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Outline 

•  Many electron problem and Hartree-Fock approximation 

•  Density Functional Theory (DFT), Local Density 
Approximation (LDA) and its extensions (GGA) 

•  Corrections to DFT: GW approximation, Self Interactions 
Correction (SIC), Hybrid functional 

•  Model Hamiltonian combined with DFT approach: Wannier 
functions and Hamiltonian construction 

•  Static mean-field approximation: LDA+U method  

•  LDA+U method  applications to real strongly correlated 
materials with orbital, charge and spin order 



Problem 

Correlated electrons 
motion with full  
Coulomb interaction 

Independent electrons 
motion with static mean-field  
Coulomb interaction potential 
from Density Functional Theory 



Problem 

Weakly correlated 
systems 

Strongly correlated 
metals 

Localized electrons 
in Mott insulators 



           Model Hamiltonians 
 
Hubbard and Anderson models  
unknown parameters  
many-body  
explicit Coulomb correlations 

       Density Functional Theory 
 
LDA 
ab-initio  
one-electron  
averaged Coulomb interaction 

Problem 

Coulomb correlations problem 

combined LDA+U and LDA+DMFT  approaches 



LDA input 

 LDA calculations produces: 

•  one-particle Hamiltonian for itinerant states 

•  one-particle non-interacting Hamiltonian for localized states 

•  hybridization term between localized and itinerant states 

•  Coulomb interaction parameters (direct U and exchange J) 
for localized  states 

Orbital variation space 

partially localized subspace  
(d- or f-orbitals) 

itinerant subspace  
(s-,p-orbitals) 



Electronic structure calculations 

Many-electrons equations 

Ψ=Ψ EĤ
where Ψ Ψ= ( , ,..., )x x x1 2 N is many electron wave function depending on  

Nxxx ,...,, 21  coordinates of all N electrons   
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Hamiltonian is a sum of one-electron and many-electron (Coulomb interaction) parts 



Electronic structure calculations 

Many-electrons equations 
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Kinetic energy 
and nuclear charge attractive 
potential energy contributions 
to one-electron Hamiltonians 

Electrons variables separation leads to one-electron approximation: 

Ψ( , ,..., ) ( ) ( )... ( )x x x x x x1 2 1 1 2 2N N Nu u u=

)(xµu is a one-electron wave function 



Electronic structure calculations 

Hartree-Fock approximation 
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Slater determinant satisfies antisymmetric properties of fermionic  
wave function in respect to electrons transposition 



Electronic structure calculations 

Hartree-Fock equations 

Mean-field potential with direct and exchange parts. 
Exchange terms with µ = ν explicitly cancel self-interaction  
while others significantly reduce repulsion energy for electrons  
with the same spin state. 
 
A system of integral-differential equations with all N one-electron  
wave functions coupled with each other. 
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Electronic structure calculations 

Hartree-Fock equations 

Direct Coulomb potential terms (Hartree) can be expressed via electron density: 
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Electronic structure calculations 

Hartree-Fock equations 
Exchange terms can be written as a sum of pair potentials  
that can not be expressed via density : 
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Hartree-Fock equations have a form: 
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Orbital dependent exchange potential 
that couples equations in the system  
with each other 

One-electron part with local  
Hartree potential defined by  
Electron density only 



Electronic structure calculations 

Slater approximation for exchange potential 

Exchange potential for homogeneous electron gas: 

Local density approximation allows to replace orbital dependent exchange  
Interaction operator by local potential defined as a functional of electron density: 

Decoupled one-electron equation with the same potential for all wave functions  
instead of the integral-differential equations system 
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Density Functional Theory 

According to Hohenberg-Kohn theorem  that is a basis of DFT, all ground state 
properties of inhomogeneous interacting electron gas can be described by 

minimization of the total energy as a functional of electron density ρ(r): 

Density Functional 

where T[ρ] is kinetic energy, Vext (r) - external potential acting on electrons 
(usually that is attractive nuclear potential), third term  describes 

Coulomb interaction energy (Hartree energy) corresponding to charge 
distribution ρ(r) and Exc is so called exchange-correlation energy functional. 

Exact form of Exc  is unknown! 



