (left panel), N = 16 (middle panel) and N = 32 (right panel).
We also show the approximate circular Fermi surface.

For ν = 1/2 we simply work with (a periodic version of)
the Coulomb interaction. For ν = 5/2, we use an effective
interaction in the LLL to mimic the SLL coulomb interaction
by matching their Haldane pseudopotential coefficients. This
was earlier done in Ref. [17], which showed that an accurate
effective interaction is

V eff (r) = e2

ε

{
1
r

+ a1e−α1r2 + a2r2e−α2r2

}
. (41)

The best-fitted parameters are a1 = 117.429, a2 = −755.468,
α1 = 1.3177, and α2 = 2.9026, which guarantee that the first
four pseudopotential coefficients are the same as the second
LL Coulomb pseudopotentials. While calculating the energy
on torus geometry, the k-space summation of the interaction
should be used [39]. The details of the numerical calculations
are given in Appendix B. We neglect corrections due to finite
thickness and LL mixing throughout this work.

We have performed our calculation for systems with 12,
16 and 32 particles, because these produce fairly circular
Fermi seas for even N . The approximate magnitude of kF is
estimated using the following relation:

π |kF |2 = N |b1 × b2|. (42)

In Fig. 1, we show the k-space configurations of CFFS for
these systems, with the solid black lines showing the approx-
imate Fermi surfaces. For both ν = 1/2 and ν = 5/2, we find
the minimum energy by considering a range of values for δkF

and minimizing the energy for each δkF by varying kcutoff .
The energies per particle are shown in Fig. 2 for both

ν = 1/2 and ν = 5/2 as a function of δkF . This illustrates
the most notable finding of our work: at ν = 5/2, the energy
minimum for SLL occurs at δkF ≈ 1.2, indicating the presence
of CF pairing. In contrast, the minimum energy at ν = 1/2 is
obtained for kcutoff = kF , i.e., for the CFFS, which is consis-
tent with an absence of pairing. However, we note that due to
the discreteness of the momentum lattice, our work does not
rule out, strictly speaking, a very weak pairing at ν = 1/2.

To ascertain how the CF BCS wave function compares with
the MR wave function, we compute the overlap of the CF
BCS wave function with the MR wave function for different
values of the variational parameter δkF for N = 12, 16 parti-
cles. The overlaps are shown in Fig. 3, which also displays
the overlap of the CF-BCS state with the CFFS. [The overlaps
are calculated for wave functions within the same Haldane
pseudomomentum sector (K1, K2).] The overlaps between dif-
ferent trial wave functions, as shown in Fig. 3, are obtained

using the Monte Carlo algorithm. In the CF-BCS wave func-
tion, the momentum cutoff kcutoff is chosen, for each value of
δkF , so as to minimize the energy in the second LL. When
δkF → 0, the overlap between the CF BCS wave function and
CFFS is 1, as expected. The CF BCS wave function has the
highest overlap of ∼0.94 (∼0.88) with the MR state for δkF ≈
0.7 (Fig. 4) for N = 12 (N = 16) particles. We also obtain
the overlap of the CF-BCS state with the exact LLL, SLL
and MR state as shown in Fig. 4. The method used to obtain

FIG. 2. The Coulomb energy per particle for (a) ν = 1/2, (b) ν =
5/2 as a function of the parameter δkF for different system sizes.
For each value of δkF , minimum energy is obtained by varying the
momentum cutoff. The energies are quoted in units of e2/ε&; for ν =
5/2, the energies are plotted relative to the CFFS energy. At ν = 1/2
the CFFS has the lowest energy for all δkF (for ν = 1/2, the error
bars have been omitted, which are on the order of 0.00001).
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Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-
Abelian braid statistics and topological quantum computation. We construct a p-wave paired Bardeen-Cooper-
Schrieffer (BCS) wave function for composite fermions in the torus geometry, which is a convenient geometry
for formulating momentum space pairing as well as for revealing the underlying composite-fermion Fermi sea.
Following the standard BCS approach, we minimize the Coulomb interaction energy at half filling in the lowest
and the second Landau levels, which correspond to filling factors ν = 1/2 and ν = 5/2 in GaAs quantum wells,
by optimizing two variational parameters that are analogous to the gap and the Debye cutoff energy of the BCS
theory. Our results show no evidence for pairing at ν = 1/2 but a clear evidence for pairing at ν = 5/2. To
a good approximation, the highest overlap between the exact Coulomb ground state at ν = 5/2 and the BCS
state is obtained for parameters that minimize the energy of the latter, thereby providing support for the physics
of composite-fermion pairing as the mechanism for the 5/2 fractional quantum Hall effect. We discuss the
issue of modular covariance of the composite-fermion BCS wave function, and calculate its Hall viscosity and
pair correlation function. By similar methods, we look for but do not find an instability to s-wave pairing for
a spin-singlet composite-fermion Fermi sea at half-filled lowest Landau level in a system where the Zeeman
splitting has been set to zero.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] has proved
a treasure trove of exotic emergent phenomena. A striking
example is the FQHE at filling factor ν = 5/2 [2,3], which
corresponds to half filled second Landau level (LL) in GaAs
quantum well systems. The most promising theoretical ex-
planation of this state [4,5] passes through a succession of
remarkable emergences: First is the emergence of compos-
ite fermions (CFs), namely, electrons carrying two quantized
vortices, which arise as a result of the repulsive interaction
between electrons [6–8]. Composite fermions experience no
effective magnetic field at half filling and attempt to form a
CF Fermi sea (CFFS), in analogy to the CFFS at ν = 1/2
in the lowest LL (LLL) [9–15]. The CFFS in the second LL
(SLL), however, is unstable to a topological p-wave pairing
of fully spin-polarized composite fermions, which opens a
gap and thus produces a FQHE. Furthermore, this paired
state is predicted to give birth to its own new emergent
particles, namely, Majorana particles obeying non-Abelian
braiding statistics [4,5]. These are interesting in their own
right and have also generated exciting proposals for topo-
logical quantum computation [16]. The past three decades
have seen an intense theoretical and experimental investiga-
tion of the “5/2 state,” which has lent nontrivial support to
certain aspects of the above-outlined physical mechanism for
the 5/2 FQHE. Moore and Read (MR) proposed an ansatz
wave function for the paired CF state [4], which has a lower
energy than the CFFS [17] and a significant overlap with the
exact Coulomb ground state for small systems [18]. Further-
more, numerical calculations indicate that the CFFS in the

second Landau level (LL) is unstable to Cooper pairing [19].
More recently, it has been shown [20] that a wave function
belonging to the parton class [21] also describes topologi-
cal superconductivity of composite fermions and provides a
comparably decent quantitative account of the exact Coulomb
state. Experimentally, convincing evidence exists that the 5/2
state in the SLL is fully spin polarized [22–25], which is a
necessary condition for topological p-wave superconductiv-
ity. The appearance of a CFFS at ν = 5/2 at either elevated
temperatures [26] or at nearby filling factors [25] supports
the notion that the 5/2 state arises from an instability of the
CFFS. Furthermore, the thermal Hall conductance of the 5/2
state has been found to be half quantized [27], as expected
from topological superconductivity, although its value is in-
consistent with the expectation from the MR state or its hole
conjugate.

Even though the MR wave function can be readily seen
to describe pairing of composite fermions, it is not expressed
in the standard Bardeen-Cooper-Schrieffer (BCS) form. There
are several motivations to construct a CF-BCS wave function.
For one thing, the MR (or the parton) wave function does not
contain any variational parameters that would allow one to
optimize the pair wave function. (The absence of variational
parameters is a rather ubiquitous feature of the CF theory,
but often, especially in the LLL, the parameter-free wave
functions turn out to be such accurate representations of the
Coulomb ground states that the lack of variational parameters
is seen as a virtue rather than a shortcoming.) Second, a BCS
wave function should clarify how the paired state evolves out
of the CFFS. Finally, the BCS framework can in principle be

2469-9950/2021/104(20)/205303(17) 205303-1 ©2021 American Physical Society
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For one thing, the MR (or the parton) wave function does not
contain any variational parameters that would allow one to
optimize the pair wave function. (The absence of variational
parameters is a rather ubiquitous feature of the CF theory,
but often, especially in the LLL, the parameter-free wave
functions turn out to be such accurate representations of the
Coulomb ground states that the lack of variational parameters
is seen as a virtue rather than a shortcoming.) Second, a BCS
wave function should clarify how the paired state evolves out
of the CFFS. Finally, the BCS framework can in principle be
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Phase diagrams for the stability of the ν = 1
2 fractional quantum Hall effect in electron systems

confined to symmetric, wide GaAs quantum wells
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We report an experimental investigation of the fractional quantum Hall effect (FQHE) at the even-denominator
Landau-level filling factor ν = 1/2 in very-high-quality wide GaAs quantum wells and at very high magnetic
fields up to 45 T. The quasi-two-dimensional electron systems we study are confined to GaAs quantum wells with
widths W ranging from 41 to 96 nm and have variable densities in the range of !4 × 1011 to !4 × 1010 cm−2.
We present several experimental phase diagrams for the stability of the ν = 1/2 FQHE in these quantum wells.
In general, for a given W , the 1/2 FQHE is stable in a limited range of intermediate densities where it has a
bilayerlike charge distribution; it makes a transition to a compressible phase at low densities and to an insulating
phase at high densities. The densities at which the ν = 1/2 FQHE is stable are larger for narrower quantum wells.
Moreover, even a slight charge distribution asymmetry destabilizes the ν = 1/2 FQHE and turns the electron
system into a compressible state. We also present a plot of the symmetric-to-antisymmetric subband separation
("SAS), which characterizes the interlayer tunneling, vs density for various W . This plot reveals that "SAS at
the boundary between the compressible and FQHE phases increases linearly with density for all the samples.
There is no theoretical explanation for such a simple dependence. Finally, we summarize the experimental data
in a diagram that takes into account the relative strengths of the interlayer and intralayer Coulomb interactions
and "SAS. We conclude that consistent with the conclusions of some of the previous studies, the ν = 1/2 FQHE
observed in wide GaAs quantum wells with symmetric charge distribution is stabilized by a delicate balance
between the interlayer and intralayer interactions and is very likely described by a two-component (#331) state.

DOI: 10.1103/PhysRevB.88.245413 PACS number(s): 73.21.Fg, 73.43.Qt

I. INTRODUCTION

The fractional quantum Hall effect (FQHE)1 is predomi-
nantly seen in high-quality two-dimensional (2D) electron sys-
tems in the lowest (N = 0) Landau level at odd-denominator
fillings ν.2 In the first, excited (N = 1) Landau level, a
FQHE exists at the even-denominator filling ν = 5/2.3,4

This enigmatic FQHE has become the focus of considerable
theoretical and experimental attention, partly because of its
potential application in topological quantum computing.5

Despite numerous experimental efforts during the past two
decades, however, a thorough understanding of its origin
remains elusive. In particular, it is yet unknown whether or
not the spin degree of freedom is necessary to stabilize this
state. If yes, then the 5/2 FQHE state could be described by
a two-component, Halperin-Laughlin (#331) wave function.6

But if the 5/2 FQHE is stable in a fully spin-polarized 2D
electron system, then it is likely to be the one-component,
Moore-Read (Pfaffian) state.7 The latter is of enormous interest
as it is expected to obey non-Abelian statistics and have use in
topological quantum computing.5

The possibility of an even-denominator FQHE in the lowest
Landau level, e.g., at ν = 1/2, has been theoretically discussed
in numerous publications.6–21 Experimentally, FQHE states
at ν = 1/2 have been seen in electron systems confined
to either double22 or wide23–32 GaAs quantum well (QW)
systems; ν = 1/2 FQHE was also reported very recently in
a bilayer graphene system.33 In wide GaAs QWs, the FQHE
has also been seen at other even-denominator fillings, namely,
at ν = 3/2 (Ref. 26) and at ν = 1/4.30–32 In a double QW
with negligible interlayer tunneling but comparable interlayer
and intralayer Coulomb interactions, it is generally accepted
that the ν = 1/2 FQHE is stabilized by the additional (layer)

degree of freedom and is described by the two-component,
#331 state;8–12,14–21 in this case, the components are the layer
indices. However, the situation is more subtle for the case of
electrons in a single, wide QW where the electron-electron
repulsion lifts the potential energy near the well center and
creates an effective barrier.23–32,34,35 Although the system
can have a “bilayerlike” charge distribution at sufficiently
high densities, the interlayer tunneling, quantified by the
symmetric-to-antisymmetric subband separation ("SAS), can
be substantial. Moreover, in a QW with fixed well width,
the magnitude of "SAS can be tuned from small to large
values by decreasing the electron density in the QW while
keeping the total charge distribution symmetric (“balanced”).
When "SAS is negligible compared to the intralayer Coulomb
energy (e2/4πεlB), then, similar to the double-QW system,
#331 is the likely ground state if a ν = 1/2 FQHE is observed
(lB =

√
h̄/eB is the magnetic length and ε is the dielectric

constant). If "SAS is a significant fraction of e2/4πεlB ,
however, then it is likely that the ν = 1/2 FQHE state is a
one-component, Pfaffian state.13

Here we present results of our extensive experimental study
of the ν = 1/2 FQHE in very-high-quality, wide GaAs QWs
with well widths (W ) ranging from 41 to 96 nm and tunable
densities (n) in the range of !4 × 1011 to !4 × 1010 cm−2. Our
data, taken at low temperatures and very high perpendicular
magnetic fields (B up to 45 T), allow us to determine the most
comprehensive set of experimental conditions for the stability
of the ν = 1/2 FQHE in symmetric, wide GaAs QWs. We
present our data in several experimental phase diagrams, in-
cluding a d/lB vs "SAS/(e2/4πεlB) diagram; d/lB is the ratio
of the interlayer distance (d) and the magnetic length, and is a
measure of the relative strengths of the intralayer (e2/4πεlB)
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FIG. 5. (Color online) Experimentally measured subband sepa-
ration energy (#SAS) as a function of density (n) for electron systems
with symmetric charge distributions confined to wide GaAs QWs.
The accuracy of the measured #SAS is about ±2%. The well widths
are given (in units of nm) next to each set of data points, and
are determined from fitting each set to our self-consistent (Hartree)
calculations, examples of which are shown by thin red curves for the
48-nm-wide QW (see text). Data points in black are from Refs. 23–26
and those in green from Ref. 30. Filled symbols represent the presence
of a ν = 1/2 FQHE and open symbols represent its absence; the size
of each filled symbol for the 45-, 48-, 56-, and 77-nm-wide QWs
provides an estimate for the strength of the observed ν = 1/2 FQHE.
The boundary between the FQHE and compressible states appears to
be a straight line (dashed line) over the entire range of QW widths
and densities in our study.

the QW is symmetric (δn/n = 0). It becomes weak when
δn/n = 0.017 and is completely destroyed when δn/n =
0.034. This evolution is also very similar to what is observed
in electron systems confined to wider GaAs QWs.25–29,31 It
shows that even in relatively narrow QWs, the ν = 1/2 FQHE
is destabilized by a slight asymmetry in the charge distribution.

