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REDUCED DENSITY MATRIX ENTROPY  

Schmidt decomposition 

(note single index) 

��

|!"AB = #i
i=1

N

$ |%i"A |&i"B
��

|!"AB =
i=1

dim HA

# Cij

j =1

dim HB

# | ui"A |v j "B

��

Cij = Uik!kV
+

kl

A           B 

N is called the Schmidt number 

BA HHH !=



REVIEW OF ENTANGLEMENT 
ENTROPY: 
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Reduced density matrix:  

Different characterizations of the entropy in the state:  
Schmidt number, entropy, Renyi entropy, many more 

A B 

��

!A = Tr B! = | "i |2 |#i$A #i
i=1

N

%

More proper definition for the reduced density matrix: 

��

!AB
ˆ O A !AB  =  TrA "A

ˆ O A( )



ENTANGLEMENT ENTROPY: 
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EE  is a non-local  version of correlation functions 

EE may be non-vanishing even at zero 
temperature 

��

SA = !Tr"A log"A  where  "A = Tr B"

��

Examples :  
SA ( !! ) = 0
and for the singlet state 

SA ( "! # !"

2 ) = 1



QUANTUM INFORMATION 
INTERPRETATION: (BENNET ET AL.96) 
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Generalization: 
How many maximally entangled  
pairs can be extracted between  
two parts of a spin chain? 

��

Given  !AB "HA #HB  
k(n) =  #  of maximally entangled pairs that can be 
extracted by local operations from !AB

#n

Then :

limn$%
k(n)

n
= SA

A B 

n 
LOCC 

k(n) 
spin 
singlets 

single
t 

single
t 

A B 

n-k(n) 
un- 
entangled 



Quantum Criticality 

� 

HI = J gσi
x +σi

zσi+1
z( )

i
∑

gap closes, system described critical theory 

0 gC g 

T 

Domain wall quasi-particles Flipped spin quasi-particles 

Quantum critical quasi  
classical dynamics 

quasi 
classical dynamics 



SCALING OF ENTANGLEMENT ENTROPY: 

 

General feature at Qauntum phase transition point: 

To physicists all objects are point like froma far, characterised by their 
s-wave scattering.  

From afar, many quantum critical 1d systems are conformal field 
theories,  characterized by their conformal charge 

 

��

SL L!"#� !�#�#�
c + c 

6
logL

Features 1d: 

c is the central charge of the critical conformal field theory (Holzhey, Larsen & 
Wilczek 94, Calabrese & Cardy 04) 

For CFTs: 



ENTROPY SCALING AND SIMULATIONS 
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A gapped system in 1D allows for classical simulation: 

 

DMRG (white 92) , MPS Fannes Nachtengale Werner (92): chop into 
bigger and bigger blocks. size of effective block depends on 
correlation length. # of effective degrees of freedom ~  
exp(entanglement entropy of the block) 

 1d Critical     exp(S)~ L                        => still doable, but not very good 

1d gapped   exp(S)~ saturates           => do-able 

d>1 => area laws => much harder. Progress in 2D, MERA, PEPS etc.. 
 
Fermions much harder than bosons due to worse area law  

L 
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d>1: 

Boson fields: 
Entropy of a scalar field restricted to a subsystem was first studied 
by Bombelli et al (87) as a quantum contribution to Bekenstein-
Hawking entropy. Area law for bosonic systems 
(Srednicki93,Rigorized Plenio et al. (05)) 
 
Topological states (2+1) dimensions (Kitaev&Preskill, 
Levin&Wen).  
 
 
 

Expect an area law for gapped systems at D>1. Not proven (yet). 
 
In 1D area law for gapped states proved by Hastings.  
With an exponentially improved bound:  Arad et al (2013) 

SA ~!LA !" top + ... ; " top = log D !!!!;!!!
D = "total quantum dimension"



 
 
MODELS WITH EXACTLY COMPUTABLE 
ENTROPY ARE SCARCE 
 
 
 
MAIN BENCHMARK SYSTEMS:  
SYSTEMS WITH QUADRATIC 
HAMILTONIANS 
 
NEXT: FERMIONS 
 
LEONID LEVITOV (MIT) 
DIMITRY GIOEV (ROCHESTER) 
GIL REFAEL (CALTECH)  
ALESSANDRO SILVA (ICTP, TRIESTE) 
CHRISTIAN FLINDT (GENEVA),  
STEPHAN RACHEL, H. FRANCIS SONG, 
KARYN LE HUR (YALE) 
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A quasi free state, or gaussian state, by Wicks theorem is characterized 
In terms of it’s two-point correlations.  
 