Density Functional Theory 

For practical applications ρ(r) 
can be expressed via one-electron wave functions φi(r): 

where N is total number of electrons. 
To minimize the functional one need to vary it over new variables φi(r) 

with additional condition that wave functions are normalized. That leads to 
the system of Kohn-Sham differential equations for one-electron wave 

functions: 

Electron density variation 



Density Functional Theory 

Here RI is position vector for nucleus with charge ZI ; εi are Lagrange multipliers 
having the meaning of one-electron eigenenergies and exchange-correlation 

potential Vxc is a functional derivative of exchange-correlation energy Exc: 

Kohn-Sham equations 

Eigenvalue εi is derivative of the total 
energy in respect to the occupancy of the 

corresponding one-electron state ni: 

]0[]1[ =−== iii nEnEεIn Hartree-Fock 

Kohn-Sham eigenvalues can not be directly used to calculate excitation spectra! 



Density Functional Theory 

DFT applications are based predominantly on so called Local Density 
Approximation (LDA) where exchange-correlation energy is defined as an 

integral over space variables r with an expression under integral depending 
only on local value of electron density ρ(r): 

Local Density Approximation (LDA) 

For spin-polarized systems one can use Local Spin Density Approximation (LSDA) 

Here εxc(ρ) is contribution of exchange and correlation effects in total energy 
(per one electron) of homogeneous interacting electron gas with density ρ. 



Density Functional Theory 

In Local Density Approximation (LDA) exchange-correlation potential in some 
space point r depends only on local value of electron density ρ(r): 

Local Density Approximation (LDA) 

One of the explicit forms of exchange-correlation potential calculated for 
homogeneous electron gas as a function of local value of electron density ρ(r) is: 
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Pure exchange 
potential: 



Density Functional Theory 

In Local Spin Density Approximation (LDA) exchange-correlation energy 
depends on two spin densities: 

Local  Spin Density Approximation (LSDA) 

Correspondingly exchange-correlation potential will be different for electrons 
with spin-up and spin-down projections: 
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Potential spin-polarization 

can result in spin-polarized solution for Kohn-Sham equations with 
ferromagnetic or antiferromagnetic ground state 



Density Functional Theory 

Generalized Gradient Approximation (GGA) 

Exchange-correlation energy can depend not only on local value of density as in LSDA 

but also on electron density gradient 
σn∇

Explicit form (Perdew et al) is defined by enhancement factor ...)1( +=XCF

GGA  sometimes corrects and sometimes overcorrects  the LSDA predictions 



Density Functional Theory 

DFT self-consistent calculation scheme 

)()( rr inin V⇒ρInitial electron density defines starting potential 

Kohn-Sham equations solution )()()]([ 2 rrr Ψ=Ψ+−∇ EV

results in a set of eigenvalues and eigenfunctions )(, riiE Ψ

That gives a new value of electron density 
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which is used as an input density on the next iteration )()( rr inout ρρ ⇒

Self-consistency condition: ερρ <−∫ 2))()(( rrr inoutd



Density Functional Theory 

Kohn-Sham equations for periodic crystal (translational invariant potential 
 V(r+l)= V(r), l is lattice translation vector): 

Bloch functions in crystal 

Solution satisfying periodicity condition is Bloch function for wave vector k 
having a form of a plane wave modulated by periodic function: 

Bloch function satisfies  
to relation: 
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ψ ψk kr l k l r( ) exp( ) ( )+ = ⋅i



Density Functional Theory 

Calculations schemes for Kohn-Sham equations are based on variational 
approach. Wave functions are expressed as series in complete set of basis 

functions: 

Electronic structure calculations methods 

Equivalent to a set of linear  
equations for coefficients  

i
na

Hamiltonian and overlap matrices 



Density Functional Theory 

Existing DFT methods could be divided in two major groups. One of them uses as 
a basis set atomic-like orbitals centered at atoms and decaying with increasing a 

distance from the center, for example Muffin-tin orbital (MTO) in  
Linearized Muffin-Tin Orbitals (LMTO) method : 

Linearized Muffin-Tin Orbitals (LMTO) method  

Rl(|r|,E) is radial variable dependent part of Kohn-Sham equation 
 solution for spherically symmetric potential inside atomic sphere with radius S. 
 



Density Functional Theory 

Another group of DFT methods uses delocalized plane waves as a basis set: 

Plane waves basis 

where k is wave vector and g - reciprocal lattice vector. 

Plane waves are good basis for  
inter-atomic regions  

where potential varies slowly 
while  atomic like orbitals describe better 
intra-atomic areas with strong potential 

and wave functions variations 



Density Functional Theory 

Augmented Plane Wave is defined as 
 

Linearized Augmented Plane Waves (LAPW) method 

Combined nature of LAPW basis functions allows  
good description of Bloch functions in all space regions  

(inter-atomic as well as intra-atomic) 



Density Functional Theory 

Pseudopotential approach 

Smooth behavior of 
pseudofunction inside atomic 
core area allows to use plane 
wave basis for whole crystal  

Real potential and wave function are replaced by  some pseudopotential  
and corresponding pseudofunction that coincide with real functions  

and real potential outside  atomic core area giving the same eigenvalues 



Density Functional Theory 

DFT problems for real materials 

Systematic underestimations for energy gap value of band insulator materials.  