V. PHASE DIAGRAMS FOR THE STABILITY
OF ν = 1/2 FQHE

We have made measurements similar to those shown in
Figs. 2 and 3 for several samples with different QW widths,
and summarize the results in various “phase diagrams” shown
in Figs. 5–7. In all these figures, the charge distribution in
the wide QW is symmetric and the filled symbols indicate
that the ν = 1/2 FQHE is stable. The size of the filled
symbols for data from some representative QW widths (W =
45, 48, 56, and 77 nm) gives an approximate indication of
the strength of the FQHE as deduced, e.g., from the depth
of the ν = 1/2 Rxx minimum or from the measured energy
gaps.25,26 The open symbols in Figs. 5–7 denote the absence of
a ν = 1/2 FQHE. In all the samples, the trend is the same: The
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ν = 1/2 FQHE is seen in an intermediate-density range which
depends on the QW width, but turns into a compressible state
when the density is sufficiently lowered. In Figs. 5–7, we mark
the approximate boundary between the FQHE and the com-
pressible state with a dashed curve. This boundary is a main
focus of our work presented here. At sufficiently high densities,
the electron system turns into an insulating phase whose char-
acteristics suggest the formation of a pinned bilayer Wigner
crystal.27–29 We have indicated the boundary between the
FQHE and the insulating phase with a dotted curve in Figs. 5–7.
This boundary and the properties of the insulating phase are
interesting in their own right, but are beyond the scope of our
study. We note, however, that this boundary is difficult to deter-
mine in narrower QWs because of the very high densities, and
hence very high magnetic fields, that are required for its access.

Before discussing these phase diagrams, we would like to
highlight some additional information that Fig. 5 provides: For
a given well width W , "SAS decreases with increasing n, and
this dependence allows us to determine reasonably precise val-
ues for W . This is important because, as stated in Sec. II, many
of our samples were not rotated during the molecular-beam
epitaxial growth and W is not precisely known. To determine
W , we performed self-consistent (Hartree) calculations of
the charge distribution and potential, and hence "SAS, while
keeping W as a fitting parameter. Examples of the results of
such calculations are shown by two thin, solid red lines in Fig. 5
for W = 48.1 and 48.8 nm. It is clear that the measured data
points for the sample whose W we quote as 48 nm fall between
these two lines. Using a similar procedure, we determined W
for all other samples, except for the sample of Ref. 30 (green
circles in Fig. 5). For this sample, a W = 50 nm was quoted in
Ref. 30, but no measurements of "SAS were reported. We thus
used W = 50 nm and in Fig. 5 we plot our calculated "SAS
for the two densities reported in Ref. 30. We would like to
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wide GaAs QWs. The well widths W are given in units of nm. The
upper-left inset shows a typical electron charge distribution calculated
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maximum λ of each layer are also indicated. The upper-right inset is
the d/lB vs λ/lB phase diagram; for clarity, only data points for well
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emphasize that for consistency in our presentation, we used the
same calculations to determineW for the older samples of Suen
et al.23–26 (black data points in Fig. 5). We have found that
there is a small discrepancy between W determined from our
fits and those quoted previously. In particular, we find W = 57,
67, and 70 nm, while in Refs. 23–26, the quoted values are 60,
68, and 71 nm, respectively. These discrepancies mainly stem
from the differences in the self-consistent calculations and the
band parameters used. Given the accuracies of the measured
"SAS and also the self-consistent calculations, we estimate the
overall absolute accuracy of the quoted W to be about ±5%.
Their relative accuracy, however, is better than about ±2%.
Our quoted W also agree with the nominal QW widths based
on the epitaxial growth rates to within about ±10%. Returning
to the phase diagrams in Figs. 5–7, each provides a different
perspective on the stability of the ν = 1/2 FQHE in wide
GaAs QWs. Figure 5 is rather unique in that the parameters
for both axes, "SAS and density, are experimentally measured
quantities. The plot clearly demonstrates that the ν = 1/2
FQHE is only stable in a range of intermediate densities which
depends on the QW width. More remarkably, it reveals that
the boundary between the FQHE and compressible ground
states (dashed line in Fig. 5) appears to be well described by
essentially a straight line. We are not aware of any theoretical
calculations which predict such a simple (linear) boundary for
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The Halperin-Lee-Read Fermi sea of composite fermions at half-filled lowest Landau level is the realization
of a fascinating metallic phase that is a strongly correlated “non-Fermi liquid” from the electrons’ perspective.
Remarkably, experiments have found that, as the width of the quantum well is increased, this state makes a
transition into a fractional quantum Hall state, the origin of which has remained an important puzzle since
its discovery more than three decades ago. We perform detailed and accurate quantitative calculations using a
systematic variational framework for the pairing of composite fermions that closely mimics the Bardeen-Cooper-
Schrieffer theory of superconductivity. Our calculations show that, (i) as the quantum-well width is increased, the
single-component composite-fermion Fermi sea occupying the lowest symmetric subband of the quantum well
undergoes an instability into a single-component p-wave paired state of composite fermions; (ii) the theoretical
phase diagram in the quantum-well width–electron-density plane is in excellent agreement with experiments;
(iii) a sufficient amount of asymmetry in the charge distribution of the quantum well destroys the fractional
quantum Hall effect, as observed experimentally; and (iv) the two-component 331 state is energetically less
favorable than the single-component paired state. Evidence for fractional quantum Hall effect has been seen in
wide quantum wells also at quarter-filled lowest Landau level; here our calculations indicate an f -wave paired
state of composite fermions. We further investigate bosons in the lowest Landau level at filling factor equal to
one and show that a p-wave pairing instability of composite fermions, which are bosons carrying a single vortex,
occurs for the short range as well as the Coulomb interaction, in agreement with exact diagonalization studies.
The general consistency of the composite-fermion Bardeen-Cooper-Schrieffer approach with experiments lends
support to the notion of composite-fermion pairing as the primary mechanism of fractional quantum Hall effects
at even-denominator filling factors. Various experimental implications are mentioned.

DOI: 10.1103/PhysRevB.109.035306

I. INTRODUCTION

The observation of a fractionally quantized Hall plateau
at RH = h/νe2 indicates the formation of an incompressible
state at filling fraction ν [1]. Beginning with ν = 1/3 [2],
a large array of fractions have been observed [3,4]. Most
of the observed fractions have the form ν = n/(2pn ± 1), n
and p integers, which are understood as the integer quantum
Hall effect of composite fermions (CFs), namely, electrons
bound to an even number (2p) of quantized vortices [5,6].
A CF is often pictured as the bound state of an electron and
2p flux quanta. These fractions terminate into compressible
states at even-denominator fractions such as ν = 1/2, which
are realizations of the Fermi seas of CFs [4,7–9]. The first
even-denominator fractional quantum Hall effect (FQHE) was
observed at ν = 5/2 in GaAs quantum wells [10]. Moore and
Read (MR) proposed a Pfaffian (Pf) state [11], which was sub-
sequently interpreted as representing a p-wave pairing of CFs
and associated with the ν = 5/2 FQHE [12–17]. This state is
akin to topological superconductivity of CFs and is therefore
believed to host quasiparticles obeying non-Abelian statistics
[11,14]. More recently, Balram, Barkeshli, and Rudner [18]
showed that the 5/2 state can also be successfully modeled in
terms of the so-called “2̄2̄111” parton wave function, which
belongs to the class of wave functions introduced in Ref. [19]
and shown in Ref. [20] to host non-Abelian excitations.

Möller and Simon [21] and Sharma et al. [22] treated the
CF pairing in the 5/2 state in an approach that closely mimics
the Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity and showed that the CF Fermi sea (CFFS) is unstable
to the pairing of CFs in the p-wave channel. As with the
BCS theory, this approach can be used to provide a unified
treatment of pairing instabilities in different relative angular-
momentum channels and to make predictions regarding the
optimal pairing channel. Also, because it contains the CFFS
as a limiting case, it can in principle be applied to situations
where a transition occurs, as a function of some parameter,
from the compressible CFFS state into an incompressible
paired FQHE state.

While a FQHE has been observed at ν = 5/2 in the sec-
ond Landau level (LL), the states at ν = 1/2 and ν = 1/4 in
narrow quantum wells (QWs) are well established to be com-
pressible Fermi seas of CFs carrying two and four vortices,
respectively [7–9,23–32], as expected for weakly interacting
CFs. Unexpectedly, Suen et al. observed FQHE at ν = 1/2
in wide QWs in 1992 [33,34], followed by systematic studies
demonstrating that a transition from the CFFS to a FQHE state
occurs as the width of the QW or the electron density is in-
creased [35,36]. A similar behavior was observed at ν = 1/4
by Shabani and collaborators [36–38]. One may ask why elec-
trons at ν = 1/2 and ν = 1/4 in the lowest LL (LLL) behave
differently from ν = 5/2 in the second LL in narrow QWs,
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Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].

physics.aps.org | © 2024 American Physical Society | January 22, 2024 | Physics 17, 10 | DOI: 10.1103/Physics.17.10 Page 1

VIEWPOINT

Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
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University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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Composite-fermion pairing at half-filled and quarter-filled lowest Landau level

Anirban Sharma,1 Ajit C. Balram ,2,3 and J. K. Jain 1

1Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
2Institute of Mathematical Sciences, CIT Campus, Chennai, 600113, India

3Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

(Received 6 September 2023; accepted 9 November 2023; published 22 January 2024)

The Halperin-Lee-Read Fermi sea of composite fermions at half-filled lowest Landau level is the realization
of a fascinating metallic phase that is a strongly correlated “non-Fermi liquid” from the electrons’ perspective.
Remarkably, experiments have found that, as the width of the quantum well is increased, this state makes a
transition into a fractional quantum Hall state, the origin of which has remained an important puzzle since
its discovery more than three decades ago. We perform detailed and accurate quantitative calculations using a
systematic variational framework for the pairing of composite fermions that closely mimics the Bardeen-Cooper-
Schrieffer theory of superconductivity. Our calculations show that, (i) as the quantum-well width is increased, the
single-component composite-fermion Fermi sea occupying the lowest symmetric subband of the quantum well
undergoes an instability into a single-component p-wave paired state of composite fermions; (ii) the theoretical
phase diagram in the quantum-well width–electron-density plane is in excellent agreement with experiments;
(iii) a sufficient amount of asymmetry in the charge distribution of the quantum well destroys the fractional
quantum Hall effect, as observed experimentally; and (iv) the two-component 331 state is energetically less
favorable than the single-component paired state. Evidence for fractional quantum Hall effect has been seen in
wide quantum wells also at quarter-filled lowest Landau level; here our calculations indicate an f -wave paired
state of composite fermions. We further investigate bosons in the lowest Landau level at filling factor equal to
one and show that a p-wave pairing instability of composite fermions, which are bosons carrying a single vortex,
occurs for the short range as well as the Coulomb interaction, in agreement with exact diagonalization studies.
The general consistency of the composite-fermion Bardeen-Cooper-Schrieffer approach with experiments lends
support to the notion of composite-fermion pairing as the primary mechanism of fractional quantum Hall effects
at even-denominator filling factors. Various experimental implications are mentioned.

DOI: 10.1103/PhysRevB.109.035306

I. INTRODUCTION

The observation of a fractionally quantized Hall plateau
at RH = h/νe2 indicates the formation of an incompressible
state at filling fraction ν [1]. Beginning with ν = 1/3 [2],
a large array of fractions have been observed [3,4]. Most
of the observed fractions have the form ν = n/(2pn ± 1), n
and p integers, which are understood as the integer quantum
Hall effect of composite fermions (CFs), namely, electrons
bound to an even number (2p) of quantized vortices [5,6].
A CF is often pictured as the bound state of an electron and
2p flux quanta. These fractions terminate into compressible
states at even-denominator fractions such as ν = 1/2, which
are realizations of the Fermi seas of CFs [4,7–9]. The first
even-denominator fractional quantum Hall effect (FQHE) was
observed at ν = 5/2 in GaAs quantum wells [10]. Moore and
Read (MR) proposed a Pfaffian (Pf) state [11], which was sub-
sequently interpreted as representing a p-wave pairing of CFs
and associated with the ν = 5/2 FQHE [12–17]. This state is
akin to topological superconductivity of CFs and is therefore
believed to host quasiparticles obeying non-Abelian statistics
[11,14]. More recently, Balram, Barkeshli, and Rudner [18]
showed that the 5/2 state can also be successfully modeled in
terms of the so-called “2̄2̄111” parton wave function, which
belongs to the class of wave functions introduced in Ref. [19]
and shown in Ref. [20] to host non-Abelian excitations.

Möller and Simon [21] and Sharma et al. [22] treated the
CF pairing in the 5/2 state in an approach that closely mimics
the Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity and showed that the CF Fermi sea (CFFS) is unstable
to the pairing of CFs in the p-wave channel. As with the
BCS theory, this approach can be used to provide a unified
treatment of pairing instabilities in different relative angular-
momentum channels and to make predictions regarding the
optimal pairing channel. Also, because it contains the CFFS
as a limiting case, it can in principle be applied to situations
where a transition occurs, as a function of some parameter,
from the compressible CFFS state into an incompressible
paired FQHE state.

While a FQHE has been observed at ν = 5/2 in the sec-
ond Landau level (LL), the states at ν = 1/2 and ν = 1/4 in
narrow quantum wells (QWs) are well established to be com-
pressible Fermi seas of CFs carrying two and four vortices,
respectively [7–9,23–32], as expected for weakly interacting
CFs. Unexpectedly, Suen et al. observed FQHE at ν = 1/2
in wide QWs in 1992 [33,34], followed by systematic studies
demonstrating that a transition from the CFFS to a FQHE state
occurs as the width of the QW or the electron density is in-
creased [35,36]. A similar behavior was observed at ν = 1/4
by Shabani and collaborators [36–38]. One may ask why elec-
trons at ν = 1/2 and ν = 1/4 in the lowest LL (LLL) behave
differently from ν = 5/2 in the second LL in narrow QWs,
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Composite Fermions Are Better
Together
Particle pairing seen in nanoscale semiconductor devices could point the
way tomaterials that superconduct at high temperatures.

By Noah Bray-Ali

I n 1986, materials physicists discovered a new
kind of superconductor that is surprisingly resilient to heat,
electrical currents, andmagnetic fields [1]. Six years later,

device physicists found something similar in a nanoscale
semiconductor device: an incompressible electron liquid,
known as a fractional quantum Hall fluid, that flows without
heat loss at much higher temperatures than expected [2]. Now,
after more than 30 years, Anirban Sharma at Pennsylvania State

Figure 1: If an electron liquid flows in a strongmagnetic field, its
electrons (purple) can capture an even number of magnetic-flux
quanta (blue) to form exotic particles known as composite
fermions. Usually, each particle has a maximum energy given by
the so-called Fermi energy EF. Sharma and colleagues argue that, if
the flux quanta add up to a field whose strength roughly matches
that of the external field, the composite fermions pair up [3]. This
pairing releases an energy of 0.02 EF per particle and induces the
fractional quantum Hall effect, whereby the liquid flows without
heat loss.
Credit: APS/Carin Cain; adapted fromM. R. Peterson et al. [7]

University, University Park, and colleagues think they have
developed the right picture to help scientists understand the
properties of this electron liquid (Fig. 1) [3]. The picture might
shed light on the way electrons form pairs to flow without
energy dissipation in high-temperature superconductors.

