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fundamental problem of solid state

“ what do we need DMRG for? problem class:

fundamental Hamiltonian (without lattice vibrations...!):

p2
I 1
H = | Vet (
ZQme 2 41eg |rz—r3\ Z (r;)

kinetic electron-electron lattice
energy interaction potential

"~ we don’t know how to solve the Schrodinger equation!

problem: electron-electron interactions



compression of information

" compression of information necessary and desirable
"I diverging number of degrees of freedom

" emergent macroscopic quantities: temperature, pressure, ...

"~ classical spins

" thermodynamic limit: N — oo 2NN degrees of freedom (linear)

~ quantum spins
"I superposition of states

" thermodynamic limit: N — oo 2Ndegrees of freedom (exponential)



classical simulation of quantum systems

"I compression of exponentially diverging Hilbert spaces

" what can we do with classical computers!?

" exact diagonalizations

| limited to small lattice sizes: 40 (spins), 20 (electrons)

"I stochastic sampling of state space

| quantum Monte Carlo techniques

| negative sign problem for fermionic systems

I physically driven selection of subspace: decimation
| variational methods
| renormalization group methods

| how do we find the good selection? DMRG!



DMRG: a young adult

09.11.1992 S.R.White: Density Matrix Formulation for Quantum
Renormalization Groups (PRL 69, 2863 (1992))

,, This new formulation appears extremely powerful and versatile, and we believe it will become the

leading numerical method for |ID systems; and eventually will become useful for higher dimensions
as well.

~2004 old insight ,,DMRG is linked to MPS (Matrix Product States)"
goes viral

Ostlund, Rommer, PRL 75, 3537 (1995), Dukelsky, Martin-Delgado, Nishino, Sierra, EPL43, 457 (1998)

Vidal, PRL 93, 040502 (2004), Daley, Kollath, Schollwock,Vidal, J. Stat. Mech. P04005 (2004),
White, Feiguin, PRL 93,076401 (2004), Verstraete, Porras, Cirac, PRL 93,227205 (2004),
Verstraete, Garcia-Ripoll, Cirac, PRL 93, 207204 (2004),Verstraete, Cirac, cond-mat/0407066 (2004)

(some) reviews:

U. Schollwock, Rev. Mod. Phys. 77,259 (2005) - ,,old” statistical physics perspective, applications
U. Schollwock, Ann. Phys. 326,96 (2011) - ,,new" MPS perspective, technical
F.Verstraete,V. Murg, J. |. Cirac,Adv. Phys. 57, 143 (2008) - as seen from quantum information



matrix product states: definitions

quantum system living on L lattice sites
d local states per site {0;} i€ {1,2,...,L}
example: spin 1/2:  d=2 \ T>, \ ¢>

Hilbert space:

most general state (not necessarily |D):

abbreviations: {o} =01...0L clo}



(matrix) product states

exponentially many coefficients!
standard approximation: mean-field approximation

Pl 9L = 91 .92, . 9L d¥ — dL coefficients

often useful, but misses essential quantum feature: entanglement

consider 2 spin 1/2: H =H1 ® Ha Hi = {| Ti),| i)}

) =TT 1) + ™ 1) + ) + e W)
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|
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generalize product state to matrix product state:

.c?? ...’ > M- M2 .., M°T

singlet state: |1)) =



matrix product states

useful generalization even for matrices of dimension 2:
AKLT (Affleck-Kennedy-Lieb-Tasaki) model

general matrix product state (MPS):

1)) = Z M*M°% .. . M°t|o109...0L)

014...40],
matrix dimensions:

(1 X Dq1),(D1 X D3),...,(D_oxDp_1),(Dr_1 x1)

non-unique: gauge degree of freedom

XX—l — 1 M% — M9%X Mi+1 X—lMg,H_l



matrix product states

Why are matrix product states interesting?

"/ any state can be represented as an MPS
(even if numerically inefficiently)

" MPS are hierarchical: matrix size related to degree of
entanglement

"I MPS emerge naturally in renormalization groups
“ MPS can be manipulated easily and efficiently

"~ MPS can be searched efficiently:
which MPS has lowest energy for a given Hamiltonian?



singular value decomposition (SVD)

key workhorse of MPS manipulation and generally very useful!
general matrix A of dimension (m X n) k = min(m,n)
then A=USVT

with U dim.(m x k) U'U =1 (ONcol); ifm=4k: UU' =1

S dim.(k X k) diagonal: 51 2> 82 2> S3 2 ... non-neg.:5; > 0
singular values, non-vanishing = rank r < k

Vidim(kxn) VIV=I ONrow)ifk=mn: VVI =1

popular notation: (left) singular vectors |u; )