Density Functional Theory 

DFT problems for real materials 

Systematic overestimation for cohesive energy. 
Example of silicon:  



Density Functional Theory 

Breakdown of LDA for strongly correlated systems 

NiO and CoO are experimentally 
wide gap insulators (Mott 

insulators) but  LSDA  gave 
small gap insulator for NiO and 

metal for CoO with partially 
filled t2g spin-down electronic 

subshell 

LDA potentials are the same for all orbitals  with the possible  
difference due to exchange interaction:  

NiO CoO 



Corrections to Density Functional Theory 

Self-Interaction Correction (SIC) method 
Orbital dependent potential with “residual self-interaction” 
present in LDA explicitly canceled for all occupied states i:  

is charge density for state i 

SIC correction is absent for empty states and so energy separation  
between occupied and  empty states results in energy gap appearance  

imitating Mott insulator 

SIC results usually overestimate 
energy separation between 
occupied and empty states 
similar to Hartree-Fock method 
due to the absence of screening 
effects 



Corrections to Density Functional Theory 

Slater Transition State  method 
Excitation energy for electron removal from state i is   

equal to total energy difference between final and initial configurations: 

TS correction is positive for empty states and negative for occupied states  
and energy separation between occupied and  empty states appears 

= 

= 

Good results for excitation energies 
values in atoms, molecules 

and solids calculated as a difference  
of one-electron eigenvalues with  

half-filled occupancy for initial  
and final states 

using: 



Corrections to Density Functional Theory 

GW method 
Ideologically GW method is not related to DFT but is based on diagrammatic  

technique for  inter-electron Coulomb interaction where static and local potential 

)(rV Is replaced by an energy dependent non-local self-energy operator  ),',( ωrrΣ

Here  ),',( ωrrG is a Green function and  

),',( ωrrW is screened Coulomb inter-electron interaction  



Corrections to Density Functional Theory 

GW method 

is inverse dielectric matrix ),',(1 ωε rr−

is bare Coulomb interaction 

'
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dielectric matrix is expressed via polarization operator ),',( ωrrP
that can be calculated in Random Phase Approximation (RPA) using 
eigenvalues and eigenfunctions obtained in DFT calculations. 
 
GWA systematically improves calculated energy gap values for semiconductors 
and band insulators but has serious problems for strongly correlated materials 
like transition meal oxides. 



Corrections to Density Functional Theory 

Hybrid functionals 

DFT systematically underestimate energy gap values while Hartree-Fock (HF) 
strongly overestimate them due to the neglect of screening effects. 
Hybrid functionals solve this problem by mixing both approximations in expression 
for exchange-correlation energy: 

HF
x

DFT
xc

hyb
xc aEEaE +−= )1(

a=1/4 is a mixing parameter chosen to give good agreement with experimental data 

This ad hoc formulae works surprisingly well for a wide range of materials and 
is very popular last years due to its simplicity and effectiveness. 
Mixing parameter a=1/4 can be viewed as an imitation of screening for bare 
Coulomb potential present in Hartree-Fock approximation. 



Basic models in strongly correlated systems theory 

Hubbard model 

Local Coulomb interaction between electrons with Coulomb parameter U  
defined as an energy needed to put two electrons on the same atomic site: 

tij is hopping matrix element  
describing kinetic energy terms . 

  



Basic models in strongly correlated systems theory 

tJ-model 

creation operator for correlated electrons, 

Anderson kinetic exchange. 
  

tJ-model can be derived from Hubbard model in the limit U>>t 

S are local spin moments 



Basic models in strongly correlated systems theory 

Kondo lattice model 

S is spin operator for localized electrons, 

Itinerant electrons spin operator. 
  

Usually it is applied to rare-earth elements compounds where 4f-
electrons are considered to be completely localized with exchange-only 

interaction with itinerant metallic electrons 
  



Basic models in strongly correlated systems theory 

Periodic Anderson model (PAM) 

Fermi operators for itinerant s- and  
localized d-electrons respectively 

Vij    s-d  hybridization parameter. 
 

If hopping between d-electrons term is added to PAM then the most general 
model Hamiltonian is defined that gives complete description of any material. 

  



General functionals  
(electron density,  

spectral density et. ct.) 

