TALLAHASSEE WINTER SCHOOL 2018:
ENTANGLEMENT IN MANY BODY STATES

OQutline:

1. Brief Review of entanglement entropy
and its scaling

2. Entanglement in Gaussian states:
* Fermions

*Bosons

“What do you mean, ‘a quantum fluctuation?
Didn't we discuss cause and effect?”

3. Entanglement and locality: a new
guantum phase transition from area law to
volume law




REDUCED DENSITY MATRIX ENTROPY

PPAR| 2N H=H,®H,

|‘P>AB = 2 Zcij |ui>A |Vj>B Cij :Uik/lkv-l-m
=1 j=1

N
Schmidt decomposition
FoEDW R4
=1

N is called the Schmidt number




REVIEW OF ENTANGLEMENT
ENTROPY:

Reduced density matrix:

P =Trgp :Zlﬂ’i I2|§i>A<§i‘

More proper definition for the reduced density matrix:

<l//AB ‘6A‘WAB> — TrA (pAéA)

Different characterizations of the entropy in the state:
Schmidt number, entropy, Renyi entropy, many more




ENTANGLEMENT ENTROPY:
S, =-Trp,logp./where p, =Tr p

Examples:
S (HVD) =0
and for the singlet state
S (m )| T) ) 1
EE is a version of correlation functions

EE may be




QUANTUM INFORMATION

INTERPRETATION: (BENNET ET AL96)

Given y,, € H, ® H,

k(n) = # of maximally entangled pairs that can be

extracted by local operations from y,,°"

Then:

Iimn%@

=S
n A

Generalization:

How many maximally entangled
pairs can be extracted between
two parts of a spin chain?

n-k(n)
un-
entangled

k(n)
spin
singlets




Quantum Criticality H, =J2(g(7ix +GiZUiZ+1)

T
quasi "~ Quantum critical . quasi
classical dynamics classical dynamics
0 Jc g
Domain wall quasi-particles Flipped spin quasi-particles

gap closes, system described critical theory




SCALING OF ENTANGLEMENT ENTROPY:

A AA A X

General feature at Qauntum phase transition point:

To physicists all objects are point like froma far, characterised by their
s-wave scattering.

From afar, many quantum critical 1d systems are conformal field
theories, characterized by their conformal charge

=
For CFTs: S Eea s

+IoL
5 g

c is the central charge of the critical conformal field theory (Holzhey, Larsen &
Wilczek 94, Calabrese & Cardy 04)

Universality




ENTROPY SCALING AND SIMULATIONS

A gapped system in 1D allows for classical simulation:

PPAPPNEAPANEAAANA A2

DMRG (white 92) , MPS Fannes Nachtengale Werner (92): chop into
bigger and bigger blocks. size of effective block depends on
correlation length. # of effective degrees of freedom ~
exp(entanglement entropy of the block)

1d gapped exp(S)~ saturates => do-able
1d Critical exp(S)~L => still doable, but not very good

d>1 => area laws => much harder. Progress in 2D, MERA, PEPS etc..

Fermions much harder than bosons due to worse area law




Boson fields:
Entropy of a scalar field restricted to a subsystem was first studied
by Bombelli et al (87) as a quantum contribution to Bekenstein-

Hawking entropy. Area law for bosonic systems
(Srednicki93,Rigorized Plenio et al. (05))

Topological states (2+1) dimensions (Kitaev&Preskill,
Levin&Wen).

SANO(LA_’}/top-'_'" : ytopZIOgD ,
D ="total quantum dimension"

Expect an area law for gapped systems at D>1. Not proven (yet).

In 1D area law for gapped states proved by Hastings.
With an exponentially improved bound: Arad et al (2013)




MODELS WITH EXACTLY COMPUTABLE
ENTROPY ARE SCARCE

MAIN BENCHMARK SYSTEMS:
SYSTEMS WITH QUADRATIC
HAMILTONIANS

NEXT: FERMIONS

LEONID LEVITOV (MIT)

DIMITRY GIOEV (ROCHESTER)

GIL REFAEL (CALTECH)

ALESSANDRO SILVA (ICTP, TRIESTE)
CHRISTIAN FLINDT (GENEVA),
STEPHAN RACHEL, H. FRANCIS SONG,
KARYN LE HUR (YALE)




Reduced density matrices for Gaussian states

A quasi free state, or gaussian state, by Wicks theorem is characterized
In terms of it's two-point correlations.