U = [[u)|uz) .. ]



SVD and EVD (eigenvalue decomp.)

singular value decomposition (always possible):

1421]5‘/Jr §S1 > 89 > 83 > ... s; > 0

eigenvalue decomposition (for special square matrices):

AU = UA Ai  U=|lup)|ug)...] eigenvectors
connection by ,,squaring“ A: ATA  AAT
AAT =USVIVSUT =US*UT = (AA"U = US?
ATA=VSUTUSVT =V8?VT = (ATA)V =V §?

eigenvalues = singular values squared
eigenvectors = left, right singular vectors



any state can be decomposed as MPS

reshape coefficient vector into matrix of dimension (d x d*~') and SVD:

C He g — \110-170-2---0-14 — z :Uo-laa’lsaflya’lvT

ai,02...0],

slice U into d row vectors: %1

Uo'l,all — {AUl} with Ailal — Uo'l’al
rearrange SVD result:

%192 0L — E Al c%19203...0L c%10203...0L Sa . VT
a1 © 1,01

ai,02...0],

reshape coefﬁaent vector into matrix of dim. (d* x d“~2) and SVD:

a10203...07, —_— T
C — \Ija,lo'Q,O':g...O'L T E :Ua1027a25a27a2Va2703 -OL

. . . ao
slice U into d matrices:

AS? =
ai,a2 a102,a2

rearrange SVD result: ¢71929L = E AT, AG: 4?7273 9% and so on!

ai CLQ
ai,a2



Schmidt decomposition

bipartition of ,,universe™ AB into subsystems A and B:

{18)4} (s}
O 0O 0O 000 000|000 00 00

1 ¢ /+1 L
dimHa dim Hp

) = 2{: :E: Vijl|i)alj) B

read coefficients as matrix entries, carry out SVD:
r

) = Z Sal@)ala)p  Schmidt decomposition

a=1
dim H a dim H g
orthonormal

a)a= Y Uilida la)p= ) Vili)p ee
i=1 j=1




bipartite entanglement in MPS

" measuring bipartite entanglement $: reduced density matrix

- ) =Y Pylid)li) p=[Y) (Y| — ps = Trgp
Zwa log, wq

universe S = —TI‘[,OS 10g2 ,OS

" arbitrary bipartition
AAAAAAAA AAAAAAAAAAAAAAA

= g vV Wqa -- use Schmidt decomposition

87
"I reduced density matrix and bipartite entanglement

pAS — Z wa-- S =-— Z W, 10g2 W, < 10g2 M
o Q

codable maximum




entanglement scaling: gapped systems

Latorre, Rico, Vidal, Kitaev (03)

"I entanglement grows with system surface:area law  Bekenstein '73

_ Callan,Wilczek 94
- for ground states! Eisert, Cramer, Plenio,RMP (10)

. LTS

-+ [ —> <] —> - [ —>
gapped  S(L) ~ cst. S(L) ~ L S(L) ~ L? black

hole

S <log, M = M > 2°

states M > 92¢st M > 2L M > 2L2



Hilbert space size: just an illusion?

"I random state in Hilbert space: entanglement entropy extensive

" expectation value for entanglement entropy extensive and
maximal

I states with non-extensive entanglement set of measure zero

I merit of MPS: H-'IberF Spaze
parametrize |
this set efficiently!

ground states are here!




work with MPS: diagrammatics

matrix: vertical lines = physical states, horizontal lines = matrix indices

O] Oy Or
Oy

left edge bulk right edge complex conjug.

rule: connected lines are contracted (multiplied and summed)

O Or

66666664

matrix product state in graphical representation



block growth, decimation and MPS

RG schemes: grow blocks while decimating basis

@-1)4 o)) @) 4
O —»
1 (-1 7/ 1 4
ag) = Y {ap—1,00ag)ag—1)log) = Y ML . lae—1)|oe)
Ag—1,0¢ ag—1,0¢

simple rearrangement of expansion coefficients into matrices:

M7* = (ay_1,0¢|ag)

Ay —1,Qp

recursion easily expressed as matrix multiplication:

lag) = Z (M7 M2 ... M%%)1 q4,|0102...00)

014...40p

———————

_______



(left and right) normalization

both state decomposition and block growth scheme give special gauge

/
_ / L Oy * o, / /
Oa)ae = (aglae) = M, Mg, | o {0r_10p|ac—10¢)
Ay _10,0¢0—10¢
— gy * Oy L O-ET oy
o Z MCLE—l,CLz Mag_l,az o (M M )aé,ae
Qy—10¢ o

left normalization (called A); more compact representation:

I=Y MM =" A7TA" ( 1 " - [
Oy

g¢

right normalization (called B): |
I=Y BB I ] = ]
Oy g

mixed normalization:

AAAAAMBBBBBBBBB




matrix product operators (MPO)

general operator:

A = = / /
O=) » c1o0%19Ligy ... op)oy...of
{o} {0’}

rearrange indices:

/ / / / /
01...0[,,071...0 010,090+...0[,0
C L, L 5 ¢ 1 2 LCOp,

/ / / / / /
,mean-field very useful: ¢717172929L9L — 9191 . 7292 . . c7LOL
ST - hLHRL®...05 ®...0 I
01010205...0 07 __ 5 5 gz 5
C — Yoq,07 " Yo2,05 ( )O'z',O',/L- teee " Uop,of

matrix product operator:

0 =35 MMz Moy .. o) (0} ... 0]
{o} {o'}




applying an MPO to an MPS

graphical representation with ingoing and outgoing physical states:

44

applying an MPO to an MPS: new MPS with matrix dims multiplied

(ab) (a'b) = ZN ;, iMbbz'/

» L
—>
& S

o—1il

O—0O0—0—=0

——
}

9
O




normalization and compression |

problem: matrix dimensions of MPS grow under MPO application

solution: compression of matrices with minimal state distance

assume state is given in mixed normalized form:

) =Y ATTA% . AT{MO|B2 B0y ... op)

{o}
stack M matrices into one:
_ Te41
Ma£70€—|—1a’£+1 o Mag,ag_|_1

carry out SVD,and use results: M = USVT

A%t — AU orthonormality of U !

B+l =V]

Ag,d¢41 Ay, 0p04+1Qp41



normalization and compression |

now introduce orthonormal states:

lag) 4 = Z (A% ... A%) 1 4,|01...00)

014...40p

ag)p = »  (B*'...B")g,1|0041...0L)

O¢+15---y0L

read off Schmidt decomposition: |¢) = Z Sa,|ae) alae) B

ag
compress matrices A°¢, B7*+! by keeping D largest singular values
A°tS — M°¢
) =Y AT A AT MOB B oy ... o)

{0}

mixed rep shifted by | site: sweep through chain; also normalization



time-evolution

assume initial state in MPS representation; time evolution:
B(t) = e [1(0))

how to express the evolution operator as an MPO!?

one solution: Trotterization of evolution operator into small time steps

N — 00 T — 0 NT=T T ~ 0.01

A

L—1
Heisenberg model: H = Z h; h;=S;-Sii
1=1

N N N L-1
. T . T . L—17 . _.A .
e—lHT _ | |e—1HT _ | | e_lzizl hﬂ'@l | | | a ih;T
i=1 k=1 k=1 i=1

first-order Trotter decomposition



Trotter decomposition

A

calculation of e T 3 (d2 X d2) matrix:

HU=UA H;=UAU" = e 'Hi7" =pye MUl =U.diag(e M7, e 27, . ). UT

problem: exponential does not factorize if operators do not commute

N . & 2k
WA+B _ (A B L[A,B]
but error is negligibleas 7 — 0

[iliT, iLH_lT] XX ’7'2

convenient rearrangement:

IA{ — IA{odd + f{evenQ ﬁodd — Z iLQ’i—la ﬁeven — Z ]A12z'

A

A~ A A fi’ A A ,I: A
) | | ) | |
) )



tDMRG, tMPS, TEBD

bring local evolution operator into MPO form:

Ualag,aiaé . <O' '
— 102\6

109
010,005 — SV D

[70102,040% _ Usiotiosos, = > Worat 5505 Whoz0

b
/
o 0'10'1 0'20'2

_ E Ml,b Mb,1
b
even bonds

one time step: dimension srows as d?
odd bonds P & d

initial state

"~ apply one infinitesimal time step in MPO form

I compress resulting MPS



single-particle excitation

"I quarter-filled Hubbard chain: U/t=4
" add spin-up electron at chain center at time=0

"I measure charge and spin density

time-dependent
time=0.2 DMRG

L.5

as charge

Spin
0 20 40 60
site

"I separation of charge and spin Kollath, US, Zwerger, PRL 95, 176401 (‘05)



some comments ...

real time evolution limited by entanglement growth:

S(t) < S(0) + vt S~InD

in the worst case, matrix dimensions grow exponentially!

ground states can be obtained by imaginary time evolution (SLOW!):

) = ch|”> Hln) = Epln)  Ey < E; < By <

n

lim e_ﬁHW} lim e PEnc In) = lim e PP (¢)0) —I—Z —BEn=Eo)e 1)

— — —
p—o0 f—roo0 &= p—o0 =0

— 511_)1130 e PEocy|0)



long-ranged interaction: Krylov

what can we do if interactions are long-ranged and Trotter fails?
Krylov time evolution

I bring Hamiltonian into MPO form: exact, small dimension

" calculate successive powers [¢), H|y), H*[¢)),... Krylov vectors

“apply Hamiltonian MPO

bbb
, } . t
"I compress resulting MPS i—i—i—i—i—u j:

" orthonormalize powers

" tridiagonalize Hamiltonian in new basis, calculate e*#4|y)

" for small time steps, 4 to 5 Krylov vectors sufficient; quasi-exact



limitations ...