In particular Wick s theorem holds for two point 
correlations functions restricted inside A 

Given the restriction of the two point function to A 
 
The state of fermions in A is can be read from it as: 

Reduced density matrices for Gaussian states 

B 

A 

A1..A2n = (±1)P! AP1
AP2

.. AP2n!1
AP2n
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Recall Fermi-Dirac:

nk = ak
+ak = 1

1+ eβ E (k )

Excersise :   True in a general  basis

Mij = ai
+a j = 1

1+ eβH

⎛

⎝
⎜

⎞

⎠
⎟

ij

⇒ Heff = Log M A −1A

M A

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ M A = M restricted to A

ρA = e−(Heff )ij ai
+a j

ZA

Reduced density matrix, explicitly: 
“entanglement Hamiltonian” 

Explicitly: 

B 

A 

Projection on A 
P(x)=1 if x in A  



PROPERTIES OF M 
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M positive, and M<1 
 
Spectrum of M corresponds to occupation probability of the eigenmodes of the 
effective H. Related to entanglement spectrum (Haldane’s talk) 

Mij = PA (i) ai
+a j PA ( j) = 1

1+ eHeff

⎛
⎝⎜

⎞
⎠⎟ ij

ρA = e−(Heff )ij ai
+a j

ZA

; Heff = Log M −1
M

⎛
⎝⎜

⎞
⎠⎟

                              diagonalize⇒

ρA = e
−Log Mk−1

Mk

⎛
⎝⎜

⎞
⎠⎟
ck

+ck

ZA

SA = −Tr  (M logM + (1− M )log(1− M ))
ΔNA

2 = Tr  M (1− M )

Note number fluctuations: 

B 

A 

Projection on A 
P(x)=1 if x in A  



FERMIONS IN A FERMI SEA 
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Region in  
real space 

Fermi sea   
Momentum space 

��

Hamiltonian

H = (E(k) ! EF )a+ (k)a(k)dkk"

Ground state (lowest eigenvector of H)

# = a+ (k) | 0 >
k$%
&

Fermi surface '% = {k | E(k) = EF}



M FOR A FERMI SEA: 
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Region in  
real space 

“Fermi sea”  
Momentum space 

� 

At T = 0 the two point function is :

ax
+ax' = x θ (H − E f ) x '

So :
M = PAQPA

Explicitly :          x M x' = χΩ(x)χΩ(x ') eik(x−x' )

(2π )d
Γ
∫ dk

M tries to simultaneously “localize” in space and momentum 

Fermi step in a  
general basis 



TRANSLATIONALLY INVATRIANT SYSTEMS 
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In 1D M is a block of a Toeplitz matrix 
(Operator) 

��

m1 m2 m3 m4 m5

m!1 m1 m2 m3 m4

m!2 m!1 m1 m2 m3

m!3 m!2 m!1 m1 m2

m!4 m!3 m!2 m!1 m1

"�

#�

$�
$�
$�
$�
$�$�

%�

&�

'�
'�
'�
'�
'�'�

x M x ' = !!(x)!!(x ') eik (x"x ')

(2" )d
#
$ dk = !!(x)g(x " x ')!!(x ')

Def: A is a Toeplitz matrix if 
Aij =g(i-j) 

Spectrum can be studied using Szego theorems/Hartwig-Fisher asymptotics 

Det1,..N A N!"# !## C !exp!$ g(k) dk
2!

Fourier 
 trans of g 



FORMULA BASED ON 
WIDOM’S CONJECTURE 
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è Logarithmic violation of area law 

Region 
in space 

Fermi 
sea 

L 

� 

∂Ω

∂Γ

S
Ω

~ Ld−1 log L
12(2π )d−1 | nx ⋅np | dSx dSp

∂Ω,∂Γ
∫∫ + o(Ld−1 log L)

Seidel et al. prb2012: extension to interacting systems using  
higher dimensional Bosonization. Widom proved by Sobolev 2013 
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Measuring entanglement entropy for fermions 



FERMION NUMBER FLUCTUATIONS: 

Particle number fluctuations share with entropy two traits: 

1) Subadditivity 

2) Symmetry 

 

Can be used as an indication for entanglement! 

 

Can we do more? 

 

 

19
 



MAIN TOOL: RELATION TO FULL COUNTING 
STATISTICS (FCS) 
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��

pn = Probability of having n fermions in A

!(") = pne
i"n#

log !(") =
(i")n

n!# Cn

C1 =< n >    ;    C2 =< $n2 >    ;   C3 =<< $n3 >> ...