(AR =D ED (AA ) (A, A, )

In particular Wick’ s theorem holds for two point
correlations functions restricted inside A

— Given the restriction of the two point function to A

The state of fermions in A is can be read from it as:




Explicitly:

Recall Fermi-Dirac:

n —<a+a >— 1
k — \“k“k _1+e/5E(k)

Excersise : True in a general basis

=(ara,) = (“eﬁH)

= H_. = Log (—le\*ﬂ_l*\)
A

ij

Reduced density matrix, explicitly:

—(Heir )ij &

e
ZA

Pa =

MA

Projection on A
P(X)=1if xinA

= M restricted to A

“entanglement Hamiltonian’

12



PROPERTIES OF M

M;; = PA(i)<a1'+aj>PA(j) i (ﬁ)

M positive, and M<1 Projection on A
P(X)=1ifxin A

Spectrum of M corresponds to occupation probability of the eigenmodes of the

effective H. Related to entanglement spectrum (Haldane’s talk)

~(Ha)j a3
e M-1
= : H = Log| ———

diagonalize=

Pa = Note number fluctuations

(AN,Y =Tr M(1-M)

S, =-Tr (MlogM +(@1—M)log(1— M)) ™



FERMIONS IN A FERMI SEA

Hamiltonian
H = | (E(k) - Ep)ar (K a(k)d*k

Ground state (lowest eigenvector of H)
w=]]a"(k o>

kel

Fermi surface dI" ={k |E(k) = E .}

X2

Region in '
real space

K1

Momentum space



M FOR A FERMI SEA:

At T =0 the two point function is:

(a.,"a.) = (XIO(H — E)|x) gg;fg;;tgg;{;a
SO
M =P,QP,
|k(x x")
Explicitly:  (x|M|x) = %(x)xg(x)J Gy K

M tries to simultaneously “localize” in space and momentum

Regionin _ ___—

X1

real space

Fermisea_ ___5
Momentum space

K1




TRANSLATIONALLY INVATRIANT SYSTEMS

ik (x—x")

2n)° dk = o (X)g(X— X" xo(X")

(XM X = 260 20 ()]

Def: A is a Toeplitz matrix if
In 1D M is a block of a Toeplitz matrix A =gli-i)
i

(Operator)

3 NB (.03 #3 013

Spectrum can be studied using Szego theorems /Hartwig-Fisher asymptotics

Det, , A—==>C expgﬁ g(k)ﬁ Fourier
2r trans of g




FORMULA BASED ON
WIDOM'S CONJECTURE

1o d—
Q 1;(223"%1 ff | N, |dS, dSp +o(L" " log L)
09,0l

=» Logarithmic violation of area law

Seidel et al. prb2012: extension to interacting systems using
higher dimensional Bosonization. Widom proved by Sobolev 2013




Measuring entanglement entropy for fermions




FERMION NUMBER FLUCTUATIONS:

Particle number fluctuations share with entropy two traits:
1) Subadditivity
2) Symmetry

Can be used as an indication for entanglement!

Can we do more?




MAIN TOOL: RELATION TO “FULL COUNTING
STATISTICS”™ (FCS)

p, = Probability of having n fermionsin A

22 =2 p,e"
IA
log x(4) = Z( ) C, <— “Cumulants”
signal Noise Skewness
C,=<n> ; C,=<n’> ; C,=<<6n°>>...

30 1

20 1

"l




COUNTING STATISTICS
FOR PARTICLE
NUMBERS:

M =P,P.P,

Counting of particles in

()= p,e™ =det(l- M + Me"*)

Recall;

S=-Tr[MlogM + (1- M)log(1— M)]

We can find the spectral density of M from the
counting statistics generating function and use it
to express S




B, are Bernoulli numbers

+——C C
3 ¢ 15 % o45 °

Coefficients are universal!

“I think you should be more explicit here in
step two.”



IDEA: ENTANGLEMENT ENTROPY =» TRANSPORT

PROBLEM

Linear dispersion means excitations travel without changing shape,
typical situation in 1d systems

|
<< >
[4
Closed
[ : R <Uin
Open
L R <1<y,

®\

Cidsea

(=vp t




Gaussian FCS \ _: " '
2 = g — R t0<t:t
—)L—Zlog(t/f) = — .
x(A)=e* - DTC
C =0form>2

1 “t7is
S==log(t/
3 g( T) (switching time)

> Recovered the result of Holzhey Larsen& Wilczek!