" do correlations in non-relativistic systems spread at finite

velocity?
1[A0(0), Ba(t)]]| < cst.||All|| Bl exp|—(d — vt)]

"I correlations Lieb-Robinson theorem (CMP, 1972)

"I entanglement bound:

S(t) < 5(0) + est. x 2vt | linear in time

exponential resources

quasiparticles

out-of-equilibrium cartoon:

quasiparticles entangle in
,»light™ cone

(sub)system length /¢

‘ Calabrese, Cardy (since 2004) and others



overlaps

(@) (0))  (SF(1) = (w(t)]S | (1))
lototototolol

(9
overlap contractions: _.i _.i _.i _.i _,i _.i _.i _,i
W)

I e

(pl) =" ({o'HM ™ . MM M {o}) =Y M7 MM MO
{o} {o'} {0}

(@|y)) = M ML*MO .. ML .
% order of contractions:

B > Mot mmimm..m zip through the ladder;
- Y ( ) (Z ot (Z ot M°’1> M@) ) . cost O(dLD?)

two-point correlators: long-range or superposition of exponentials

mia (y (ag—1ay_1),(ae,a ) — O¢* Ge
I I_SO)EIZEEI_% I I ’ ) | ZA% 1 % 110
—0+0+0—0

hence: power laws only , by approximation®




dynamical quantum simulator

coherent dynamics! controlled preparation? local measurements?

first experiments:
period-2 superlattice

- double-well formation
- staggered potential bias

- pattern loading
- odd/even resolved
measurement

(Félling et al. (2007))

first theory proposals:
o/ o\ prepare [4) - 11,0,1,0,1,0,..)
/E ﬁ ﬁ ‘\ AWAWA - switch off superlattice

oy o101 01 - observe Bose-Hubbard dynamics

t

/i ﬁ ﬁ ‘\ 2474747 Cramer et al, PRL 101,063001 (2008)
' Flesch et al, PRA 78,033608 (2008)

or(t)




dynamical quantum simulator

Trotzky et al., Nat. Phys. 8, 325(2012)

QU UM PHO O ICS
ripple

c T S
<4 45,000 atoms,
é g ;§0_5 _ :".....-'-.,_,...w g e = U o 5 2
3 A momentum
0 1 2 3 '8 101214 16 18 20 distribution

t (ms)




densities |l

06FA . a- no free fit
I P00PE000K00000"
0.4 ° 1 H barameters!
| UlJ=2441 | UlJ = 3.60
0.2 : .
KIJ=49103] B  KiJ=65103.

E UlJ=516]1 | Uld =9.91]
0.2
) K/J 86103 K/J—1451O3
O.l
0 1 2 3 4 S 0 1 2 3 4 S
4Jt/ h

fully controlled relaxation in closed quantum
system!
validation of dynamical quantum simulator

time range of experiment > |0 x time range of theory
real ,,analog computer” that goes beyond theory



real part

relaxed correlator

nearest-neighbour correlators

correlator

T
N UTAWN =

0.35

0.3

0.25

0.2 |

0.15 ¢

0.1 |

0.05

0 5 10 15 20 25 30 35 40

interaction

- again three regimes

1
o

1 IO 1
© L ©
N o =

0.25

||||||||||||||||||||||||||||

ONOOTRWN—

N =1L

ﬁ:ﬁ:C:C:C:C:CH:_

-
Il
8

o

- U= 3: crossover regime

- at large U, |/U fit of relaxed correlator
can be understood as perturbation
to locally relaxed subsystems



currents

measurement: split in double wells, measure well oscillations

1

O e 0 e 0 e OoO-enoO o €e-0 '
/\ | /\ | /\ | — \{E /\{: or 0.5
=Rl == bl =~ = = &
0
0

0.1 0.2 0.3
) tagw (1S)
phase and amplitude
A N sloshing;
I - -

0 . N P Cice SN no c.m. motion

| -

L | |
0 -4
©
_.3 et o 0 ¥
E— ] ] ]
E %0 5,10 15-

="------%---§ | current decay as power law!