When an electron travels through amagnetic field with strength
B and with a direction perpendicular to the particle’s velocity, it
moves in a circle. What sets the extreme quantum limit, called
the magnetic length lB, for the radius of the smallest possible
circle? As Niels Bohr could have guessed and as Lev Landau
showed [4], the quantum of angular momentum given by
Planck’s constant h does the trick when it is combined with the
electron charge e: their ratio h/e = 4.14 × 10–15 T m2 can be
expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
first foundmore than 40 years ago in nanoscale semiconductor
devices known as quantumwells [5].

In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
field that roughly matches that of the magnet or magnetic
semiconductor device in which the fluid flows? The
composite-fermion liquid effectively “feels” no net magnetic
field, yet it still condenses into a fractional quantum Hall fluid,
as was found back in 1992 [2].
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expressed as 2πBlB2. For electrons moving in a magnetic field
of roughly 15 T, the magnetic length is only about 7 nm. It is
under these conditions that fractional quantum Hall fluids were
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In 2023, fractional quantum Hall fluids were seen for the first
time without an applied magnetic field by having the electrons
insteadmove within a magnetic semiconductor device [6]. Yet,
the basic physical picture remains the same (Fig. 1). Each
electron captures an even number of magnetic-flux quanta
from the surrounding electron liquid, resulting in a composite
object called a composite fermion. But what happens when the
little bits of magnetic flux attached to each electron add up to a
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semiconductor device in which the fluid flows? The
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Correlated States of Electrons in Wide QuantumWells at Low Fillings:
The Role of Charge Distribution Symmetry

J. Shabani, T. Gokmen, and M. Shayegan
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 24 April 2009; published 22 July 2009)

Magnetotransport measurements on electrons confined to a 57-nm-wide, GaAs quantum well reveal

that the correlated electron states at low Landau level fillings (!) display a remarkable dependence on the

symmetry of the electron charge distribution. At a density of 1:93! 1011 cm"2, a developing fractional

quantum Hall state is observed at the even-denominator filling ! ¼ 1=4 when the distribution is

symmetric, but it quickly vanishes when the distribution is made asymmetric. At lower densities, as

we make the charge distribution asymmetric, we observe a rapid strengthening of the insulating phases

that surround the ! ¼ 1=5 fractional quantum Hall state.

DOI: 10.1103/PhysRevLett.103.046805 PACS numbers: 73.21.Fg, 73.43.Qt

Low disorder two-dimensional (2D) electron systems
(ESs) at high magnetic fields (B) have provided one of
the richest grounds to study the physics of interacting
charged particles [1]. Much of the work has been done in
2D ESs confined to modulation-doped GaAs=AlGaAs het-
erostructures where the electrons are separated from the
ionized impurities to minimize the scattering and disorder.
Recently, it has been recognized that 2D ESs of the highest
quality can be realized in modulation-doped wide quantum
well (WQW) GaAs samples of width $30 nm [2–5].
These samples have led to the observation of some of the
most spectacular fractional quantum Hall state (FQHS)
phenomena and reentrant insulating phases (IPs) at very
low Landau level (LL) filling factors (!) as well as in the
higher LLs (!> 2). Most recently, a new FQHS at the
even-denominator filling ! ¼ 1=4 was reported in a 50-
nm-wide GaAs WQW at very high B [6].

Here we present magnetotransport measurements on 2D
ESs confined to a 57-nm-wide GaAs WQW. We employ
back- and front-gate electrodes to control the electron
density n as well as the symmetry of the charge distribu-
tion. Our measurements reveal that this symmetry plays a
crucial role in stabilizing the correlated states of 2D elec-
trons at low !. We find that the recently observed FQHS at
! ¼ 1=4 quickly disappears when the charge distribution is
made asymmetric, suggesting that the origin of this state is
similar to the ! ¼ 1=2 FQHS observed in WQWs [7,8]. At
lower n, we observe a very strong FQHS at ! ¼ 1=5. As
commonly observed, the 1=5 state is flanked by IPs at
nearby !; these IPs are generally believed to be signatures
of pinned electron Wigner solid states. The IPs in our
WQW, however, have a surprisingly small resistivity,
only about 50 k!=h at a temperature (T) of 35 mK, and
a weak T dependence when the charge distribution is
symmetric. Remarkably, when we make the charge distri-
bution asymmetric, the resistivity of the IPs increases by
more than a factor of 20 at 35 mK and shows a strong T
dependence, while the resistivity at lower B barely
changes.

Our structure was grown by molecular beam epitaxy and
consists of a 57-nm-wide GaAs WQW bounded on each
side by an ’ 130-nm-thick undoped AlGaAs spacer layer.
The WQW is modulation doped symmetrically with Si "
layers. The mobility of our sample is # ¼ 2:5!
106 cm2=Vs at n ¼ 1:93! 1011 cm"2. A Ti=Au front
gate evaporated on the surface and a Ga back-side gate
were used to change the density of the 2D ES and control
the symmetry of its charge distribution. The longitudinal
and transverse resistivities $xx and $xy, respectively, were
measured in a van der Pauw square geometry. The data
were taken in a 3He=4He dilution refrigerator with a base T
of 35 mK in a 35 T magnet. For electrical measurements
we used the lock-in technique at a frequency of 5.66 Hz
with a sample excitation current of 1–10 nA.
When electrons at very low n are confined to a

modulation-doped WQW, they occupy the lowest electric
subband and have a single-layer-like (but rather thick in the
growth direction) charge distribution. As more electrons
are added to the well while keeping the distribution sym-
metric, their electrostatic repulsion forces them to pile up
near the well’s walls, and the charge distribution appears
increasingly bilayerlike [7–12]. At high n, the electrons
typically occupy the lowest two, symmetric and antisym-
metric, electric subbands which are separated in energy by
"SAS. An example of the charge distribution in such a
system is given in Fig. 1(b), where we show the results
of our self-consistent calculations for n ¼ 1:93!
1011 cm"2 electrons symmetrically distributed in our
57-nm-wide WQW. A crucial property of the ES in a
WQW is that both "SAS and d (the interlayer separation),
which characterize the coupling between the layers, de-
pend on n: Increasing n makes d larger and "SAS smaller
so that the system can essentially be tuned from a (thick)
single-layer-like ES at low n to a bilayer one by increasing
n. This evolution with density plays a decisive role in the
properties of the correlated electron states in this system
[8–11]. Equally important is the symmetry of the charge
distribution in the WQW. For a fixed n, as the distribution
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Developing Fractional Quantum Hall States at Even-Denominator Fillings 1=6 and 1=8

Chengyu Wang , P. T. Madathil, S. K. Singh , A. Gupta , Y. J. Chung, L. N. Pfeiffer, K. W. Baldwin, and M. Shayegan
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 2 May 2024; accepted 24 December 2024; published 31 January 2025)

In the extreme quantum limit, when the Landau level filling factor ν < 1, the dominant electron-electron
interaction in low-disorder two-dimensional electron systems leads to exotic many-body phases. The
ground states at even-denominator ν ¼ 1=2 and 1=4 are typically Fermi seas of composite fermions
carrying two and four flux quanta, surrounded by the Jain fractional quantum Hall states (FQHSs) at
odd-denominator fillings ν ¼ p=ð2p# 1Þ and ν ¼ p=ð4p# 1Þ, where p is an integer. For ν < 1=5,
an insulating behavior, which is generally believed to signal the formation of a pinned Wigner crystal,
is seen. Our experiments on ultra-high-quality, dilute, GaAs two-dimensional electron systems
reveal developing FQHSs at ν ¼ p=ð6p# 1Þ and ν ¼ p=ð8p# 1Þ, manifested by magnetoresistance
minima superimposed on the insulating background. In stark contrast to ν ¼ 1=2 and 1=4, however, we
observe a pronounced, sharp minimum in magnetoresistance at ν ¼ 1=6 and a somewhat weaker minimum
at ν ¼ 1=8, suggesting developing FQHSs, likely stabilized by the pairing of composite fermions that
carry six and eight flux quanta. Our results signal the unexpected entry, in ultra-high-quality samples,
of FQHSs at even-denominator fillings 1=6 and 1=8, which are likely to harbor non-Abelian anyon
excitations.

DOI: 10.1103/PhysRevLett.134.046502

When a two-dimensional electron system (2DES) at low
temperatures is subjected to a large, perpendicular magnetic
field (B), the electrons’ kinetic energy is quenched as they
occupy quantized, dispersionless Landau levels (LLs).
The dominant electron-electron Coulomb energy leads to
a variety of exotic, strongly correlated, many-body ground
states, depending on the LL filling factor ν ¼ nh=eB,
where n is the 2DES density. When ν is a rational fraction,
fractional quantum Hall states (FQHSs), incompressible
liquid states that host quasiparticles with fractional charge
and anyonic statistics, manifest as the ground states [1–5].
Of particular interest are FQHSs observed at even-
denominator fillings of excited-state (N ¼ 1) LLs, e.g.,
at ν ¼ 5=2 [6], because they are likely to harbor non-
Abelian anyon excitations [7,8], which can be useful for
topological quantum computation [9]. However, the vast
majority of FQHSs are observed in the extreme quantum
limit (ν < 1) at odd-denominator fillings, and are success-
fully explained by Laughlin’s wave function [10] and Jain’s
composite fermion (CF) theory [2,11].
Another longstanding, fundamental, and important ques-

tion relates to the fate of a clean 2DES at extremely small ν.
It is generally believed that, for sufficiently small ν,
electrons should form an ordered array, known as the
Wigner crystal (WC) [12,13]. Theorists predict a termi-
nation of the FQHSs and transition into a quantum WC at a
critical ν ranging from 1=6 to 1=11 [10,14–17]. On the
experimental front, strong evidence for pinned WC states
was reported at ν≲ 1=5 in GaAs 2DESs [18–22]. The WC
exhibits an insulating behavior because of the pinning by

the ubiquitous disorder in a realistic (nonideal) 2DES. In
the highest quality samples, signatures of FQHSs were also
reported in the very small filling regime, e.g., at ν ¼ 1=7,
in the form of resistance minima superimposed on the
strongly insulating background [23–25]. These observa-
tions highlight the very close competition between the WC
and FQHS phases.
In this Letter, we examine the regime of ν ≪ 1 in ultra-

high-quality GaAs 2DESs. We observe an unexpected
emergence of new correlated states deep in the WC regime,
namely even-denominator FQHSs at ν ¼ 1=6 and 1=8.
These states are likely non-Abelian FQHSs stabilized by
the pairing of six-flux and eight-flux CFs (6CFs and 8CFs).
The presence of these large-flux CFs is also evinced by the
observation of numerous odd-denominator FQHSs on the
flanks of ν ¼ 1=6 and 1=8, following the Jain sequence of
6CFs and 8CFs.
We studied high-quality 2DESs confined to GaAs

quantum wells (QWs) grown on GaAs (001) substrates
by molecular beam epitaxy. They were grown following the
optimization of the growth chamber vacuum integrity and
the purity of the source materials [26]. We used 4 × 4 mm2

van der Pauw geometry samples with alloyed In:Sn
contacts at the four corners and side midpoints. The
samples were cooled in a dilution refrigerator. We mea-
sured the longitudinal resistances (Rxx) using the conven-
tional lock-in amplifier technique.
As highlighted in Fig. 1(a), on the flanks of ν ¼ 1=6, we

observe a sequence of minima at ν ¼ 1=5, 2=11, 3=17, and
1=7, 2=13, 3=19, superimposed on an extremely large and
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When a two-dimensional electron system (2DES) at low
temperatures is subjected to a large, perpendicular magnetic
field (B), the electrons’ kinetic energy is quenched as they
occupy quantized, dispersionless Landau levels (LLs).
The dominant electron-electron Coulomb energy leads to
a variety of exotic, strongly correlated, many-body ground
states, depending on the LL filling factor ν ¼ nh=eB,
where n is the 2DES density. When ν is a rational fraction,
fractional quantum Hall states (FQHSs), incompressible
liquid states that host quasiparticles with fractional charge
and anyonic statistics, manifest as the ground states [1–5].
Of particular interest are FQHSs observed at even-
denominator fillings of excited-state (N ¼ 1) LLs, e.g.,
at ν ¼ 5=2 [6], because they are likely to harbor non-
Abelian anyon excitations [7,8], which can be useful for
topological quantum computation [9]. However, the vast
majority of FQHSs are observed in the extreme quantum
limit (ν < 1) at odd-denominator fillings, and are success-
fully explained by Laughlin’s wave function [10] and Jain’s
composite fermion (CF) theory [2,11].
Another longstanding, fundamental, and important ques-

tion relates to the fate of a clean 2DES at extremely small ν.
It is generally believed that, for sufficiently small ν,
electrons should form an ordered array, known as the
Wigner crystal (WC) [12,13]. Theorists predict a termi-
nation of the FQHSs and transition into a quantum WC at a
critical ν ranging from 1=6 to 1=11 [10,14–17]. On the
experimental front, strong evidence for pinned WC states
was reported at ν≲ 1=5 in GaAs 2DESs [18–22]. The WC
exhibits an insulating behavior because of the pinning by

the ubiquitous disorder in a realistic (nonideal) 2DES. In
the highest quality samples, signatures of FQHSs were also
reported in the very small filling regime, e.g., at ν ¼ 1=7,
in the form of resistance minima superimposed on the
strongly insulating background [23–25]. These observa-
tions highlight the very close competition between the WC
and FQHS phases.
In this Letter, we examine the regime of ν ≪ 1 in ultra-

high-quality GaAs 2DESs. We observe an unexpected
emergence of new correlated states deep in the WC regime,
namely even-denominator FQHSs at ν ¼ 1=6 and 1=8.
These states are likely non-Abelian FQHSs stabilized by
the pairing of six-flux and eight-flux CFs (6CFs and 8CFs).
The presence of these large-flux CFs is also evinced by the
observation of numerous odd-denominator FQHSs on the
flanks of ν ¼ 1=6 and 1=8, following the Jain sequence of
6CFs and 8CFs.
We studied high-quality 2DESs confined to GaAs

quantum wells (QWs) grown on GaAs (001) substrates
by molecular beam epitaxy. They were grown following the
optimization of the growth chamber vacuum integrity and
the purity of the source materials [26]. We used 4 × 4 mm2

van der Pauw geometry samples with alloyed In:Sn
contacts at the four corners and side midpoints. The
samples were cooled in a dilution refrigerator. We mea-
sured the longitudinal resistances (Rxx) using the conven-
tional lock-in amplifier technique.
As highlighted in Fig. 1(a), on the flanks of ν ¼ 1=6, we

observe a sequence of minima at ν ¼ 1=5, 2=11, 3=17, and
1=7, 2=13, 3=19, superimposed on an extremely large and
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insulating Rxx [27]. These are the Jain-sequence FQHSs of
6CFs [ν ¼ p=ð6p# 1Þ], emanating from ν ¼ 1=6, analo-
gous to the standard Jain-sequence FQHSs of 2CFs and
4CFs observed on the flanks of CF Fermi seas at ν ¼ 1=2
and 1=4; see Fig. S4 in Supplemental Material (SM) [28]
for data near ν ¼ 1=2 and 1=4. Our observation is con-
sistent with recent calculations that indicate that, in the
low-disorder limit, Jain-sequence FQHSs of 6CFs should
prevail at ν ¼ 1=7 and 2=13 [17]. The appearances of the
very-high-order FQHSs near ν ¼ 1=2 and 1=4, and the
rarely observed FQHSs near ν ¼ 1=6 [23–25], collectively
demonstrate the exceptionally high quality of our 2DES,
specially at such a low density (n ¼ 4.4, in units of
1010 cm−2, which we use throughout the Letter).
Our main finding is the pronounced, sharp minimum in