Model Hamiltonians with  
DFT parameters 

Problem 

“Dream” fully ab-initio method 

How to define interaction term in  
ab-initio but still practical way? 

Orbitals? 



DFT and correlations 

DFT-input: non-interacting Hamiltonian and  
               Coulomb interaction parameters (H0, U) 

Standard approximation: Green functions are calculated  
                                             using DOS (N0) from DFT  
(-) Reliable results only for high-symmetry (cubic) systems 

Self-energy operator  
for cubic systems:  

Green function:  



General formula using non-interacting Hamiltonian  
obtained by projection of the correlated states into  

full-orbital DFT Hamiltonian space 

Open questions: 
1)  Choice of basis for  projected Hamiltonian 
2)  Procedure of projecting 

DFT + correlations: general case 

Low-symmetry systems? 



Problem of orbitals definition 

What are Hubbard model basis orbitals? 
Some kind of atomic-like site-centered localized orbitals without explicit definition. 
 Matrix elements are considered as a fitting parameters.  

Why not to use LMTO basis? 
Pure atomic orbitals neglect strong covalency effects.  For example unoccupied 
Cu-3d x2-y2 symmetry states in cuprates have predominantly oxygen  2p-character. 

One need new “physically justified” orbital basis set  
for Hamiltonian defined on the  correlated states subspace  



Why Wannier Functions? 

Advantages of Wannier function basis set: 
< Explicit form of the orbitals 
forming complete basis set 
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Wannier functions in real space [1]: 

[1] G.H. Wannier, Phys. Rev. 52, 192 (1937) 

Bloch functions 

like in Hubbard model 

Uncertainty of WF definition 
for a many-band case:  

Unitary matrix 



Wannier functions and projection 

Eigenvector  
element 

WF in k-space –  projection of the set of trial functions [2]  (atomic 
orbitals) into Bloch functions subspace : 

Bloch functions in DFT basis 
(LMTO or plane waves): 

 coefficients of  WF expansion in LMTO-orbitals: 

Bloch sums of  
LMTO orbitals 

[2] D.Vanderbildt et al, Phys. Rev.B 56, 12847 (1997) 



Example of  WF in real space 

WF basis set for V-3d (t2g) subband of SrVO3: XY, XZ, YZ - orbitals 



Example of  WF in real space 

V-3d (3z2-r2) WF orbital for SrVO3 

3D plot of WF isosurface: 
1.  decrease from |WF| = 0.5 to 0.02 
2.  rotation around z-axis 
3.  rotation around x,z axes and increase to |WF| = 0.5  

Max{|WF|} = 1 



d-xy WF for NiO 

  Dm.Korotin et al, Europ. Phys. J. B 65, 91 (2008). 

    

Full bands projection  d-bands only projection 



Novel superconductor LaOFeAs 

d (x2-y2) Wannier functions (WF) calculated 
for all bands (O2p,As4p,Fe3d) and 
for Fe3d bands only 

All bands WF 
constrain DFT 
U=3.5 eV 
J=0.8 eV 

Fe3d band  
only WF 
constrain DFT 
U=0.8 eV 
J=0.5 eV 

  V.Anisimov et al, J. Phys.: Condens. Matter 21, 075602 (2009) 



WF in cuprates 

  V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007) 

    

Crystal structure of LiCu2O2 
Green, red,  blue, black, and 
yellow  spheres are Cu2+ 
Cu+,O, and Li ions, respectively.  



WF in cuprates 

  V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007) 

    

Wannier orbitals 
centered on 
neighboring 
copper atoms along 
the y axis. 



WF in cuprates 

  V. V. Mazurenko, et al, Phys. Rev. B 75, 224408 (2007) 

    
900 bond between Cu Wannier functions cancels 
antiferromagnetic kinetic energy exchange. Overlap on oxygen 
atoms gives ferromagnetic exchange  due to Hund interaction on 
oxygen 2p-orbitals 



WF for stripe phase in cuprates 

  V.Anisimov et al, Phys. Rev. B 70, 172501 (2004)  

    La7/8Sr1/8CuO4 
 
Half-filled band 



WF for stripe phase in cuprates 

Cu 
O 

Cu 

O O 

O O 



Projection procedure for Hamiltonian 

Matrix elements of projected Hamiltonian: 
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LMTO Eigenvectors, Eigenvalues 

cni cmi εi HWF 



Projection results for SrVO3 
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Eigenvalues of full-orbital and projected Hamiltonians are the same  

Projected Hamiltonian DOS corresponds to the 
total DOS of full-orbital Hamiltonian 



Constrain DFT Calculation of U    

Matrix of projected Hamiltonian in real space: 