correlation between neighbours

nearest neighbour correlations

Experiment

momentum
distribution

15 2 0 0.5
4Jt/ h

1 15 2

visibility proportional to nearest neighbour correlations

interaction strength

035 —
0.3 ~'| relbiabi theory 1 . . . . . .
025 || ' t=5xhl4d
02} | . / ~JIU experiment -
\ ' .
0.15 | , -
[ o 4 .
0.1 : ] (') A -
0.05 fo B 0 - ! - L
S e | 0 10 20 30 40
"0 5 10 15 20 25 30 95 140 uld

build-up of quantum coherence

general trend, |/U correct!



build-up of quantum coherence

t=sxmas 1 | long-time limit of

1 nearest-neighbor correlations
(here: visibility of momentum
30 40 distribution)

©
1

1 - . - . - u - u

measurement at ..long time*

old theory prediction for long times

o: measured in trap ' without trap

% 05 1 15 2 25
4Jt /] h

trap allows particle migration to the ,,edges™ /—\ J
energy gained in kinetic energy: % /\/"qu'd

Ekin — —J<b,]: bi—l—l —+ bT+1bZ> external potential

(]




neutron scattering at >0

K_ﬁ_\* structure function
: : - X by neutron scattering
‘

e (Broholm group)

high flux

precise lineshapes

025 05 075 1

g/

"~ problem: experiment usually T=4.2K, energy scales at
J=O(10K)
definitely not at T=0!

" desired feature because of achievable field strengths:
H should be of order | — rule of thumb IK=IT



finite-temperature dynamics

! purification

density matrix of physical system:
pure state of physical system plus auxiliary system

- Ponys = Traua| ) (¥

" finite-temperature dynamics

evolution of pure state in enlarged state space

Verstraete, Garcia-Ripoll, Cirac, PRL ‘04



purification and finite-T evolution

purification: any mixed state can be expressed by a pure state on a
larger system (P: physical, Q: auxiliary state space)

pp = _pnln)p p(n| V) pQ = ) v/Paln)pln)q

laP — trQ ‘¢>PQ PQ <¢| simplest way: Q copy of P
expectation values as before:

(Op) s, = trpOppp = trpOptrg|¥) po o] = trpoOp¥)pg Po(¥| = po(¥|Op|¥)pqg

time evolution as before:

pp(t) = e ppet Mt = e g |Y) pg po(Yle™ = trgli(t)) re Po(Y(t)]

6(t)) p@ = et |1h) pg



time-evolution of thermal states

problem: usually we do not have mixed state in eigenrepresentation
thermal states: easy way out by imaginary t-evolution

e PH — = BH/2 . [, . e=BH/2 — 41,6~ BH/2| ) ~BH /2

PQ PQ{pole

purification of infinite-T state: product of local totally mixed states

gauge degree of freedom: arbitrary unitary evolution on Q

lots of room for improvement:

verse temperature

build MPOs and compress them:




linear prediction

(Barthel, Schollwock, White, PRB 79,245101 (2009))

‘ansatz: data is linear combination of p previous data points

prediction D calculation

Ly — — E ALy —4 index labels time: time series
1=1

find prediction coefficients by minimising error for available data

2
error estimate

“iteratively continue time series from data using ansatz




Re S(k,t)

some results

of linear prediction

"~ transverse Ising model:
prediction of S(k,t)

tobstiit
]

0.15

\ 3 3 i I k=n/4, e)l(act
\ V%Y k=n/2, exact
0.1 1 1 1 3 k=3n/4, exact
DMRG X
linear prediction .
0.05
0 -
-0.05
01 F |/
-0.15
-0.2 L 1 L
0 5 10 15 20 25 30
time t
3 p=10 DMRG & linear pred. +
2 DMRG & Parzen filter -------
2 exact
3 L
| 2
n

0 0.5 1 1.5 2 2.5
frequency o

extends time domain |0x
Barthel, US,White (2009)

"I spinons in spin-1/2 chain:
experiment vs. humerics

S 10| @ Data 150K & 4 c) T=50K d) T=75K
® O .
= = 3 o data LL field theory
g , L 0.96n<k<1.04x —— DMRG
> s ol
S e | -2 B 1
© 50 RalI - I
c n 1 , i
L T o
>
£
= 100 b) tDMRG 150K c 2 fy T=200K
E 3
> £ 1
(@)
E’ 50 =
&
L =0

2n 20 40 60 80 100 20 40 60 80 100

0 T
Wavevector k Energy (meV) Energy (meV)

perfect agreement with
high-precision neutron scattering

Lake, ... Barthel, US, ...
PRL 111,137 (2013)



when does it work?