RELATION
(GENERICALLY) DOESN’ T
CONVERGE!

H. Francis-Song, C. Flindt, S. Rachel, IK and K. Le-Hur2011

Re-summation:
The convergent expression is:

K
S% ::“rnK—%w :E:am(k()can

m=2,Even

S - unsigned Stirling numbers of first kind




BOSONIC GAUSSIAN
STATES




Crash course on Entanglement in Gaussian states:

Let (X, p,---X,,P,) = (0O,.0,,) where x,p conjugate

[O;.0] =ihoc,

—_ N O l
C=®ia 1 o

L et ybe the covariance matrix :

vy =2Re((O; — (O, )(O, —(O,)))

Entropy depends on simpl ectic eigenvalues of y

Bombelli et al. 87. Modern outlook and
reviews J. Eisert, M.B. Plenio JQI(2003),
A. Botero and B. Reznik PRA (2003) etc..




Transformations

/01\ 4

o, )
e |—8 ...
\ OZn Y, \ OZn )
preserving commutations [O,;,0O,] =iho

are the symplecitc matrices Sp(2n) = all Sst. ScS' =o

Under a sympl ectic transformation
y — Sy S'

Williamson / Darboux Thm: thereisan Sst.
SyS' = diag(A,,...., A, A, .-, AL)




Use the symplectic transformation to get to normal form, then:
y —-SyS' =diag(A,,...,.A,, A,..., A,)

and :

A, +1/2
| T
p 1 e 2 Og(/ft 1/2] m Sy
field —
Z

Finding the A can be tricky, but assuming <pkxl>=0

Then one can check that | A > are eigenvalues of

r=4¥G,H, G :<xjxk> H :<pk p,>
k




Entropy:

< _ n(A.) A, aresimplectic
Z M eigenvalues of the covarian

matrix

A+1 /1+1_/’L—1|O A—-1
g 2 2 g 2

h(A) —?IO

Note h(1)=0. All eigenvalues are larger than 1 due to uncertainty relation:

A =2AXAp =1




APPLICATION:
RADIATION MATTER
ENTANGLEMENT

IK Radiation matter entanglement, arXiv:1208.2474

IK On the entanglement of a quantum field with a dispersive medium, Phys.
Rev. Lett. 109, 061601 (2012)

Entanglement cuts do not have to be spatial!

Consider an EM modes in a dielectric. What is the
entanglement between the modes and the matter?




To summarize: effective action

St = 4_];r | d*xderg’ (x ) (x,0) — V]1g(x, )
Allows to compue { p(x,t)p(x',t')) correlators Model
’ ’ ' dielectric

function

gl (t—t)

—V? +w’e(X,iw)

(p(X,)p(x',1')) = 4—1n T dw

need :

1
—V? +we(Xiw)

Co)) = L
(p(x.0)p(x',0)) = T deo

And assume conjugate momentum obeys 7, = 00




S= 4—:; f d*xdw @ (X,w)[w’e(X,w) — VZ]o(X,w)

Trivial example:
e(X,w) =&(X) | ndependent of w

No Entropy: Described by a hamiltonian

_i 3 7T° 2
H=——]d x(g(x)+(V¢)j




EXAMPLE:

Translationally invariant system, entropy per unit volume

Check free gpace:

5= ] d*x g, 00w + V), (

, )
(09006, = O = b
| O nk? ki
(MK :f]: W =L

= GH(k)—%<(P2>k<ﬂ2>k—1 = No entropyJ




MAIN RESULTS:

Typical dielectric:e(w) =1+ 4m —5—

oY) —Ww

-DEMGe 1 -2 (Logl A4 +V2]-Log[ A-L2])cc

- e k - e k
Z Z
Effective energies forwy = 20, ¥y = 1
B
25 e
20 /____-_----“"' P

Not linear - not a simple thermal state!
500 400 600 800 1000 Too many conserved guantities O
(see Huse’s talk) ™




HOW MUCH ENTANGLEMENT
CAN A LOCAL HAMILTONIAN
SUPPORT?