Density matrix operator: 

Energy of n-th WF: 

Occupation of n-th WF: 

Coulomb interaction 



Definition of WF using Green-functions    

WF definition:  

where  
In the absence of Self-energy: 

Coincides with definition of WF using Bloch functions 



Calculation scheme 

Coulomb interaction  Hamiltonian: 

where Vee is screened Coulomb interaction between electrons in idndld shell  
with matrix elements expressed via complex spherical harmonics 

and effective Slater integral parameters Fk 

where k = 0, 2, . . . , 2l 



Calculation scheme 

Coulomb interaction  Hamiltonian: 

where Ykq are complex spherical harmonics. 
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Gaunt coefficients, L=(l,m): 



Calculation scheme 

Coulomb interaction  Hamiltonian: 

For d electrons one needs to know F0, F2 and F4 and these can be linked to the 
Coulomb and Stoner parameters U and J obtained from the constrain DFT 
procedures, while the ratio F2/F4 is ~ 0.625 for the 3d elements. For f electrons 
the corresponding expressions are J = (286F2 + 195F4 + 250F6)/6435 and ratios 
F4/F2 and F6/F2 equal to 451/675 and 1001/2025. 



Calculation scheme 

Coulomb parameter U calculations: 

Screened Coulomb potential: 

Unscreened Coulomb potential: 

Polarization operator: 

Strong dependence on the number of occupied and empty states  
included in the summation for polarization operator 



Calculation scheme 
Coulomb parameter U calculations: 
Constrain DFT method 

Definition: 

DFT analogue: 

Connection of one-electron  
eigenvalues and total energy in DFT: 

DFT calculations with constrain potential: 

Energy of n-th WF: 

Occupation of n-th WF: 



Calculation scheme 

Coulomb interaction  Hamiltonian: 

The general Hamiltonian  assumes possibility of mixing for orbitals with different 
m values (or in other words possibility for electrons occupy arbitrary linear 
combinations of |inlmσ> orbitals). However in many cases it is possible to 
choose “natural” orbital basis where mixing is forbidden by crystal symmetry. 
In this case terms c+

ilmσcilm′σ with m non equal to m′ are absent and Coulomb 
interaction Hamiltonian can be written as 

Third terms corresponds to spin flip for electron on m orbital with 
simultaneous reverse spin flip on orbital m′ that allows to describe x and y 
spin components while the fourth term describes pair transition of two 
electrons with opposite spin values from one orbital to another. 



Calculation scheme 

Coulomb interaction  Hamiltonian: 

is particle number operator for electrons on orbital |inlmσ>  
Here we have introduced matrices of direct 
Umm′ and exchange Jmm′ Coulomb interaction: 

Neglecting spin-flip effects and leaving only density-density terms we have: 



Calculation scheme 

Coulomb interaction  Hamiltonian: 

Kanamori parameterization is usually used where for 
the same orbitals (m = m′) direct Coulomb interaction 
Umm ≡ U, for different orbitals (m non equal m′)  
Umm′ ≡ U′ with U′ ≡ U − 2J and exchange interaction 
parameter does not depend on orbital index Jmm′ ≡ J. 
In this approximation Hamiltonian is: 



Calculation scheme 

Double-counting problem for Coulomb interaction 

Full Hamiltonian is defined as: 

In DFT Coulomb interaction energy is a functional of electron density that is 
defined by the total number of interacting electrons nd. Hence it is reasonable to 
assume that Coulomb interaction energy in DFT is simply a function of nd : 



Calculation scheme 

Double-counting problem for Coulomb interaction 

To obtain correction to atomic orbital energies εd in this approximation 
one needs to recall that in DFT one-electron eigenvalues are derivatives of 
the total energy over corresponding state occupancy nd 

and the term in Hamiltonian responsible for “double counting” correction HDC is 

and hence correction to atomic orbital energy εDC can be determined as: 



Calculation scheme 

LDA+correlations Hamiltonian: Coulomb
0
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LDA+U method: static mean-filed approx. 

Static mean-field decoupling of four Fermi operators product: 

results in one-electron Hamiltonian: 



LDA+U method: static mean-filed approx. 

LDA+U functional: 

One-electron energies: )n
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LDA+U method: general formalism 

LDA+U functional: 
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V.Anisimov et al, Phys. Rev.B 44, 943 (1991); J.Phys.: Condens. Matter 9,767 (1997)  



LDA+U potential correction 

Non-local LDA+U potential operator: 

Potential correction matrix: 
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Exchange interaction couplings 

Calculation of J from LDA+U results: 
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