“ why do we predict S(k,t) in time and not e.g. G(x,t)
(and Fourier transform to momentum space later)?

linear prediction works best for special time series

" superposition of exponential decays

p
_ E (wy—1p )M
v=1

" cf. pole structure of momentum-space of Green's functions

G(k,t) = are”"wrt—mt



variational ground state search: DMRG

problem: find MPS (of a given dimension) that minimizes energy

(y[H[) . Tl —
min ) & min (<¢\H\¢> /\<¢W>>

graphical representation of expression to be minimized:

ST T T 7777 mulilinear -
oy o> [ [ [ [ [ ] (

variational minimization with respect to one matrix:

T 77 i r
i 4"“4,_&_5_5_;_&_3 = ;2:§:angze€vﬁiiblem

ey mied normalizain HFS:
&b & & & &



ground state DMRG

analytical representation of variational problem:

aj\jm* (W\fl\w - MWM) =0

H,, o) /2\/_1// y A — [\/ R /(5, /2\/_1// T [\/ o /2\/_2// /
E 0ia;—1Q,0;a; ,a,~'"oa;_,a; E a;—1ai,a;, ,a;%0;,0;"oa;_,a; E 0i0;—1Q;,0;a; ja,~"toca;_ ,a,
¢ b / ¢ ol /
o.a 1a o.a 1CL

. /
g,a;, 1@,

Hm = ANm

DMRG algorithm:
" start with random or guess initial MPS
"I maintaining mixed normalization, sweep ,,hot site” forth and back

"I at each step, optimize local matrices by solving eigenvalue problem

convergence: monitor <¢|ﬁ2|¢> — (<¢|[f[‘¢>)2



Hamiltonians in MPO form

construct Hamiltonian as automaton that moves through chain
(e.g. from right to left) building Hamiltonian

A= NN sl = Y pene

04,0

L
a 1 Ao, & a s a a
H=7%" (5585, + 57850 +5i8t + 1) 5;
: 1=1

oi) (o]

start




Hamiltonians in MPO form Il

short ranged Hamiltonians find very compact, exact representation!

I 0 0 0 0
S+ 0 0 0 0
Ml =1 g2 0 0 0 0
S 0 0 0 0
- hS* (J/2)5— J*S8F (J/2)8t I
-
g+
MY =[ ns* (J/2)§- J8* (J/2)8+ 1] MHYU=]| =
8-
_hgz -




frustrated magnetism in 2D

Yan et al, Science (201 1)

1 ,,classic™ candidates (spin length 1/2): Depenbrock et al, PRL (2012)

Ji1-J2 model on
a square lattice

-_— - - _— _— _—
AN AN N oy p ,

y VY / \ / \ /7 A
v Vv Nk # N 74
F 4 e el " et »
>y Py N S\ N e

\ £\ /s 7/
// \\ // \\ // \\ // \\ // \\
- - - - et »
N\ Ve 7N\ N\ A

kagome lattice

VANVANYAS
d N
AN

“\
<<
f

‘\‘ herbertsmithite
- ZnCu3(OH)¢Cl,

!

I order only locally coplanar i \

I extensive T=0 entropy

" classical model

I agreement: no magnetic order for S=1/2




DMRG in two dimensions

“I'map 2D lattice to ID (vertical) ,,snake™ with long-ranged interactions

TN
Pei)—

gy

PN PN PN PN
/ A4 / Ay
Ve

vertically OBC

vertically PBC: extra cost!

"I horizontally: ansatz obeys area law: easy axis, long at linear cost

'%

— M ~ 2%

I vertically: ansatz violates area law: hard axis, long at exponential cost

"I consider long cylinders of small circumference c¢: mixed BC

circumference ¢

length L




ground state energies

“ fully SU(2) invariant DMRG code
"I up to 3,800 representatives (16,000 U(/) DMRG states) 100% increase

"I cylinders up to circumference c=17.3, N=726 50% increase
I tori up to N=(6x6)x3=108 sites ED: 48 sites
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-0.445 | HVBC @
DMRG upper bound
MERA upper bound =« == A
2D estimate, Yan e
2D estimate, this work === :

-0.45

0 0.05 0.1 0.15 0.2 0.25 0.3
inverse circumference

"I TD limit energy estimate: -0.4386(5)

~ iDMRG (infinite cylinder) upper bounds below HVBC; YC8:-0.4379
iIDMRG: |.P. McClulloch, arXiv:0804.2509



triplet gap

"I fully SU(2) invariant DMRG code

"I eliminates need for special edge manipulations of U(/) DMRG:
ground state of S=1| sector