Cumulants  

signal Noise Skewness 

B 

A 
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We can find the spectral density of M from the 
counting statistics generating function and use it 
to express S 

M = PAPEPA     

Α L 
“Fermi 
Sea” 

Counting of particles in  

� 

χ(λ) = pne
iλn

n
∑ = det(1− M + Meiλ)      

COUNTING STATISTICS 
FOR PARTICLE 
NUMBERS: 

� 

S = −Tr[M log M + (1− M)log(1− M)]
Recall: 



MAIN RESULT: 
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��

SA =
| Bm | (2!)m

m!m"2,Even
# C m

Bm are Bernoulli numbers

SA =
! 2

3
C 2 +

! 4

15
C 4 +

2! 6

945
C 6 + ...

B 

A 

22
 

Coefficients are universal! 



IDEA: ENTANGLEMENT ENTROPY ! TRANSPORT 
PROBLEM 
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l !

l=vF t!lllll=vFvFv  t tF tF

S 

Linear dispersion means excitations travel without changing shape, 
typical situation in 1d systems 



ABRUPT AND PERFECT CONNECTION: 
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��

!(") = e
# "2

2$ 2 log( t /% )

Cm = 0 for m > 2

S = 1
3

log(t /%)
t  is duration of connected state 

 
short time cutoff (switching time)  

Gaussian FCS 

! Recovered the result of Holzhey Larsen& Wilczek! 



PROBLEM: ENTROPY CUMULANT 
RELATION  
(GENERICALLY) DOESN’T 
CONVERGE! 
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H. Francis-Song, C. Flindt, S. Rachel, IK and K. Le-Hur2011 
 

The convergent expression is: 
 
 
 
 

� 

SA = limK→∞ am (K)Cm
m≥2,Even

K

∑

am (K) = 2
s1( j,m −1)

j! jj =m−1

K

∑

s1 -  unsigned Stirling numbers of first kind



BOSONIC GAUSSIAN 
STATES 



Crash course on Entanglement in Gaussian states: 

� 

Let (x1, p1,...xn, pn ) = (O1,..O2n ) where x,p conjugate

  

� 

[Oj ,Ok ] = iσ jk

σ = ⊕ j =1
n 0 1

−1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Let γ be the covariance matrix :

γ ij = 2Re (Oj − Oj )(Ok − Ok )

Entropy depends on simplectic eigenvalues of γ

Bombelli et al. 87. Modern outlook and 
reviews J. Eisert, M.B. Plenio JQI(2003), 
A. Botero and B. Reznik PRA (2003) etc.. 



 

Transformations 

O1

...
O2n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎯→⎯ S

O1

...
O2n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

preserving commutations  [Oj ,Ok ] = iσ jk   

are the symplecitc matrices Sp(2n) ≡  all S s.t.  S σ ST =σ

Under a symplectic transformation
γ → Sγ ST

Williamson / Darboux Thm:   there is an S s.t.
Sγ ST = diag(λ1,...,λn ,λ1,...,λn )
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��

Use the symplectic transformation to get to normal form, then :
! "S ! ST = diag(#1,...,#n ,#1,...,#n )

and :

 $ field = 1
Z

e
%

m
& log

#m +1/ 2
#m %1/ 2

'�

(�
)�

*�

+�
,�am

+ am

$ field = 1
Z

e
%

m
& log

#m +1/ 2
#m %1/ 2

'

(
)
'
)
'

(
)
(

*

+
,
*
,
*

+
,
+
am

+ am

Finding the !i  can be tricky, but assuming pk xl = 0

Then one can check that | !i |2  are eigenvalues of
 
!=4 Gjk Hkl G = x jxk H = pk pl

k
"



��

S = h(!i)
i
"

h(!) =
! +1

2
log ! +1

2
#
! #1

2
log ! #1

2

Entropy: 

S = h(!i)
i
"

h(!)!)! =
! +1

2
log ! +1

2
#
! #1

2
log ! #1

2��

!i are simplectic 
eigenvalues of the covariance 
matrix

Note h(1)=0.   All eigenvalues are larger than 1 due to uncertainty relation: 

��

! = 2"x"p #1



APPLICATION: 
RADIATION MATTER 
ENTANGLEMENT 
IK Radiation matter entanglement, arXiv:1208.2474 

IK On the entanglement of a quantum field with a dispersive medium, Phys. 
Rev. Lett. 109, 061601 (2012) 

 

Entanglement cuts do not have to be spatial! 

 
Consider an EM modes in a dielectric. What is the 
entanglement between the modes and the matter? 



To summarize: effective action 

� 

Seff =
1

4π
d3xdωϕ*(x,ω )[ω 2ε (x,ω) −∇2]ϕ(x,ω )∫

Allows to compue ϕ(x, t)ϕ(x',t ')  correlators. 
 