Supported by:
A Ahmadain, Z Zhang (Uva) AN ;

R Alexander (UNM)
H Katsura, T Udagawa (Tokyo)
V Korepin, O Salberger (Stony Bro

Refs:

Z. Zhang and IK, J. Phys. A, 50, 42 (2017);

Z. Zhang, A. Ahmadain and IK, PNAS, 114, 20 (2017);

O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, IK and V.
Korepin, J. Stat. Mech (2017): 063103




ENTANGLEMENT
SCALING IN TYPICAL
SYSTEMS:

Entanglement entropy:

S, =-Trp,logp, where p, =Trzp
Generic states in Hilbert space have extensive entanglement
(page prl 93,foong prl 94,sen prl 96)

L¢ generic state (Page pr 93)
Ld—l gapped’ " area IaW" (Hastings 07,1d)
=1 L*logL free fermions (Gioev IK 06,M Wolf 06,...)

C (Holzhey Larsen Wilczek 96,
3 logL conformal many many more)




EXTENSIVELY
ENTANGLED STATES

First local Hamiltonian with volume scaling: Irani 2010.

local Hilbert space dimension is 21

Simpler models but without translational invariance, and with
exponentially varying couplings:

Gottesman Hastings 2010 (not frustration free)

Rainbow ground states:Vitagliano Riera Latorre 2010, Ramirez
Rodriguez-Laguna Sierra 2014

Translationally invariant but with a square root scaling:
Movassagh Shor (2014), Salberger Korepin (2016)




Here: a simple spin chain with remarkable phase transition:

Product state “Rainbow” state

\ S, =nt? ‘/
S,=0(1) I S,>cn
sS>1 } >
' t
=1
|
S,=0(1) I S,=0(1)
s=1 1 %
S,=log(n)




Basic intuition: How to create
a highly entangled state?

EPR: electron-positron pair generation in an electric field as a source
of entanglement
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ANOTHER TYPE OF RAINBOW
STATE IN THE LAB!

Optical
Pfister et al, 2004 frequency
Chen Meniccuci Pfister PRL2014, 60 mode cluster state comb

- il T
— ~—
- ~~
- ~

-
__________________
e o T
——————
___________________
il T
-~
~~
~

Cavity Pt : By
eigenmodes T SN T T
n -(n-1) 1 1 n
' ' . —> =)
Nonlinear cavity W, >0, Tw_,=w,
A

Incoming laser




CRITICALITY WITHOUT
FRUSTRATION

Frustration free Hamiltonians:

H=YH, , H, aeloca nonnegative(i.e (f|H|f)=0foral f)

H¥)=0 and H,|¥)=0 areloca

Examples:
- Classical Hamiltonians such as Ising

- Toric Code
-  AKLT model

Typically commuting and gapped.




MOTZKIN WALK
HAMILTONIANS

Bravyi et al. 2012 “Criticality without frustration”

W=

Motzkin
paths

) S, log(n)

Movassagh and Shor 2014 “Power law violation of the area law in
guantum spin chains”

W)=Y | =) SN

colored
Motzkin
paths




REPRESENTING SPIN
STATES AS MOTZKIN WALKS

Motzkin paths: 1,0,-1,1,1,-1,1,0,1,-1,-1,0,0,-1>

(-H)CcHC-C)y)--)

1 n n-1 2N

Colored Motzkin paths: |1,0,-1,2,1,-1,1,0,2,-2,-1,0,0, -1>

(-H)>L cH)e-011)--1

n n-1 2n




MOTZKIN HAMILTONIANS

|P) = = .-
* /[ \/N /\""\+/ '\//\ /\ N
oo

Basic idea - locally:

o)(@|| Ve N=0 it o= | )| —)




MOTZKIN
HAMILTONIANS

Enforce a ground state superposition made of Motzkin paths by using projectors
like:

=)=

=02
O /)| —)
N DD TQN

H = [O)(O+W){W]+|o) @[+ erms:

penalty unmatched CW / >2r§/




HOW COLOR
ENHANCES ENTROPY

Height after n steps=# of unmatched up steps

For n>>1, typical Motzkin walk is like a Brownian walk.

=

Typical height after n stepsoc/n
=

# of colorings of unmatched up steps « i

all coloringschemes of unmatched equally likely

Fiter s e

= S,loc\/ﬁ




CAN WE SKEW THE MODEL TO
PREFER RAINBOW STATES?