= = - 0.35
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0 0.05 0.1 0.15 0.2 0.25 0.3
bond energy deviations from mean inverse circumference

triplet gap for infinitely long cylinders
I bulk excitation

"I much smoother gap curve

. : . singlet gap estimate: approx 0.05
' triplet gap estimate: 0.13(1) (Yan et al. (2011))



TEE in the kagome lattice

I extrapolate Renyi entropies

to circumference ¢=0 7 -
2
; . . . 6 S
' negative intercept is TEE &
o ¢ s
[ 1 ' (Da S5 P |
' find topological order! 2 4l s, -2
£ 3 7Y pee—— et
(b] NS
é., o | fit to S4 """"""""""
& fitto Sg v st
1t
YR094 Dr2 | o &

0 2 4 6 8 10 12 14
circumference ¢

"I TEE extracted from random state in GS manifold lower bound

Zhang, Grover, Turner,
Oshikawa, Vishvanath,

"I DMRG seems to systematically pick those PRB (2012)

"I true value for so-called minimum entropy state



DMFT primer

"~ dynamical mean field theory (DMFT):

"I Hubbard model replaced by single impurity embedded in
non-interacting effective bath

“I'impurity dynamically exchanges electrons B
with bath: beyond static mean-field theory

"I self-consistency condition:
local lattice self-energy = self-energy of effective impurity model etc.

“exact in the limit of infinite coordination number (dimension)
““many applications also in more material-oriented simulations

“impurity solver needed to calculate spectral functions

: "
place of methodological progress!!! Metzner, Vollhardt, PRL (1989)

Georges et al., RMP (1996)
Kotliar et al., RMP (2006)



spectral functions in DMFT (T=0)

hopping impurity - bath sites

-/ star geometry ‘3

"~ calculate in frequency space

1
H—w— FEy+1n

Cy(w) = (0]d 4110}

"I calculate in real-time space: superior
FT trafo to frequency space

1(H—F —1(H—F d ' ith
C(t) — <O‘e( O)tde ( O)th|O> Iizqni::ﬂgi:;:bleett?mes

"I bath often mapped to one-dimensional chain

impurity  high energy band low energy band



why DMRG as DMFT solver?

"~ there are many impurity solvers:

"I exact diagonalization (ED)

“ numerical renormalization group (NRG)

“ continuous quantum Monte Carlo (QMGC; in various incarnations)
““what advantages of DMRG/MPS solver were hoped for:

" larger bath sizes (compared to ED)

"I homogeneous energy resolution (compared to NRG)

"I no analytic continuation from imaginary axis (compared to QMC)

"/ no sign problem for complex problems (compared to QMC)

"I previous attempts: single-band DMFT (C=1) :?;:::iit Jaelck(ej'r:;i :004)

stuck for about |0 years! Karski, Raas, Uhrig
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towards realistic DMFT

~ originally a single impurity and a single valence band:

-O0-O0-O0-0-0-0

“lin real substances, often multiple valence bands (orbitals):

“'improve realism by multiple sites (DCA) - bands from DFT

"~ figure of merit C:sites times orbitals; here | - 3 -6



DMFT: two-site cluster DCA

"I hole-doped Hubbard model on square lattice, 4% doping, U=10
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" calculation time: ca. 50 hs for spectral function (Chebyshev 201 |)

CT-QMC: Ferrero, Cornaglia, De Leo, Parcollet, Kotliar, Georges, PRB (2009)
DMRG/MPS:Wolf, McCulloch, Parcollet, Schollwock, PRB (2014)

no doping: see also Ganahl et al, PRB (2014)



which bath geometry?

Wolf, McCulloch, Schollwock, PRB 90,235131 (2014)
" bath modeled by chain geometry in DMRG, MPS, NRG

impurity  high energy band low energy band

" only restriction: deliver self-consistent hybridization function

" star geometry emerges more naturally
"I so why chain geometry?
" Wilson NRG: separation of energy scales Wilson, RMP (1975)

~ DMRG, MPS: star must be arranged as chain (short-ranged hopping),
star generates undesirable long-range entanglement
(conventional wisdom)

“Iis this so?



star geometry is better!

lower entanglement: star or chain geometry?

p
%v.'

"~

(i) m o'e—o o090 bl
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Vv

strongly different growth
of MPS bond dimensions

Wolf et al.,
PRB (2014)




2-site cluster DCA in k-space

DMRG/MPS:Wolf, McCulloch, Parcollet, Schollwock, PRB (2014)

model: hole-doped (4%) Hubbard model on 2d square lattice

spectral function: time evolution, linear prediction

bath discretization: linear; Lp/Lc = 30 ... 40; geometry: star

CPU time: 60 min ground state; 40 min spectral (down from several days!)
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where do we do the spectral function?