Rxx at the even-denominator filling ν ¼ 1=6. Aswe illustrate
below, the characteristics of thisminimumarevery similar to
those of the nearby, emerging, odd-denominator FQHSs.
Our data signal a developing even-denominator FQHS at
ν ¼ 1=6, likely stabilized by the pairing of 6CFs.
Figure 1(a) also shows high-field Rxx vs B traces at

different temperatures. As T increases from 80 to 121 mK,
Rxx at ν < 1=5 decreases by more than an order of
magnitude. Meanwhile, Rxx minima at ν ¼ 1=6 and ν ¼
p=ð6p# 1Þ gradually weaken and eventually turn into
inflection points [28,39]. To highlight FQHS features, in
Fig. 1(b), we present ΔRxx vs B traces, with ΔRxx
representing resistance after subtracting the smooth back-
ground; see Sec. I of SM for details [28]. We observe
sharp ΔRxx minima at ν ¼ p=ð6p# 1Þ for p ¼ 1, 2, 3, 4,
and at ν ¼ 1=6. The ν ¼ p=ð6p# 1Þ minima are weaker

for larger p and weaken with increasing T, consistent with
standard Jain-sequence FQHSs. The ν ¼ 1=6 minimum
is sharp and exhibits similar temperature dependence to
those at Jain-sequence fillings, signaling a developing
FQHS at ν ¼ 1=6.

We note that with decreasing temperature, instead of
approaching zero, Rxx at ν¼ 1=6 and p=ð6p#1Þ increases.
This is because an insulating behavior, which is a mani-
festation of a pinned WC [18–22], is dominant in the whole
range of ν < 1=5. Our observation signals a close com-
petition between the FQHSs and WC states. More specifi-
cally, the energies of WC and FQHSs are so close that
FQHSs only win in a very narrow range of ν [17].
Therefore, in a realistic 2DES, a small local variation of
filling factor caused by a minuscule density inhomogeneity
or disorder can lead to the formation of WC domains
and prevent the percolation of the fractional quantum
Hall (FQH) liquid [40]. Our data are reminiscent of what
was historically observed at ν ¼ 1=5 in GaAs 2DESs
[19,20,37,38,41,42]. Initially, in modest-quality samples,
only an Rxx minimum that rose with decreasing temper-
ature was seen because of the significant amount of
disorder [41,42]. With improved sample quality, perco-
lation of the FQH liquid was eventually achieved, exhib-
iting a vanishing Rxx accompanied by a quantized Hall
plateau, firmly establishing that the ground state at
ν ¼ 1=5 is a FQHS [19,37,38].
We measured a second sample from the same wafer [43].

Figure 2(a) shows the Rxx vs 1=ν traces measured at
T ≃ 80 mK with n ranging from 2.77 to 5.10, while
maintaining symmetric charge distribution. We observe a

FIG. 1. (a) Longitudinal resistance (Rxx) vs perpendicular magnetic field (B) traces for our ultra-high-mobility 2DES in the extremely
small filling regime (1=5 > ν > 1=7), measured at different temperatures [27]. The 2DES is confined to a 70-nm-wide QW, and has a
density of 4.4 × 1010 cm−2 and a record mobility of 22 × 106 cm2=Vs at this density. The magnetic field positions of several LL fillings
are marked. Our data exhibit numerous local minima in Rxx at odd-denominator fillings 1=5, 2=11, 3=17, 1=7, 2=13, and 3=19. These
fillings correspond to the Jain-sequence states of six-flux CFs (6CF). Remarkably, we also observe a local minimum in Rxx at the even-
denominator filling ν ¼ 1=6, suggesting a developing FQHS. (b) ΔRxx vs B traces for the same set of data, where ΔRxx is the resistance
after subtracting the increasing, smooth background [28]. (c) Self-consistent charge distribution (red) and potential (black) for the 2DES.
(d) A possible origin of the 1=6 FQHS: each electron captures six flux quanta to turn into a 6CF. Then 6CFs undergo a pairing instability
and condense into a FQHS.
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plateau, firmly establishing that the ground state at
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FIG. 5: Overlaps of the candidate states at ω=1/6 with the exact lowest Landau level ground state [top panels (a), (b), and
(c)], neutral gaps [middle panels (d), (e), and (f)] and charge gaps [bottom panels (g), (h), and (i)] evaluated in the spherical
geometry for the 2215 [left panels (a), (d), and (g)], 2̄217 [center panels (b), (e), and (h)], and CF Fermi sea [right panels (c),
(f), and (i)] using the pseudopotentials of the finite-width interaction obtained using a local density approximation (LDA).
All the panels are for N=8 electrons. The N=9 filled-shell CFFS system at ω=1/6 aliases with the Jain states at ω=3/19 and
ω=3/17 and the charge gaps are calculated assuming the system forms an incompressible state at these Jain fractions.

FIG. 6: (color online) Thermodynamic extrapolation of the
per-particle Coulomb energies for the Pfa!an (blue crosses),
2̄217 (green heptagrams), 2215 (red dots) and the CF Fermi
sea (CFFS, black diamonds) states at ω=1/6 in the lowest
Landau level of GaAs. The energies include the contribution
of the positively charged background and are
density-corrected [115]. All energies are quoted in units of
e2/(εϑ). The lines are linear fits in 1/N .

with insulators in between. For a higher disorder, when
the FQHE states at ω=n/(6n±1) do not percolate, we
have an insulator at all fillings, but the resistance has
minima at ω=n/(6n±1) because of the presence of lakes
of the FQHE liquid in the background of the CFC. In this
work, we suggest that in wide QWs, FQHE also occurs at

FIG. 7: Phase diagram depicting the competition between
the four-vortex attached composite fermion crystal (4CFC),
the composite fermion Fermi sea (CFFS), and the 2211111
state that represents f -wave pairing of composite fermions.
A red square marks the parameters of the experiment [64].

ω=1/6, resulting in a phase diagram shown schematically
in Fig. 1.

Furthermore, our calculations show that the most
plausible FQHE state at ω=1/6 is the 2215 parton
state, which represents an f -wave pairing of compos-
ite fermions [32, 73]. This has numerous experimentally
verifiable consequences. As mentioned in the introduc-
tion, its thermal Hall conductance is predicted to be
εxy=c→ϑ2k2BT/3h with c→=5/2 [32, 48, 73]. The 2215

parton state is expected to support two magnetoroton-
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Evidence for developing fractional quantum Hall effect (FQHE) at filling fraction ν = 1/6 and 1/8 was
recently reported in wide GaAs quantum wells [Wang et al., Phys. Rev. Lett. 134, 046502 (2025)]. In this
article, we theoretically investigate the nature of the state at ν = 1/6 as a function of the quantum well width
and the density by considering composite-fermion (CF) crystals, CF Fermi sea, and various kinds of paired CF
states. The f -wave paired state has the lowest energy among the paired CF states. However, for parameters of
interest, the energies of the CF crystal, the CF Fermi liquid, and the f -wave paired CF state are too close to
distinguish. We, therefore, predict that if the FQHE at ν = 1/6 is experimentally confirmed, this state would be
an f -wave paired state of CFs, which can be verified by measurement of its thermal Hall conductance. Exact
diagonalization studies on clean systems with up to eight electrons show that the ground states at ν = n/(6n±1)
are incompressible for all widths and densities we have considered, and are well described by the corresponding
Laughlin and Jain states. We propose a phase diagram for large quantum well widths and densities in which
at zero disorder, incompressible FQHE states are stabilized at ν = n/(6n±1) and ν = 1/6, but in between
these fillings the CF crystal is stabilized. We also present a qualitative discussion on the effects of disorder
and propose a schematic phase diagram based on it. With disorder, which creates a spatial variation in the filling
factor, two regimes are identified: (i) for small disorder, when the incompressible states percolate at the special
fillings, FQHE with quantized Hall plateaus and vanishing longitudinal resistance should occur; and (ii) for larger
disorder, when the CF crystal percolates, the longitudinal resistance rises with decreasing temperature but the
domains of FQHE liquid produce minima at the special filling factors. Experiments are consistent with the latter
scenario. We also mention a possible connection of the phase diagram presented here to a puzzling behavior
observed for the fractional quantum anomalous Hall effect in pentalayer graphene.
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I. INTRODUCTION

The phenomenology of two-dimensional electrons exposed
to a strong magnetic field is understood as a consequence
of the formation of composite fermions (CFs), which are
bound states of electrons and an even number of quantized
vortices [1]. The residual interaction between CFs is weak,
and it is a good first approximation to neglect it altogether.
In this approximation, the CF theory predicts the fractional
quantum Hall effect (FQHE) at the odd-denominator fractions
ν = n/(2pn±1) [1–3], where n and p are positive integers,
and CF Fermi seas at even-denominator fractions ν = 1/2p
[4–7]. No FQHE occurs at these even-denominator fractions
because of the absence of a gap. Indeed, the states at ν = 1/2
and ν = 1/4 have been confirmed to be CF Fermi seas [7–10].

However, the CFs do inherit a weak residual interaction
from the interaction between electrons, which can sometimes
produce qualitatively new physics. In particular, this interac-
tion can sometimes be attractive and cause pairing instability
in the CF Fermi sea, which opens a gap leading to even-
denominator FQHE. FQHE at ν = 5/2 was observed in the
late 1980s [11] and is understood as a topological p-wave
paired state of CFs [12,13]. FQHE at ν = 1/2 was observed in

wide quantum wells (QWs) in the early 1990s [14,15]. It was
at first interpreted as a bilayer Halperin 331 state [16], but
its origin, especially whether it is a one- or a two-component
state, remained controversial [17–25]. Recent theoretical pa-
pers have predicted that it is a single-component p-wave
paired state of CFs [26,27] consistent with very recent exper-
imental observations [28]. The physical picture here is that
the width of the quantum well suppresses the short-range part
of the electron-electron interaction, resulting in the pairing of
CFs. A FQHE at ν = 1/4 was also observed in wide QWs
[29–31] and has been predicted to be an f -wave paired state of
CFs [27,32]. Many other even-denominator FQHE states have
been observed in recent years. In hole-based systems, even-
denominator FQHE states have been observed at ν = 1/4,
ν = 3/4, and ν = 1/6 in narrow QWs [33–35]. These have
been attributed to Landau level (LL) mixing, which is large
in hole-type systems due to the large effective mass of the
holes. A theoretical study incorporating LL mixing in a fixed-
phase diffusion Monte Carlo method supports this picture
[36]. Wang et al. [37] have seen FQHE also at ν = 3/8 and
ν = 3/10 in hole type systems; in the absence of LL mixing,
the states at 3/8 and 3/10 were predicted to arise from an
anti-Pfaffian state of CFs [38–40]. FQHE has been seen also at
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its origin, especially whether it is a one- or a two-component
state, remained controversial [17–25]. Recent theoretical pa-
pers have predicted that it is a single-component p-wave
paired state of CFs [26,27] consistent with very recent exper-
imental observations [28]. The physical picture here is that
the width of the quantum well suppresses the short-range part
of the electron-electron interaction, resulting in the pairing of
CFs. A FQHE at ν = 1/4 was also observed in wide QWs
[29–31] and has been predicted to be an f -wave paired state of
CFs [27,32]. Many other even-denominator FQHE states have
been observed in recent years. In hole-based systems, even-
denominator FQHE states have been observed at ν = 1/4,
ν = 3/4, and ν = 1/6 in narrow QWs [33–35]. These have
been attributed to Landau level (LL) mixing, which is large
in hole-type systems due to the large effective mass of the
holes. A theoretical study incorporating LL mixing in a fixed-
phase diffusion Monte Carlo method supports this picture
[36]. Wang et al. [37] have seen FQHE also at ν = 3/8 and
ν = 3/10 in hole type systems; in the absence of LL mixing,
the states at 3/8 and 3/10 were predicted to arise from an
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ν = 2 + 3/8 [41–43] and been studied theoretically [44,45].
FQHE at half-filling has also been observed in the N = 3 LL
of monolayer graphene [46]. Theoretical calculations [46,47]
suggest that the leading candidate to describe this FQHE state
is the Jain-221 parton state [48], which represents an f -wave
paired state of CFs [49,50]. FQHE has been observed in
the half-filled N = 1 LLs of bilayer graphene [51–55] and
trilayer graphene [56]; these are believed to be analogous
to the 5/2 FQHE [57,58]. Even-denominator FQH phases at
ν = 3/4 in the N = 0 LL of bilayer graphene [55] and at ν =
1/2 in the N = 0 LL of trilayer graphene [59] were recently
observed. These likely involve LL mixing, but a satisfactory
understanding of the underlying physical mechanism for these
states’ incompressibility is lacking [60,61]. FQHE states have
been observed at an isospin transition in the N = 0 LLs of
monolayer graphene at half and quarter filling, and their origin
was attributed to two-component physics [62,63].

The motivation for the present study comes from a recent
experiment that reported evidence for developing FQHE at
ν = 1/6 and ν = 1/8 in wide QWs, in addition to many Jain-
sequence states at ν = n/(6n±1) and ν = n/(8n±1) [65].
These manifest through deep minima in Rxx on a background
resistance that rapidly rises with decreasing temperature. Evi-
dence for the n/(6n±1) states on a large Rxx background was
reported more than two decades ago [66]. This was surprising
because early theoretical studies had suggested [67] that for
ν < 1/6.5 a Wigner crystal (WC) is stabilized rather than the
FQHE liquid. Subsequent theoretical studies found that many
types of CF crystals (CFCs) can occur and demonstrated a
rather intricate interplay between the liquid and CF crystal
states [68–70]. A theoretical study argued that the FQHE
states survive down to much lower filling factors, although
they are separated by CF crystals in between [64].

This article considers many candidate states at ν = 1/6
in a wide QW, including the CF Fermi sea, various kinds
of crystals, and several kinds of paired CF states. The finite
width alters the electron-electron interaction, which we obtain
by evaluating the transverse wave function in a local density
approximation (LDA) [71,72]. We do not consider LL mixing,
which is not expected to be relevant here since the LL mixing
parameter is small in this electron-based system. Our primary
conclusions are as follows.