Main idea — up moves are like electrons and down moves are like positrons.
They should go in different directions!

Can try:

) =cosg;| /" Y-sing,|_ ")

W)=cosy| )-siny| )

©) = cosb, Y-sing _ )




Choice of angles must satisfy a consistency

condition:
1
Liyq R,
/L\—I— 1 ) 1+ 1
Ccot wi—l—l tan ¢z
Fz F’L’—i-l
) 1+ 1

cot Y;1 1 tanf; = tan ¢, tan b, ¢




THE UNIFORM MODEL

0= T3
v 7))
0)=| 1| —)
¥ 3 | )

paths




ENTANGLEMENT
ENTROPY

Schmidt decomposition

=3 T AN —

colored
Motzkin
paths
n
Area ' Area
[P) = 2Pum > | D ® >t
m=0 coloring paths from O paths from \
scheme to height m height m to O
M 2 (n-m)/2
— n,m M — Si tAreaunder path
pn,m - N nm
n i=0 path fromOto
height mwith

iunpairedcolors

n
N, =Y s"™?
m=0



SCALING OF ENTROPY.
S=-Y5"p, 09 P,

We need the asymptotics of M m
(n-m)/2

M — E Si E tAreaunder path

nm

i=0 path fromOto
height mwith
i unpaired colors

n

X (n)=m -f (P2 _1og(t) X (s)ds
2 tAreaunder path f dX[ T] e
path fromOto X(0)=0

height mwith

Charged patrticle in a field,
Brownian particle with a drift




FREDKIN CHAIN

The Fredkin model of Salberger/Korepin 2016 has as ground state
superposition of Dyck paths:

|‘P>:E ‘/\AN\ >

colored
Dyck
paths

We deform it into:

|‘P>: E tArea under

colored
Dyck
paths

/N\\
AN

Entropy scales linearly with n log(s)! Same phase diagram.

Model has 3-nearest neighbor interactions.
O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, IK and V. Korepin, JSTAT (2017)




EXCITATION GAP

uncolored Motzkin S~%Iog(n) A=sn", c~2+
t=1, Motzkin, S~+/nlog(s) n°s<As<n?(c>>1)
t=1 Fredkin

Here:
t>1 Motzkin, S~nlog(s) A=8nst™"

Levine and Movassagh, JphysA 2017

Beautiful proof uses mapping to Markov Chains and Cheeger Inequality

Alternative approach ->




VARIATIONAL PROOF
FOR GAP SCALING:

W)= |
Switch color

U‘W>:Etma .V _\>

Result is orthogonal to g.s. Energy exponentially small with t.

More sophisticated: flip the color of the last down making the larges interval
gives t"-n"2/2 gap.




EXCITATION GAP IN
COLORLESS MODEL

Colorless model:
Gap for t<1
Gapless for t>1 (although entropy obeys area law!)

Variational approach:

“P>:Et”%‘ ‘ A _>

Z Zhang and IK, JPA2017




TENSOR NETWORK FOR
AREA-LAW STATES

Matrix Product States are a useful description for chains with area law.
Take D matrices A:

W) ZEC(ol...aN)‘al...aN> 0,€{12,..D}

Clo02-00) = AL ALAL AL, =(SAA, A,

Tensor network description:

)

S S S5 Sn Sn+

o, O, O3 Ona Oy

Entanglement obtained by cutting a bond. It is bounded by log (dimension A).




EXACT HOLOGRAPHIC TENSOR
NETWORK

JL I I NN, { ____________ } , {r/\,}}

e HHHMHHHIM® =
if._.:_:_:J;_:_:_:._.liS ............ i ......... 1
lz'-_|_|_:|_l.-.l7 t2
& 1 _: T » { _____ l} + 4, - ol - o
S HfY ‘\{t“”"x} o vy 1})




THE TN IS NOT OPTIMAL FOR T=1. CAN WE DO
BETTER?

Replace boundary term
iIn Hamiltonian with
amplitude of
. . 2n
magnetization B
agnetizatio IZS@-I

1=1




Remark about holographic metric

Exponential decay of
correlations

Ona On <Gx0y>~exp(- aly'X|)

Consistent with graph distance D(x,y)=|y-X|

\\ DduaI(X’Y):2

S=const