Wolf, Go, McCulloch, Millis, Schollwock, PRX 5,041032 (2015)

" spectral function can be calculated anywhere in complex plane

~ Quantum Monte Carlo: imaginary axis only;
ill-conditioned analytic continuation to real axis for freq. info

~ advantage: DMRG/MPS on real axis! but cumbersome!

" now switch to imaginary axis:
"I much smaller bath sizes possible
I essentially no entanglement growth
"I much larger no of sites/orbitals (up to C=20) where QMC fails totally
"I no analytic continuation: spectral function from converged DMFT

"I prize to pay: partial loss of detailed information



2-site cluster DCA in k-space

" model: hole-doped (4%) Hubbard model on 2d square lattice
“ Matsubara Green’s function: imaginary time evolution

~ bath discretization: fitting; Ly/Lc = 3; geometry: star

- CPU time: | min ground state; 4 min spectral

- - real axis
1+ " — imag axis

pseudogap not reproduced, other features represented!



more details

» | band Hubbard model

» good agreement on the + Patch
but not for - Patch on real axis

> broadening and finite size effects <,

» oh imaginary axis good

IMG (i, )

B L;)/Lc =3]9 (reai axis)
i L, /L. =3 (itMPS)
L, /L. =5 (itMPS)
208 L, /L. =7 (itMPS)
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n =0 (real axis)”
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the model - vanadate

» Real material SroyVOy4: insulator

» DMFT overestimates U. by a factor 2

» Dispersion relation from DFT

» 6 bands and no k,-dependence

» Neglect coupling between Sr atoms -> 3 bands

» Hund’s coupling
6
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three-band Hubbard-Kanamori model

(Wolf, Go, McCulloch, Millis, Schollwock, PRX (2015))

H = Hloc + Hcoupl + Hbath

Hloc — Z Una,Tna,i + Z {U/na,dnb,—a + (U/ — J)na,anb,a

a a>b,o
=Y J(d} \d} 1dbyday + dy 1df | dapda,y + hec.)
aF#b

Hcoupl — Z Vk,a,a dl,7o'ck,a70' + h.c.

k,a,o

i strontium

Hbath — Z 5k,a, Ck;,a,,o-ck,a,(f vanadate(s)

k,a,o

“'bath discretization using numerical optimization
on the imaginary axis (Caffarel & Krauth, PRL (1994))




three bands: reproducing CTQMC

(CTQMC by Werner et al.,, PRL 101 (2008), Werner et al., PRB (2009))

“using only 3 bath states per correlated state (total size L=12)

I quantitatively reproduce Mott transition (DMFT loop mins/hrs)
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phase diagram: |=0.7




three-bands: reproducing CTQMC

'reproduce anomalous low-frequency behavior of self-energy

3 [
2.5 (@) C=3
= 1.5 R i}
- xxx"xxX§§x’<"§ n=1.79 L /L. =3 U, ZD
1 1_ ¥ ¥ xiixx X n=179 Lb/Lc =5 U =U_2]
0.5f * % % n=2.35L,/L. =3
| X * X n=235 Lb/Lc =5
OO 0.5 1 1.5 5
( n/t)OS

‘one site, three bands (C=3) is as far as QMC can go here!!!
(unless temperature is quite high!)

'explore the unknown ...



2 sites & 3 bands: beyond CTQMC

“I'move to 2 sites (patches) with 3 bands: physics changes!

| | | | 100 3 | | ]
— 25 (L /L, =2) — 25, K=- (L, /L, =2)
— 2s (L /L, =3) — 25, K=- (L, /L. =3)
Is (Ly/L =3)] 197 1s (L /L, =3)
P
n=0.05D| "\, | |
| U=D 102} Uu=D .
=t }I | (b)_ '3 | | | (C) |
0 05 1 15 2 25 3 107g 5 10 15 20
»/D D

"I drastic shift of position of Mott insulator transition
“1U=D: conductor in | site, very good insulator in 2 site approx

~ physical reason: | site approximation misses interaction energy
cost of hopping to neighboring sites!
in reality: charge fluctuations frozen out; insulator favored

6



conclusions

"1 ID: DMRG/MPS currently most powerful method

"I ground states

I time-evolution, also at non-zero temperature

I limitation: exponential growth of resources; entanglement growth
“1 2D: DMRG/MPS starts making very interesting forays

"~ long cylinders

"I suboptimal ansatz, but numerically extremely stable
"I barring new ideas, key challenges for powerful codes:

I parallelization

"I (non-)Abelian quantum numbers

"I non-trivial geometries (impurity solvers, quantum chemistry)

"I convergence of ground states