A. Summary of primary conclusions

Among the various FQHE states we have considered at
ν = 1/6, the Jain-2211111 (or 2215) parton state [48], defined
below, is the most favorable. This state represents an f -wave
pairing of CFs [50] and is predicted to support excitations with
non-Abelian statistics [49]. However, for the QW widths and
densities corresponding to the experiment [65], the energies
of the CF Fermi sea, the 4CF crystal (4CFC, i.e., a crystal of
CFs with four vortices bound to them), and the f -wave paired
CF states are too close to distinguish.

Based on these calculations, we cannot conclude that the
f -wave paired CF state will occur for large QW widths and
densities. However, if the FQHE at ν = 1/6 is experimentally
confirmed in these systems, we predict that it will be an f -
wave paired state of CFs. This can be verified experimentally,
for example, by determining the thermal Hall conductance of

FIG. 1. The top panel shows the proposed schematic phase dia-
gram as a function of filling factor and disorder at large quantum-well
widths and densities. This is identical to that shown in Ref. [64] ex-
cept that there are incompressible states also at ν = 1/6 and ν = 1/8.
The phase labeled CFC (CF crystal) is a perfect crystal only at zero
disorder; the correlation length of crystalline order decreases with
increasing disorder. The bottom panels show two possible phases at
a given filling factor [such as n/(6n±1) or 1/6] as a function of
disorder. The left panel shows the “FQHE phase,” which appears
for low disorder (U < Uc) when the incompressible liquid (blue)
percolates through the sample. The bottom right panel shows the
“correlated mixed-phase insulator,” which appears for large disorder
(U ! Uc). Here, the crystal (yellow) percolates but contains puddles
of the FQHE liquid, which diminishes the longitudinal resistance.
The critical disorder Uc for a given fraction corresponds to the height
of the dome in the phase diagram (marked for ν = 1/6).

this state. The thermal Hall conductance is given by κxy =
c−π2k2

BT/3h, where c− is the chiral central charge [73]; for
states with CF pairing in the relative angular momentum l
channel, we have c− = 1 + l/2 and, in particular, for f wave
pairing (l = 3) of CFs, we have c− = 5/2 [32,49,74].

We have also explored FQHE states away from ν = 1/6.
Exact diagonalization (ED) calculations on systems with up to
eight electrons show that the 1/7 Laughlin and the 2/11 and
2/13 Jain states remain stable for the parameters of interest.

B. Proposed phase diagram

Combining with experiments, we propose the schematic
phase diagram depicted in the upper panel of Fig. 1 for large
QW widths, which is a slight modification of that presented
by Zuo et al. [64]. At zero disorder, the Jain states are stabi-
lized at and near ν = n/(6n±1), and the f -wave paired CF
state is stabilized at and near ν = 1/6. At filling factors in
between, the CF crystal is stabilized. Now consider disorder,
which causes spatial variations in the filling factor. Due to
the intervening crystal phases, the behavior is very different
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The recent observation by Wang et al. [1,2] of fractional
quantum Hall effect (FQHE) at filling factor ν ¼ 3=4 has
come as a surprise, because a priori one would have
expected a composite-fermion (CF) Fermi sea here [3–5],
where composite fermions are bound states of electrons and
an even number of quantized vortices [6–8]. The half-filled
Landau level (LL) state at ν ¼ 1=2 is known to be a Fermi
sea of composite fermions with two quantized vortices
bound to them. A Fermi sea of composite fermions carrying
four vortices has also been confirmed unambiguously at
ν ¼ 1=4 through commensurability oscillations [9]. This
implies, by particle-hole (PH) symmetry, a CF Fermi sea
(CFFS) also at ν ¼ 1 − 1=4 ¼ 3=4. Further support to a
CFFS at these fractions comes from the observation
of FQHE at several fractions belonging to the sequences
ν ¼ s=ð4s# 1Þ and ν ¼ 1 − s=ð4s# 1Þ [10–12], which
are integer quantum Hall states of composite fermions
carrying four vortices; these terminate into CFFSs at
ν ¼ 1=4 and ν ¼ 3=4 in the limit s → ∞.
FQHE at an even denominator fraction was first

observed at ν ¼ 5=2 [13,14], which corresponds to half
filling in the second LL. It has been proposed that FQHE
here arises from a pairing of composite fermions [15–18],
which is modeled in terms of the Moore-Read Pfaffian
(MR-Pf) wave function [15] representing a chiral p-wave
pairing of composite fermions. (Even denominator FQHE
in the N ¼ 1 LL of bilayer graphene is analogous to the
5=2 state in GaAs quantum wells (QWs) [19–22].) Why is
there a difference between the physics at half filling in the
lowest and the second LLs? For this purpose one must
consider the CF-CF interaction, which derives from the
electron-electron interaction. Extensive comparisons
with exact diagonalization studies as well as experiments
have shown that the model of non-interacting composite

fermions is qualitatively valid when the short-range part of
the interelectron interaction is dominant, which is the case
in the lowest LL (LLL) [8]. The short range part of the
electron-electron interaction is weaker in the second LL (as
measured by the Haldane pseudopotentials [23]), rendering
the interaction between composite fermions slightly
attractive, and thereby causing a pairing instability of the
CFFS [24]. The excitations of this state are predicted, akin
to the Abrikosov vortices in a two-dimensional chiral
p-wave superconductor, to be realizations of particles
obeying non-Abelian braid statistics [15,18,25–27].
What can weaken the short range part of the interelectron

interaction in the LLL? One possibility is finite QW width.
There is indeed evidence for FQHE at ν ¼ 1=4 in very wide
QWs [28–31]. Ref. [32] has proposed that the modification
of the interaction due to QW width makes the CFFS
unstable to an f-wave pairing. However, the 3=4 FQHE
has been observed in rather narrow QWs (width of only
20 nm [1]), which sit comfortably in the CFFS region of the
phase diagram evaluated in Ref. [32].
With the QW width ruled out as a relevant factor, one is

left with LL mixing (LLM) as the possible cause for FQHE
at ν ¼ 3=4. The FQHE at ν ¼ 3=4 has been observed in
hole-type samples [1], which, because of the larger hole
mass, and hence smaller cyclotron energy, have much
stronger LLM than electron-type samples. Indeed, the LLM
parameter is κ ≃ 10 and 14 for the two samples of Ref. [1],
where κ ¼ ðe2=ϵlÞ=ðℏωcÞ is the ratio of the Coulomb
energy to the cyclotron energy (here ϵ is the dielectric
constant of the semiconductor, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the mag-

netic length at magnetic field B, and ℏωc ¼ ℏeB=mbc is
the cyclotron energy of particles with band mass mb).
It is clear that LLM will screen the short range part of the

interelectron interaction. Can it induce pairing of composite
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This state has a very high energy at small κ (as is the case
for all states that are not LLL projected), but its energy
comes down rapidly with LLM. As shown in the
Supplemental Material [75], even at large LLM, the
pair-correlation function of the l ¼ −3 paired states show
oscillations that decay with distance and converge to the
density, as anticipated for gapped liquid states [61,99].

As mentioned earlier, LLM weakens the short-distance
repulsion between the electrons and may thus induce a
weak residual attractive interaction between CFs leading to
their pairing. We do not have a simple qualitative argument
for why pairing in the l ¼ −3 channel is preferred over
other pairing channels. Only detailed calculations, like the
ones presented here, can help identify the optimal pairing
channel, as is also the case for the extensively studied CF
pairing at ν ¼ 5=2 (see Supplemental Material for further
discussion [75]); of course, the decisive verification will
come only from experiments.

The results are sensitive to the trial wave function used to
fix the phase even within the same topological sector. For
example, the energies starting from the projected and
unprojected 22111 or CFFS states are significantly differ-
ent for small κ, although they tend to be similar for large κ.
That implies that the precise value of κ where the
phase transition takes place from the CFFS to the paired
state is only approximate. Finite width corrections are also
likely to affect the transition. These points notwithstanding,
our calculations make what we believe to be a plausible
case that a transition will take place as a function of κ
into a paired state. We note here that FQHE at ν ¼ 1=2
has been observed in wide QWs [31,100–104]; some
calculations have suggested a two-component Abelian
Halperin-331 state [105–107] while others the MR-Pf or
the APf [108,109]. In contrast, for our current problem
where we are considering the role of LLM at zero width, the
MR-Pf (Pf1) is not competitive for any κ.
The topological properties of ΨPf−3 , which is in the

same phase as the APf, have been enumerated in earlier
articles [49,50]. All candidate states support quasiparticles
with fractional charge e=4p. The APf state supports an
upstream neutral mode, which is experimentally measur-
able [110]; this can distinguish it from the MR-Pf and
22 12pþ1 states (with the caveat that edge reconstruction
can produce upstream neutral modes in these states as
well). A decisive measurement would be the thermal Hall
conductance [111], which is given by c½π2k2B=ð3hÞ&T,
where the chiral central charge is c ¼ 1þ l=2 for the state
with CF pairing in the relative angular momentum l
channel.
Unfortunately, the above calculation cannot be per-

formed directly at ν ¼ 3=4, because the hole conjugates
of the unprojected wave functions are not defined, and even
for the LLL projected states the hole conjugates can be
constructed only for very small systems, as this requires
working with their explicit Fock space representations.
Nonetheless, our results support the idea that LLM is
responsible for a paired FQHE here. Reference [54] found
that even though the energies of the MR-Pf and APf wave
functions vary substantially with κ, they remain surpris-
ingly close, and the same is true of the gaps of the 1=3 and
2=3 FQHE states. It is therefore a plausible first guess that
the 3=4 FQHE state stabilized in Ref. [1] may be in the
same universality class as the hole partner of the l ¼ −3
paired state.
We have not considered the possibility of the crystal

state in our calculations. Previous theoretical (see [46]
and references therein), as well as experimental studies (see
[112] and references therein), have indicated that sufficient
LLM can also stabilize the crystal phase. At what κ the
crystal phase appears at ν ¼ 1=4 and ν ¼ 1=2 is left for a
future study.
Before ending, we note that values of κ > 7 at ν ¼ 1=2

have been achieved in hole-type GaAs QWs as well as

FIG. 2. This figure shows the thermodynamic energies as a
function of the LL mixing parameter κ when the phase sector is
fixed using various trial states shown on the figures. For small κ
the lowest energy is obtained in the CFFS phase sector, but for
large κ the state derived from the l ¼ −3 paired state wins at both
ν ¼ 1=2 and ν ¼ 1=4.
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The recent observation by Wang et al. [1,2] of fractional
quantum Hall effect (FQHE) at filling factor ν ¼ 3=4 has
come as a surprise, because a priori one would have
expected a composite-fermion (CF) Fermi sea here [3–5],
where composite fermions are bound states of electrons and
an even number of quantized vortices [6–8]. The half-filled
Landau level (LL) state at ν ¼ 1=2 is known to be a Fermi
sea of composite fermions with two quantized vortices
bound to them. A Fermi sea of composite fermions carrying
four vortices has also been confirmed unambiguously at
ν ¼ 1=4 through commensurability oscillations [9]. This
implies, by particle-hole (PH) symmetry, a CF Fermi sea
(CFFS) also at ν ¼ 1 − 1=4 ¼ 3=4. Further support to a
CFFS at these fractions comes from the observation
of FQHE at several fractions belonging to the sequences
ν ¼ s=ð4s# 1Þ and ν ¼ 1 − s=ð4s# 1Þ [10–12], which
are integer quantum Hall states of composite fermions
carrying four vortices; these terminate into CFFSs at
ν ¼ 1=4 and ν ¼ 3=4 in the limit s → ∞.

FQHE at an even denominator fraction was first
observed at ν ¼ 5=2 [13,14], which corresponds to half
filling in the second LL. It has been proposed that FQHE
here arises from a pairing of composite fermions [15–18],
which is modeled in terms of the Moore-Read Pfaffian
(MR-Pf) wave function [15] representing a chiral p-wave
pairing of composite fermions. (Even denominator FQHE
in the N ¼ 1 LL of bilayer graphene is analogous to the
5=2 state in GaAs quantum wells (QWs) [19–22].) Why is
there a difference between the physics at half filling in the
lowest and the second LLs? For this purpose one must
consider the CF-CF interaction, which derives from the
electron-electron interaction. Extensive comparisons
with exact diagonalization studies as well as experiments
have shown that the model of non-interacting composite

fermions is qualitatively valid when the short-range part of
the interelectron interaction is dominant, which is the case
in the lowest LL (LLL) [8]. The short range part of the
electron-electron interaction is weaker in the second LL (as
measured by the Haldane pseudopotentials [23]), rendering
the interaction between composite fermions slightly
attractive, and thereby causing a pairing instability of the
CFFS [24]. The excitations of this state are predicted, akin
to the Abrikosov vortices in a two-dimensional chiral
p-wave superconductor, to be realizations of particles
obeying non-Abelian braid statistics [15,18,25–27].
What can weaken the short range part of the interelectron

interaction in the LLL? One possibility is finite QW width.
There is indeed evidence for FQHE at ν ¼ 1=4 in very wide
QWs [28–31]. Ref. [32] has proposed that the modification
of the interaction due to QW width makes the CFFS
unstable to an f-wave pairing. However, the 3=4 FQHE
has been observed in rather narrow QWs (width of only
20 nm [1]), which sit comfortably in the CFFS region of the
phase diagram evaluated in Ref. [32].
With the QW width ruled out as a relevant factor, one is

left with LL mixing (LLM) as the possible cause for FQHE
at ν ¼ 3=4. The FQHE at ν ¼ 3=4 has been observed in
hole-type samples [1], which, because of the larger hole
mass, and hence smaller cyclotron energy, have much
stronger LLM than electron-type samples. Indeed, the LLM
parameter is κ ≃ 10 and 14 for the two samples of Ref. [1],
where κ ¼ ðe2=ϵlÞ=ðℏωcÞ is the ratio of the Coulomb
energy to the cyclotron energy (here ϵ is the dielectric
constant of the semiconductor, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the mag-

netic length at magnetic field B, and ℏωc ¼ ℏeB=mbc is
the cyclotron energy of particles with band mass mb).
It is clear that LLM will screen the short range part of the

interelectron interaction. Can it induce pairing of composite
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FIG. 1. (a) Schematics of the pairing mechanism for even-denominator FQHS at ⌫ = 1/4. The blue spheres represent holes, and
the green vertical arrows the magnetic field flux quanta. The curved short arrows in the right two panels represent magnetic
flux quanta attached to holes to form four-flux composite fermions (4CFs). If Landau level mixing is strong, 4CFs pair and
condense to form a FQHS at ⌫ = 1/4. (b) Longitudinal resistance Rxx vs. magnetic field B trace for a 2DHS, with hole
density p = 1.3 ⇥ 1011 cm�2 and QW width w = 20 nm, near ⌫ = 1/2 taken at T ' 20 mK with I = 20 nA. Inset shows the
self-consistently calculated hole charge distribution (red) and potential (black). (c) Rxx vs. B trace near ⌫ = 1/4, taken at
T ' 100 mK with I = 0.1 nA. Inset shows Rxx vs. B between ⌫ = 2/7 and 1/4 taken at T ' 137 mK with I = 50 nA.

flux CFs (2CFs) being the ground state when the low-
est LL is half-occupied [27]. We also observe several
even-denominator FQHSs, such as those at ⌫ = 3/4,
3/8, and 5/12, which are discussed elsewhere [21]. At
higher B, as shown in Fig. 1(c) and its inset, we mea-
sure Rxx at elevated temperatures (' 100 and 137 mK).
For 18 < B < 20.5 T, Rxx remains in the k⌦ range, and
we observe odd-denominator FQHSs at ⌫ = 2/7, 3/11,
4/15, and 5/19. These are the Jain-sequence states of 4-
flux CFs (4CFs) that follow ⌫ = n/(4n�1) [27], and their
presence, together with the higher-order FQHSs flanking
⌫ = 1/2, attests to the exceptionally high quality of the
2DHS.

In Fig. 1(c), when B exceeds 20.5 T, Rxx sharply in-
creases and attains values ' 40 M⌦, even at a relatively
high temperature of ' 100 mK. The 2DHS in fact be-
comes highly insulating in this field range, as we demon-
strate later in this Letter. Such B-induced insulating
phases have been previously reported in GaAs 2DESs at
⌫ . 1/5 [28–30] and in GaAs 2DHSs at ⌫ . 1/3 [31–33].
They are generally believed to signal the formation of
Wigner solids (WSs) pinned by the ubiquitous disorder
[31–34].

The highlight of our study is the observation, for the
first time, of a very deep and sharp Rxx minimum at

⌫ = 1/4, signaling a developing FQHS at this filling. The
fact that the Rxx minimum at ⌫ = 1/4 appears on top of
the insulating background suggests a close competition
between the ⌫ = 1/4 FQHS and WS states near ⌫ = 1/4.
This is reminiscent of the recent observation of a devel-
oping FQHS at ⌫ = 1/7 in ultra-high-mobility 2DESs,
also competing with surrounding WS states [35, 36].

In order to confirm that the Rxx minimum we observe
at ⌫ = 1/4 is intrinsic to ultra-high-quality 2DHSs, we
measured several samples from di↵erent wafers with var-
ious hole densities. In Figs. 2 and 3, we present data for
three samples with holes densities p = 4.1, 6.5, and 1.0,
and QW widths 35, 20, and 20 nm, respectively. Sim-
ilar behavior is observed in all three samples. On the
lower-field side of ⌫ = 1/4, we observe Rxx minima at
odd-denominator ⌫ = 2/7 and 3/11, and a minimum or
an inflection point at 4/15, signaling developing FQHSs
belonging to the ⌫ = n/(4n� 1) sequence; these are seen
more clearly in log scale plots of Figs. 2(b, d) and Fig.
3(a) inset. As we increase B and approach ⌫ = 1/4, Rxx

grows very rapidly, and the 2DHSs enters the insulating
phase. Remarkably, in all samples, a well-defined and
sharp Rxx minimum is seen at ⌫ = 1/4 superimposed on
the insulating background.

We also investigated the temperature dependence of

• Evidence for FQHE at  is seen in high quality hole-type 
samples with , riding on an insulating background.

ν = 1/4
κ = 3 − 6

 nm,   cmw = 20 ρ = 1.3 × 1011 −2  FQHE1/4
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Single-component fractional quantum Hall states (FQHSs) at even-denominator filling factors may host
non-Abelian quasiparticles that are considered to be building blocks of topological quantum computers.
Such states, however, are rarely observed in the lowest-energy Landau level, namely at filling factors ν < 1.
Here, we report evidence for an even-denominator FQHS at ν ¼ 1=4 in ultra-high-quality two-dimensional
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experimental observations are consistent with the very recent theoretical calculations that predict that
substantial Landau level mixing, caused by the large hole effective mass, can induce composite fermion
pairing and lead to a non-Abelian FQHS at ν ¼ 1=4. Our results demonstrate that Landau level mixing can
provide a very potent means for tuning the interaction between composite fermions and creating new non-
Abelian FQHSs.
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Even-denominator fractional quantum Hall states
(FQHSs) are fascinating condensed matter phases. The
best-known example is the even-denominator FQHS at
Landau level (LL) filling factor ν ¼ 5=2 observed in GaAs
two-dimensional electron systems (2DESs) when a first
excited (N ¼ 1) spin LL is half-occupied [1,2]. It is
generally believed to be a BCS-type, paired state of
flux-particle composite fermions (CFs) [3–6]. This state
may have non-Abelian quasiparticles as its excitations, and
be of potential use in fault-tolerant, topological quantum
computing [7–9].
The CF pairing that leads to the stability of the ν ¼ 5=2

FQHS is facilitated by the node in the in-plane wave
function of electrons in the N ¼ 1 LL as it allows them to
come closer to each other. Such pairing is much harder to
achieve in the ground state (N ¼ 0) LL, consistent with the
near absence of even-denominator FQHSs. Instead, the
ground state at ν ¼ 1=2 (and 1=4) is a compressible CF
Fermi sea, flanked by a plethora of odd-denominator
FQHSs at nearby fillings [10]. An exception is a 2DES
with bilayer charge distribution. A FQHS at ν ¼ 1=2 was
observed in 2DESs confined to wide GaAs quantum wells
(QWs) [11–14] and double QWs [15]. These were origi-
nally interpreted as a two-component, Abelian FQHS
described by the Halperin-Laughlin (ψ331) wave function
[16,17], with the layer or electric sub-band index playing
the role of an extra degree of freedom. Although the two-
component origin of the ν ¼ 1=2 FQHS is widely accepted
for the double QWs where interlayer tunneling is

negligible, recent experiments [18–20] and theory [21]
suggest that in wide QWs where interlayer tunneling is
significant, the ν ¼ 1=2 FQHS is likely a single-compo-
nent, non-Abelian state. In addition, another even-denom-
inator FQHS was reported in wide GaAs QWs at ν ¼ 1=4
[22,23], and theory suggests it is also likely a single-
component, non-Abelian state, topologically equivalent to
an f-wave paired state of CFs [24]. We emphasize that, for
both ν ¼ 1=2 and 1=4 FQHSs in wide QWs, the thick and
bilayerlike charge distribution is crucial as it leads to a
softening of the Coulomb repulsion and CF pairing.
Here, we report experimental evidence for a developing

FQHS at ν ¼ 1=4 in ultra-high-quality 2D hole systems
(2DHSs) confined to narrow GaAs QWs with single-layer
charge distributions.We attribute this surprising observation
to the much larger effective mass of GaAs 2D holes
(m" ≃ 0.5, in units of free electron mass) [25] compared
to electrons (m" ¼ 0.067), and the ensuing severe LL
mixing (LLM). LLM is often parametrized as the ratio of
the Coulomb energy to cyclotron energy, κ ¼ ðe2=4πϵlBÞ=
ðℏeB=m"Þ, and is proportional to m"B1=2, where lB ¼
ðℏ=eBÞ1=2 is the magnetic length. LLM can play a crucial
role in determining themany-body ground states in different
2D material systems, including semiconductor heterostruc-
tures [26,27] and atomically thin 2D materials (e.g., mono-
layer graphene [28]). For example, it can affect the
stabilization of possible non-Abelian FQHSs at ν ¼ 5=2
[26,27] and high-field Wigner crystal [29]. Most relevant to
our Letter, very recent theoretical calculations suggest that
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substantial Landau level mixing, caused by the large hole effective mass, can induce composite fermion
pairing and lead to a non-Abelian FQHS at ν ¼ 1=4. Our results demonstrate that Landau level mixing can
provide a very potent means for tuning the interaction between composite fermions and creating new non-
Abelian FQHSs.
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Even-denominator fractional quantum Hall states
(FQHSs) are fascinating condensed matter phases. The
best-known example is the even-denominator FQHS at
Landau level (LL) filling factor ν ¼ 5=2 observed in GaAs
two-dimensional electron systems (2DESs) when a first
excited (N ¼ 1) spin LL is half-occupied [1,2]. It is
generally believed to be a BCS-type, paired state of
flux-particle composite fermions (CFs) [3–6]. This state
may have non-Abelian quasiparticles as its excitations, and
be of potential use in fault-tolerant, topological quantum
computing [7–9].
The CF pairing that leads to the stability of the ν ¼ 5=2

FQHS is facilitated by the node in the in-plane wave
function of electrons in the N ¼ 1 LL as it allows them to
come closer to each other. Such pairing is much harder to
achieve in the ground state (N ¼ 0) LL, consistent with the
near absence of even-denominator FQHSs. Instead, the
ground state at ν ¼ 1=2 (and 1=4) is a compressible CF
Fermi sea, flanked by a plethora of odd-denominator
FQHSs at nearby fillings [10]. An exception is a 2DES
with bilayer charge distribution. A FQHS at ν ¼ 1=2 was
observed in 2DESs confined to wide GaAs quantum wells
(QWs) [11–14] and double QWs [15]. These were origi-
nally interpreted as a two-component, Abelian FQHS
described by the Halperin-Laughlin (ψ331) wave function
[16,17], with the layer or electric sub-band index playing
the role of an extra degree of freedom. Although the two-
component origin of the ν ¼ 1=2 FQHS is widely accepted
for the double QWs where interlayer tunneling is

negligible, recent experiments [18–20] and theory [21]
suggest that in wide QWs where interlayer tunneling is
significant, the ν ¼ 1=2 FQHS is likely a single-compo-
nent, non-Abelian state. In addition, another even-denom-
inator FQHS was reported in wide GaAs QWs at ν ¼ 1=4
[22,23], and theory suggests it is also likely a single-
component, non-Abelian state, topologically equivalent to
an f-wave paired state of CFs [24]. We emphasize that, for
both ν ¼ 1=2 and 1=4 FQHSs in wide QWs, the thick and
bilayerlike charge distribution is crucial as it leads to a
softening of the Coulomb repulsion and CF pairing.
Here, we report experimental evidence for a developing

FQHS at ν ¼ 1=4 in ultra-high-quality 2D hole systems
(2DHSs) confined to narrow GaAs QWs with single-layer
charge distributions.We attribute this surprising observation
to the much larger effective mass of GaAs 2D holes
(m" ≃ 0.5, in units of free electron mass) [25] compared
to electrons (m" ¼ 0.067), and the ensuing severe LL
mixing (LLM). LLM is often parametrized as the ratio of
the Coulomb energy to cyclotron energy, κ ¼ ðe2=4πϵlBÞ=
ðℏeB=m"Þ, and is proportional to m"B1=2, where lB ¼
ðℏ=eBÞ1=2 is the magnetic length. LLM can play a crucial
role in determining themany-body ground states in different
2D material systems, including semiconductor heterostruc-
tures [26,27] and atomically thin 2D materials (e.g., mono-
layer graphene [28]). For example, it can affect the
stabilization of possible non-Abelian FQHSs at ν ¼ 5=2
[26,27] and high-field Wigner crystal [29]. Most relevant to
our Letter, very recent theoretical calculations suggest that
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• Composite-fermion superconductors are predicted to harbor 
“Majorana particles,” which are zero modes trapped inside the 
Abrikosov vortices.  These are “non-Abelian anyons.”

• Majoranas may be useful for making topological fault-tolerant 
qubits.

Majorana
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Abstract

Applications of conformal field theory to the theory of fractional quantum Hall systems are discussed. In

particular, Laughlin's wave function and its cousins are interpreted as conformal blocks in certain rational

conformal field theories. Using this point of view a hamiltonian is constructed for electrons for which the

ground state is known exactly and whose quasihole excitations have nonabelian statistics; we term these

objects “nonabelions”. It is argued that universality classes of fractional quantum Hall systems can be

characterized by the quantum numbers and statistics of their excitations. The relation between the order

parameter in the fractional quantum Hall effect and the chiral algebra in rational conformal field theory is

stressed, and new order parameters for several states are given.
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Paired states of fermions in two dimensions with breaking of parity
and time-reversal symmetries and the fractional quantum Hall effect

N. Read and Dmitry Green
Departments of Physics and Applied Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
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We analyze pairing of fermions in two dimensions for fully gapped cases with broken parity !P" and time
reversal !T", especially cases in which the gap function is an orbital angular momentum !l" eigenstate, in
particular l!"1 !p wave, spinless, or spin triplet" and l!"2 !d wave, spin singlet". For l#0, these fall into
two phases, weak and strong pairing, which may be distinguished topologically. In the cases with conserved
spin, we derive explicitly the Hall conductivity for spin as the corresponding topological invariant. For the
spinless p-wave case, the weak-pairing phase has a pair wave function that is asympototically the same as that
in the Moore-Read !Pfaffian" quantum Hall state, and we argue that its other properties !edge states, quasihole,
and toroidal ground states" are also the same, indicating that nonabelian statistics is a generic property of such
a paired phase. The strong-pairing phase is an abelian state, and the transition between the two phases involves
a bulk Majorana fermion, the mass of which changes sign at the transition. For the d-wave case, we argue that
the Haldane-Rezayi state is not the generic behavior of a phase but describes the asymptotics at the critical
point between weak and strong pairing, and has gapless fermion excitations in the bulk. In this case the
weak-pairing phase is an abelian phase, which has been considered previously. In the p-wave case with an
unbroken U(1) symmetry, which can be applied to the double layer quantum Hall problem, the weak-pairing
phase has the properties of the 331 state, and with nonzero tunneling there is a transition to the Moore-Read
phase. The effects of disorder on noninteracting quasiparticles are considered. The gapped phases survive, but
there is an intermediate thermally conducting phase in the spinless p-wave case, in which the quasiparticles are
extended.

I. INTRODUCTION
Most theories of superconductivity, or more generally of

superfluidity in fermion systems, depend on the concept of a
paired ground state introduced by Bardeen, Cooper, and
Schrieffer !BCS" in 1957.1,2 The ground state may be
thought of loosely as a Bose condensate of pairs of particles,
since such a pair can be viewed as a boson. Within BCS
mean-field theory, such a state forms whenever the interac-
tion between the particles is attractive. For weak attractive
interaction the elementary excitations are fermions !BCS
quasiparticles", which can be created by adding or removing
particles from the system, or in even numbers by breaking
the pairs in the ground state, and the minimum excitation
energy occurs at fermion wavevector near kF , the Fermi
surface that would exist in the normal Fermi-liquid state at
the same density of particles. There is also a collective mode,
which is a gapless phononlike mode in the absence of long-
range interactions between the particles. This mode would
also be present if one considered the pairs as elementary
bosons, and would be the only elementary low-energy exci-
tation in that case. If the attractive interaction becomes
strong, the energy to break a pair becomes large, and at all
lower energies the system behaves like a Bose fluid of pairs.
In the original BCS treatment, each pair of particles was in a
relative s-wave (l!0) state, and the minimum energy for a
fermion excitation is then always nonzero. No phase transi-
tion occurs as the coupling strength is increased to reach the
Bose fluid regime.

Not long after BCS, the theory was generalized to non-
zero relative angular momentum !l" pairing, and after a long
search, p-wave pairing was observed in He3.3 It is believed

that d-wave pairing occurs in heavy fermion and high-Tc
superconductors. Some nonzero l-paired states generally
have vanishing energy gap at some points on the Fermi sur-
face !for weak coupling", while others do not. While the
absence of a transition is well known in the s-wave case, it
seems to be less well known that in some of these other
cases, there is a phase transition as the coupling becomes
more strongly attractive. One reason for this is that the
strong-coupling regime must have a gap for all BCS quasi-
particle excitations. But even when the weak coupling re-
gime is fully gapped, there may be a transition, and these
will be considered in this paper, in two dimensions.

In the paired states with nonzero l there are many exotic
pheneomena, especially in the p-wave case, due to the break-
ing of spin-rotation and spatial-rotation symmetries. These
include textures in the order parameters for the pairing, such
as domain walls, and quasiparticle excitations of vanishing
excitation energy on these textures !zero modes" !these are
reviewed in Ref. 3". In transport, there may be Hall-type
conductivities for conserved quantities, such as spin and en-
ergy, which are possible because of the breaking of both
parity !P" and time reversal !T" symmetries. The breaking of
these symmetries, and topological aspects of the paired state,
are more crucial for the ocurrence of these effects than is the
angular momentum of the pairing; the pairing need not be in
a definite angular momentum state. Many of these effects
have been discussed in remarkable papers by Volovik, of
which a few are Refs. 4–8. These are related to effects we
will explore in this paper. We will make an effort to separate
the effects related to breaking continuous symmetries spon-
taneously, which leads to familiar Goldstone mode physics,
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Observation of half-integer thermal Hall 
conductance
Mitali Banerjee1, Moty Heiblum1*, Vladimir Umansky1, Dima E. Feldman2, Yuval Oreg1 & Ady Stern1

Topological states of matter are characterized by topological invariants, which are physical quantities whose values are 
quantized and do not depend on the details of the system (such as its shape, size and impurities). Of these quantities, 
the easiest to probe is the electrical Hall conductance, and fractional values (in units of e2/h, where e is the electronic 
charge and h is the Planck constant) of this quantity attest to topologically ordered states, which carry quasiparticles with 
fractional charge and anyonic statistics. Another topological invariant is the thermal Hall conductance, which is harder 
to measure. For the quantized thermal Hall conductance, a fractional value in units of κ0 (κ0 = π2kB

2/(3h), where kB is 
the Boltzmann constant) proves that the state of matter is non-Abelian. Such non-Abelian states lead to ground-state 
degeneracy and perform topological unitary transformations when braided, which can be useful for topological quantum 
computation. Here we report measurements of the thermal Hall conductance of several quantum Hall states in the first 
excited Landau level and find that the thermal Hall conductance of the 5/2 state is compatible with a half-integer value 
of 2.5κ0, demonstrating its non-Abelian nature.

The even-denominator fractional quantum Hall state in the first excited 
Landau level at a bulk filling factor of ν = 5/2 has been a subject of 
extensive research for the past thirty years1. After its first observation2, 
it was suggested that this state might be a manifestation of supercon-
ducting-like condensation of composite fermions in a zero effective 
magnetic field3–5. Furthermore, it was predicted that the state carries  
quasiparticles whose mutual exchange statistics is non-Abelian3. 
Consequently, the ground state of several quasiparticles remains degen-
erate even at their fixed positions; hence, such states are attractive for 
topological quantum computing1. Yet, this prediction has been hard 
to test experimentally because relatively easily accessible experimental 
probes, such as electric response functions, do not reflect the topological  
order of the state. Even after the demonstration of the state’s quasi-
particle charge6,7 being e* = e/4 and the observation of a topologically 
protected upstream-propagating neutral mode8, a family of possible 
orders are still viable candidates for the ν = 5/2 state. However, the  
thermal Hall conductance may distinguish Abelian from non- 
Abelian states because it is quantized to an integer value of κ0T, where 
T is the temperature, for the former and a half-integer value for the 
latter5. Furthermore, its precise value distinguishes between different 
candidate orders. Here, we report an observation compatible with such 
half-integer quantization.

Background
It is worth giving a brief summary of the different orders predicted for 
this state. Numerical work lent support9–11 to the non-Abelian Pfaffian3 
and anti-Pfaffian topological orders12,13. Among the other possible 
states are the SU(2)2, the K = 8, 331 and 113 liquids, as well as their 
particle–hole conjugates14–17. A non-Abelian particle–hole Pfaffian 
order13,18–21 with the wave function described in ref. 19 was interpreted 
in terms of Dirac composite fermions18. Although the naming of these 
states does not follow any particular methodology, a wire construction 
organizes them in terms of their thermal Hall conductance, introduces 
possible generalizations, for which the thermal Hall conductance may 
be any arbitrary integer or half-integer multiple22 of κ0T, and identifies 

their edge structure (see below). Our goal is to determine the experi-
mentally relevant order from thermal transport.

The thermal Hall conductance is defined in a two-terminal measure-
ment as gQ = dJQ/dT = KT, with JQ being the heat current (in watts) and 
K the thermal conductance coefficient. This highly important charac-
teristic of the system has a maximal value for one-dimensional ballistic 
channels, with K = κ0. The thermal Hall conductance is independent 
of the charge and the exchange statistics of the heat-carrying particles. 
This quantum limit has been experimentally realized for bosons23,24, 
fermions25 and recently for a strongly interacting system—the lowest 
Landau level in the fractional quantum Hall effect (with fractionally 
charged quasiparticles)26. In the latter study26 it was shown that in the 
presence of counter-propagating one-dimensional modes and in the 
limit of a long propagation length, the thermal conductance reflects the 
net number of topological chiral modes (the number of downstream 
modes minus the number of upstream modes), as predicted by the K 
matrix in the bulk27.

Among the possible topological orders for the ν = 5/2 state16, 
the non-Abelian candidates are predicted to conduct n + 1/2 
(n = 0, 1, …, 4) units of the quantized heat, JQ, whereas for Abelian 
states the 1/2 is missing. The term 1/2 originates from a neutral edge 
mode (it can be downstream or upstream) whose central charge is one-
half. This mode may be viewed as a Majorana chiral edge mode of a 
superconductor of composite fermions. Moreover, each of the proposed 
non-Abelian topological orders has a different n, implying a different 
fractional quantized thermal conductance, gQ. Hence, measuring the 
heat conductance of the equilibrated ν = 5/2 fractional state may deter-
mine the nature of the topological order. Our measurement results are 
compatible with K ≈ 2.5κ0.

Experimental details
Our experimental setup, with its ‘heart’ shown in Fig. 1a, is similar in 
principle to our previously studied configuration26 (see Methods). The 
two-dimensional electron gas is structured in the form of four sepa-
rated arms (formed by chemical etching), with a small floating reservoir 
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From fundamental physics to technology?
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The Pfaffian state is an attractive candidate for the observed quantized Hall plateau at a Landau-level
filling fraction ! ! 5=2. This is particularly intriguing because this state has unusual topological
properties, including quasiparticle excitations with non-Abelian braiding statistics. In order to determine
the nature of the ! ! 5=2 state, one must measure the quasiparticle braiding statistics. Here, we propose
an experiment which can simultaneously determine the braiding statistics of quasiparticle excitations and,
if they prove to be non-Abelian, produce a topologically protected qubit on which a logical NOT operation
is performed by quasiparticle braiding. Using the measured excitation gap at ! ! 5=2, we estimate the
error rate to be 10"30 or lower.
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Introduction.—The computational power of a quantum-
mechanical Hilbert space is potentially far greater than that
of any classical device [1,2]. However, it is difficult to
harness it because much of the quantum information con-
tained in a system is encoded in phase relations which one
might expect to be easily destroyed by its interactions with
the outside world (‘‘decoherence’’ or ‘‘error’’). Therefore,
error-correction is particularly important [3,4].

An interesting analogy with topology suggests itself:
local geometry is a redundant way of encoding topology.
Slightly denting or stretching a surface such as a torus does
not change its genus, and small punctures can be easily
repaired to keep the topology unchanged. Remarkably,
there are states of matter for which this is more than just
an analogy. A system with many microscopic degrees of
freedom can have ground states whose degeneracy is de-
termined by the topology of the system. The excitations of
such a system have exotic braiding statistics, which is a
topological effective interaction between them [5]. Such a
system is said to be in a topological phase [6,7]. The
unusual characteristics of quasiparticles in such states
can lead to remarkable physical properties, such as a frac-
tional quantized Hall conductance [8]. Such states also
have intrinsic fault tolerance [9]. Since the ground states
are sensitive only to the topology of the system, local
interactions with the environment cannot cause transitions
between ground states unless the environment supplies
enough energy to create excitations which can migrate
across the system and affect its topology.

A different problem now arises: if the quantum infor-
mation is so well protected from the outside world, then
how can we—presumably part of the outside world—
manipulate it to perform a computation? The answer is
that we must manipulate the topology of the system. In this
regard, an important distinction must be made between
different types of topological phases. In the case of those
states which are Abelian, we can only alter the phase of the
state by braiding quasiparticles. In the non-Abelian case,

however, there will be a set of g > 1 degenerate states,
 a; a ! 1; 2; . . . ; g of particles at x1; x2; . . . ; xn.
Exchanging particles one and two might do more than
just change the phase of the wave function. It might rotate
it into a different one in the space spanned by the  as:

 a ! M12
ab b: (1)

On the other hand, exchanging particles two and three
leads to  a ! M23

ab b. If M12
ab and M23

ab do not commute
(for at least some pairs of particles), then the particles obey
non-Abelian braiding statistics. In the case of a large class
of states, the repeated application of braiding transforma-
tions Mij

ab allows one to approximate any desired unitary
transformation to arbitrary accuracy and, in this sense, they
are universal quantum computers [10]. Unfortunately, no
non-Abelian topological states have been unambiguously
identified so far. Some proposals have been put forward for
how such states might arise in highly frustrated magnets
[11,12], but the best prospects in the short run are in
quantum Hall systems, where Abelian topological phases
are already known to exist. The best candidate is the
quantized Hall plateau with "xy ! 5

2
e2
h . The 5=2 fractional

quantum Hall state is now routinely observed [13] in high-
quality (i.e., low-disorder) samples. In addition, extensive
numerical work [14] using finite-size diagonalization and
wave function overlap calculations indicates that the 5=2
state belongs to the non-Abelian topological phase charac-
terized by a Pfaffian quantum Hall wave function [15,16].
The set of transformations generated by braiding quasipar-
ticle excitations in the Pfaffian state is not computationally
universal, but other non-Abelian states in the same family
are computationally universal. Thus, it is important to
(a) determine if the ! ! 5=2 state is, indeed, in the
Pfaffian universality class and, if so, to (b) use it to store
and manipulate quantum information. In this Letter, we
propose an experimental device which can address both of
these. Features of our device are inspired by antidot experi-
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Topological quantum computation has emerged as one of the most exciting approaches to constructing
a fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter
whose quasiparticle excitations are neither bosons nor fermions, but are particles known as
non-Abelian anyons, meaning that they obey non-Abelian braiding statistics. Quantum information is
stored in states with multiple quasiparticles, which have a topological degeneracy. The unitary gate
operations that are necessary for quantum computation are carried out by braiding quasiparticles and
then measuring the multiquasiparticle states. The fault tolerance of a topological quantum computer
arises from the nonlocal encoding of the quasiparticle states, which makes them immune to errors
caused by local perturbations. To date, the only such topological states thought to have been found in
nature are fractional quantum Hall states, most prominently the !=5/2 state, although several other
prospective candidates have been proposed in systems as disparate as ultracold atoms in optical
lattices and thin-film superconductors. In this review article, current research in this field is described,
focusing on the general theoretical concepts of non-Abelian statistics as it relates to topological
quantum computation, on understanding non-Abelian quantum Hall states, on proposed experiments
to detect non-Abelian anyons, and on proposed architectures for a topological quantum computer.
Both the mathematical underpinnings of topological quantum computation and the physics of the
subject are addressed, using the !=5/2 fractional quantum Hall state as the archetype of a
non-Abelian topological state enabling fault-tolerant quantum computation.
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FIG. 1. Left panel shows the phase diagram of the electron
crystal and the FQH liquid in a filling factor range including
⌫ = 1/3 and ⌫ = 2/5 as a function of the LL mixing parameter
. While the 1/3 and 2/5 FQH states are very robust to LL
mixing, for intermediate fillings the crystal appears for  & 7.
The right panel displays the theoretical phase diagram of the
2CF crystal and FQH liquid in a range including ⌫ = 1/5 and
⌫ = 2/9. The electron crystal is not stabilized in this filling
factor region because it has substantially higher energy than
the 2CF crystal[43]. The uncertainty in the location of the
phase boundaries is �⌫ . 0.001 within our model defined in
the text.

is modeled as a pinned “type-I” crystal of electrons or
composite fermions in which all particles form a crystal.
Extremely accurate lowest LL (LLL) wave functions are
available for these states, which we use to fix the phase of
the wave function in the DMC method; this is important
because the accuracy of the results depends sensitively on
the choice of the phase. (We note that while we use the
terminology “electron crystal” or “electron liquid,” our
results below apply to both electron and hole systems.)

Following the usual convention, we quantify the
strength of LL mixing through the parameter  =
(e2/✏l)/(~eB/mbc), which is the ratio of the Coulomb en-
ergy to the cyclotron energy. (Here, l =

p
~c/eB is the

magnetic length, mb is the band mass, and  is related to
the standard parameter rs as  =

p
⌫/2 rs.) Our prin-

cipal result is the phase diagrams shown in Fig. 1. The
most striking feature they reveal is the strong ⌫ depen-
dence of the phase boundary separating the FQH and the
crystal phases. For example, the FQH e↵ect at ⌫ = 1/3
and 2/5 survives up to the largest value of  (= 18) we
have considered, but the electron crystal appears already
at  & 7 for certain ⌫ in between 1/3 and 2/5, and at even
lower values of  for ⌫ < 1/3. Another notable feature
is that in the vicinity of ⌫ = 1/5 and 2/9, LL mixing in-
duces a transition into the strongly correlated 2CF crys-
tal rather than an electron crystal. (If we only considered
the electron crystal, no transition into the crystal state
would occur at ⌫ = 1/5 and ⌫ = 2/9 for up to  = 18.)
In what follows, we give details of calculations leading
to these phase diagrams, and discuss their connection to
experiments.

Fixed phase DMC: The goal is to find the mini-
mum energy h (R)|H| (R)i| by varying over the en-
tire Hilbert space of states, where H is the Hamil-
tonian for interacting two-dimensional electrons in a
magnetic field and R represents the particle coordi-

FIG. 2. Density profiles of various crystals for N = 96 par-
ticles at severals fillings. Left shows a type-I electron crystal
for ⌫ = 0.394 (2Q = 240), and the middle shows a type-II
CF crystal for the same parameters, and right panel shows a
type-II CF crystal for ⌫ = 0.351 (2Q = 270). The density is
given in units of the average density. All results are for  = 0.

nates {rj}. Because this is not feasible for fermions,
we employ an approximate strategy called the fixed
phase DMC[40] wherein we search for the ground state
in a restricted subspace. (The fixed phase DMC is
closely related to the fixed node DMC.[44]) Follow-
ing OCM, we substitute  (R) = �(R)ei'(R) where
�(R) = | (R)| is real and non-negative. The
above energy is then given by h�(R)|HR|�(R)i| with

HR =
PN

j=1

⇥
p2
j + [~rj'(R) + (e/c)A(rj)]2

⇤
/2m +

VCoulomb(R). Now, keeping the phase '(R) fixed and
varying �(R) gives us the lowest energy within the sub-
space of wave functions defined by the phase sector '(R).
This minimization is most conveniently accomplished by
the DMC method[45, 46]. In this approach, one views
the imaginary time Schrödinger equation, �~ @

@t�(R, t) =
[HR(R)� ET )]�(R, t), as a di↵usion equation, where
�(R, t) is interpreted as the probability distribution of
the di↵using “walkers” and ET is an energy o↵set. Evolv-
ing this equation in imaginary time projects out the low-
est energy state, which is the ground state provided that
the initial trial wave function has a non-zero overlap with
the ground state. DMC is a method for implementing
this scheme through importance sampling, where “walk-
ers” in the 2N dimensional configuration space prolif-
erate (die) in regions of low (high) potential energy ac-
cording to certain standard rules, and converge into the
probability distribution of the ground state in the limit
t ! 1. The fixed phase DMC produces the lowest en-
ergy in the chosen phase sector, and hence a variational
upper bound for the exact ground state energy.

We perform our calculations in the spherical
geometry[47] in which electrons are confined on the sur-
face of a sphere, with a flux 2Q�0 passing radially
through it, where 2Q is an integer and �0 = hc/e is

the flux quantum. We use l as the unit of length and e2

✏l
as the unit of energy. The particle position is identified
through the “spinor” coordinates u = cos(✓/2)ei�/2 and
v = sin(✓/2)e�i�/2. Melik-Alaverdian, Bonesteel and Or-
tiz [48] have formulated the fixed phase DMC in the
spherical geometry through a stereographic projection,
and we will follow their method.

Trial wave functions: The accuracy of the energies ob-
tained from fixed phase DMC is critically dependent on
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The interplay between strongly correlated liquid and crystal phases for two-dimensional electrons exposed
to a high transverse magnetic field is of fundamental interest. Through the nonperturbative fixed-phase
diffusion Monte Carlo method, we determine the phase diagram of the Wigner crystal in the ν − κ plane,
where ν is the filling factor and κ is the strength of Landau-level (LL) mixing. The phase boundary
is seen to exhibit a striking ν dependence, with the states away from the magic filling factors
ν ¼ n=ð2pnþ 1Þ being much more susceptible to crystallization due to Landau-level mixing than those
at ν ¼ n=ð2pnþ 1Þ. Our results explain the qualitative difference between the experimental behaviors
observed in n- and p-doped gallium arsenide quantumwells and, in particular, the existence of an insulating
state for ν < 1=3 and also for 1=3 < ν < 2=5 in low-densityp-doped systems.We predict that, in the vicinity
of ν ¼ 1=5 and ν ¼ 2=9, increasing LL mixing causes a transition not into an ordinary electron Wigner
crystal, but rather into a strongly correlated crystal of composite fermions carrying two vortices.
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The search for a two-dimensional Wigner crystal [1] in
high magnetic fields has led to profound discoveries. The
original idea [2] was to induce a crystal state of electrons in
two dimensions by effectively quenching their kinetic
energy with the application of a strong transverse magnetic
field, which drives them into the lowest Landau level (LL).
While searching for the Wigner crystal, Tsui et al. discov-
ered [3] the ν ¼ 1=3 Laughlin liquid [4]. As we now know,
over a range of filling factors, the crystal phase is superseded
by the formation of a topological quantum liquid of
composite fermions [5–8], manifested through the fractional
quantum Hall (FQH) effect at ν ¼ n=ð2n% 1Þ and ν ¼
n=ð4n% 1Þ and Fermi seas at ν ¼ 1=2 and ν ¼ 1=4. Theory
suggests that the crystal should occur at sufficiently low
filling factors [9,10], and extensive experimental work has
been performed toward determining the phase boundary
between the crystal and the liquid [11–24]. For n-doped
gallium arsenide (GaAs) samples, in the limit of zero
temperature, an insulating phase is seen for ν < 1=5 and
also for a narrow range of fillings between 1=5 and 2=9.
These features have persisted as the sample quality has
significantly improved, indicating that the insulator is a
pinned crystal rather than an Anderson-type single particle
localized state.Direct evidence for a periodic lattice has been
seen through commensurability oscillations [25]. These
observations are largely understood. Interestingly, theory
suggests that at low ν nature exploits both the composite
fermion (CF) and the crystalline correlations to form a CF
crystal [26–29] (see Ref. [28] for a quantitative comparison
with the Coulomb ground state) rather than an electron
crystal [9,10,30]. There is growing experimental support for
the CF nature of the crystal [31–33].

A striking puzzle has, however, persisted since the early
1990s, namely, a qualitative difference between the n- and
p-doped GaAs systems [34–36]. In low-density p-doped
GaAs systems, while the FQH states at 1=3 and 2=5 are
robust, an insulating phase is observed for filling factors
below 1=3, and even between 1=3 and 2=5. In contrast,
there is no sign of crystal in this range of ν in the n-doped
samples with the same or even smaller densities. Several
early authors [37–40] attributed this difference to the
stronger LL mixing in p-doped GaAs quantum wells
due to the larger effective mass of holes and showed that
LL mixing generally favors the crystal phase by studying
the competition between the Laughlin liquid and the crystal
state at fractions ν ¼ 1=3, 1=5, and 1=7 through variational
[37–39], diffusion [40], and path integral Monte Carlo [41]
methods. More recent experiments in ZnO quantum wells
[42], where LL mixing is comparable to that in p-doped
GaAs systems, also show insulating phases intermingled
with the ν ¼ n=ð2nþ 1Þ FQH liquids.
We investigate in this Letter the competition between

liquid and crystal states treatingLLmixing nonperturbatively
using the fixed-phase diffusion Monte Carlo (DMC) method
of Ortiz, Ceperley and Martin (OCM) [40]. Two important
aspects of ourLetter are thatwe address the issue as a function
of continuous filling ν, which is necessary for understanding
the observed reentrant phase transitions, and we use accurate
crystal and liquid wave functions as the guiding trial wave
functions. The FQH state at ν ¼ ν&=ð2ν& þ 1Þ maps into a
state of 2CFs at filling ν&, which is, in general, not an integer.
(The symbol 2CF refers to a composite fermion carrying two
quantized vortices.) We assume a model [29] in which the
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crystal [26–29] (see Ref. [28] for a quantitative comparison
with the Coulomb ground state) rather than an electron
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A striking puzzle has, however, persisted since the early
1990s, namely, a qualitative difference between the n- and
p-doped GaAs systems [34–36]. In low-density p-doped
GaAs systems, while the FQH states at 1=3 and 2=5 are
robust, an insulating phase is observed for filling factors
below 1=3, and even between 1=3 and 2=5. In contrast,
there is no sign of crystal in this range of ν in the n-doped
samples with the same or even smaller densities. Several
early authors [37–40] attributed this difference to the
stronger LL mixing in p-doped GaAs quantum wells
due to the larger effective mass of holes and showed that
LL mixing generally favors the crystal phase by studying
the competition between the Laughlin liquid and the crystal
state at fractions ν ¼ 1=3, 1=5, and 1=7 through variational
[37–39], diffusion [40], and path integral Monte Carlo [41]
methods. More recent experiments in ZnO quantum wells
[42], where LL mixing is comparable to that in p-doped
GaAs systems, also show insulating phases intermingled
with the ν ¼ n=ð2nþ 1Þ FQH liquids.
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aspects of ourLetter are thatwe address the issue as a function
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functions. The FQH state at ν ¼ ν&=ð2ν& þ 1Þ maps into a
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and having, therefore, lower screening efficiency. IP at ν ¼
0.37 shows a “shoulder” at this density, but develops into a
well-defined local maximum at lower densities [47]. At very
highB, beyond≃8 T, the 2DHS becomes strongly insulating
and IP approaches the samevalue it has at the strongestQHSs,
consistent with the screening efficiency being minimal.
The right inset in Fig. 2 shows the temperature depend-

ence of IP at different ν. At ν ¼ 0.120, IP starts with a high
value at the lowest temperature, consistent with an insulat-
ing WS. At the highest temperatures, where we expect the
WS to have melted, IP saturates at a value which is lower
than its maximum value. This is consistent with a com-
pressible liquid phase which has a higher screening
efficiency than the WS. However, as the temperature is
raised, instead of decreasing monotonically from its low-
temperature value and saturating at the high-temperature
limit, IP shows a well-defined minimum at a critical
temperature TC. This temperature dependence is generic
for all the traces shown in the Fig. 1 inset except for
ν ¼ 0.370 and ν ¼ 0.270, where IP at the lowest temper-
ature is lower than its high-temperature limit. This is
because the lowest temperature achieved in our measure-
ments (T ≃ 40 mK) is close to TC for these two fillings; we
expect IP to increase if lower temperatures were accessible.
The data shown in the Fig. 2 inset suggest that the 2DHS

becomes particularly efficient at screening near TC. A
qualitatively similar behavior was recently seen in low-
density GaAs 2D electron systems [24]. Associating TC
with the melting temperature of the WS, Ref. [24] found the
measured dependence of TC on ν to be consistent with
the WS melting phase diagrams reported previously for the
magnetic-field-induced WS in GaAs 2DESs. It is not clear
why a WS should become particularly efficient at screening
as it melts. It is possible that the minimum in IP signals
the presence of an intermediate phase near the melting
temperature, as has been suggested in a recent report [37].
Alternatively, very recent calculations [57] suggest that
dissipation from mobile dislocations and uncondensed
charge carriers become especially important near the
melting of the WS phase. It is possible that they contribute
to the extra screening at the melting.
Associating TC with the melting temperature of the WS,

a plot of our measured TC vs ν, as shown in Fig. 3, provides
the WS thermal melting phase diagram of a 2DHS at
p ¼ 3.8. As ν increases from small values, TC decreases
until the WS phase is “interrupted” by the well-developed
ν ¼ 1=3 FQHS. When ν is higher than 1=3, there is a
reentrant WS phase between the 1=3 and 2=5 FQHSs,
around ν ≃ 0.37. We note that our TC ≃ 50 mK at ν ¼ 0.37
is consistent with the WS melting temperature reported in
Ref. [37] for a 2DHS with a similar density at ν ¼ 0.375.
The competition between theWS and FQHS liquid phases

depends on the mixing between the LLs [28–37,39–45].
This is often quantified in terms of the LLM parameter κ,
defined as the ratio between the Coulomb energy and the

LL separation: κ ¼ ðe2=4πϵ0ϵlBÞ=ðℏeB=m$Þ, where lB ¼ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
is the magnetic length. Note that κ ∝ m$. When κ is

large, the mixing with the higher LLs reduces the FQHS
energy gaps and favors the formation of a WS at filling
factors higher than 1=5 [28–37,39–45]. Recent theoretical
work by Zhao et al. [45] directly mapped out a zero-
temperature phase diagram for the quantum melting of
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The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy
differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the
quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of
Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of
this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase
diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman
energies and the experimentally measured values. In particular, we find, as also do experiments, that the
critical Zeeman energies for fractional quantum Hall states at filling factors ν ¼ 2 − n=ð2n# 1Þ are
significantly higher than those for ν ¼ n=ð2n# 1Þ, a quantitative signature of the lifting of particle-hole
symmetry due to Landau-level mixing.

DOI: 10.1103/PhysRevLett.117.116803

The role of particle-hole symmetry in the lowest Landau
level (LLL) as well as its breaking due to Landau-level (LL)
mixing has come into renewed focus in the contexts of the
competition between the Pfaffian and the anti-Pfaffian
wave functions for the ν ¼ 5=2 fractional quantum Hall
(FQH) effect [1–9] and of the nature of the composite-
fermion (CF) Fermi sea at ν ¼ 1=2 [10–24]. LL mixing
also affects various observable quantities in the FQH effect,
and a lack of its quantitative understanding has been one of
the major impediments to the goal of an accurate com-
parison between theory and experiment. The effect of LL
mixing has been treated in a perturbative approach [4–9],
but the extent of its validity for typical experiments has
remained unclear because the relevant parameter control-
ling the strength of LL mixing, namely, the ratio
of the Coulomb interaction to the cyclotron energy
κ ¼ ðe2=ϵlÞ=ℏωc, is typically ∼1 and sometimes as high
as ∼2. (Here, l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length, ϵ is

the dielectric constant of the background material, and
ωc ¼ eB=mbc is the cyclotron frequency).

We study in this work the effect of LL mixing through
the nonperturbative method of fixed-phase diffusion
Monte Carlo calculations [25–27]. We focus here on the
phase transitions between differently spin-polarized FQH
states as a function of the Zeeman energy, which are an
ideal testing ground for the role of LL mixing, both because
a wealth of experimental information exists for the critical
energies where such transitions occur [28–40] and because
they depend sensitively on LL mixing [40,41]. The critical
Zeeman energy Ecrit

Z quoted below in terms of the dimen-
sionless ratio αcritZ ¼ Ecrit

Z =ðe2=ϵlÞ is a direct measure of the
tiny energy differences between differently spin-polarized

states and, thus, serves as an extremely sensitive test of the
quantitative accuracy of the theory. In particular, a long-
standing puzzle has been that the observed values of αcritZ for
spin transitions at the filling factor ν ¼ 2 − n=ð2n# 1Þ are
significantly higher than those at ν ¼ n=ð2n# 1Þ. Because
particle-hole symmetry in a system confined to the LLL
guarantees that the transitions at ν and 2 − ν occur at the
same αcritZ , it is clear that LL mixing, which breaks particle-
hole symmetry, is responsible for the effect. Surprisingly,
for heterojunction samples, αcritZ for spin transitions at the
filling factor ν ¼ 2 − n=ð2n# 1Þ are higher even than the
theoretical values for systems with zero width and zero LL
mixing, which is counterintuitive because the corrections
due to finite width and finite LL mixing are both expected
to weaken the interaction and, thus, reduce αcritZ .
If the fixed-phase diffusion Monte Carlo (DMC) method

can be demonstrated to provide a quantitative account of
these experiments, it will not only reveal the role of
Landau-level mixing in a quantitative fashion but, in
principle, also enable an investigation of the effect of LL
mixing on various other issues, including the 5=2 Pfaffian
or anti-Pfaffian state and the 1=2 CF Fermi sea, in a
nonperturbative approach.
The DMC method [42,43] solves the many-body

Schrödinger equation by noting that its imaginary time
(t → it) version can be interpreted as a diffusion equation.
The wave functionΦ of interest plays the role of the density
of diffusing particles, which is valid when Φ is always real
and non-negative, such as for Bose systems in their ground
states. In order to treat Fermi statistics, a fixed-node
approximation is used which does not allow diffusion
through the nodal surface. The fixed-node DMC method,
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