ϕ(x, t)ϕ(x',t ') =
1

4π
dω eiω (t− t ' )

−∇2 +ω 2ε(x,iω)0

∞

∫
need :

ϕ(x,0)ϕ(x',0) =
1

4π
dω 1

−∇2 +ω 2ε(x,iω)0

∞

∫

And assume conjugate momentum obeys πϕ = ˙ ϕ 

Model 
dielectric 
function 



� 

S =
1

4π
d3xdωϕ*(x,ω )[ω 2ε(x,ω ) −∇2]ϕ(x,ω)∫

Trivial example :

ε(x,ω ) ≡ ε(x)          Independent  of  ω
 
No  Entropy :  Described  by  a  hamiltonian

 H =
1

4π
d3x  π 2

ε (x)
+ (∇ϕ)2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∫



EXAMPLE: 

34
   

��

Check  free  space :

S =
1
2

d3x
dw
2!" #w

* (x)(w2 + $2)#w (x)

#(k)#(k')
Free

=
%kk'

!
dw  !

w2 + k 2
0

&

" =
!

2k
%kk'

!(k)!(k ') Free =
%kk'

!
dw  !k

2

w2 + k 2
0

&

" =
k!
2
%kk'

'     GH(k) =
4
!

#2
k
! 2

k
= 1   '   No  entropy

Translationally invariant system, entropy per unit volume 

    GH(k) =
4
!

#2#2#
k
! 2

k
= 1



MAIN RESULTS: 
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Typical dielectric : ε(ω ) = 1+ 4π ω p
2

ω0
2−ω 2−iγω

1
Z

e
− E (k )ck

+ck
k
∑

= 1
Z

e
− (Log[λk +1/2]−Log[λk−1/2])ck

+ck
k
∑

Not linear à not a simple thermal state! 
Too many conserved quantities 
 (see Huse’s talk) 



 
 
 
A Ahmadain, Z Zhang (Uva)  
R Alexander (UNM) 
H Katsura, T Udagawa (Tokyo) 
V Korepin, O Salberger (Stony Brook) 
 
 
Refs:   
Z. Zhang and IK, J. Phys. A, 50, 42  (2017);  
Z. Zhang, A. Ahmadain and IK, PNAS, 114, 20 (2017);  
O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, IK and V. 
Korepin, J. Stat. Mech (2017): 063103 
 
 
 
 
 

HOW MUCH ENTANGLEMENT 
CAN A LOCAL HAMILTONIAN 
SUPPORT? 

Supported by: 



ENTANGLEMENT 
SCALING IN TYPICAL 
SYSTEMS: 
Entanglement entropy:    
 
Generic states in Hilbert space have extensive entanglement 
(page prl 93,foong prl 94,sen prl 96) 

 

 

 

 

 

 

€ 

SA = −TrρA logρA  where  ρA = Tr Bρ

SA ≈

Ld generic state
Ld−1 gapped, "area law"

Ld−1 logL free fermions
c
3

logL conformal

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(Page prl 93) 

(Hastings 07,1d) 

(Gioev IK 06,M Wolf 06,…) 

(Holzhey Larsen Wilczek 96, 
many many more) 



EXTENSIVELY 
ENTANGLED STATES 
First local Hamiltonian with volume scaling: Irani 2010.  
local Hilbert space dimension is 21 

 
Simpler models but without translational invariance, and with 
exponentially varying couplings: 
Gottesman Hastings 2010 (not frustration free) 

Rainbow ground states:Vitagliano Riera Latorre 2010, Ramirez 
Rodriguez-Laguna Sierra 2014  

 

Translationally invariant but with a square root scaling:  
Movassagh Shor (2014), Salberger Korepin (2016) 

 



s=1 

s>1 

t

t
t=1 

Sn=O(1) Sn> c n 

Sn=O(1) Sn=O(1) 

Sn=log(n) 

Sn=n1/2 

“Rainbow” state Product state 

Here: a simple spin chain with remarkable phase transition: 

1 2 n n+1 n+2 2n 



EPR: electron-positron pair generation in an electric field as a source 
of entanglement  

Basic intuition: How to create 
a highly entangled state? 

“Rainbow” state 
e e p p p p p p p e e e e e 

e p 

e p 

e p 

e p 
e p + 

e e 
e p + 



ANOTHER TYPE OF RAINBOW 
STATE IN THE LAB! 

Pfister et al, 2004 
Chen Meniccuci Pfister PRL2014, 60 mode cluster state 
 

Incoming laser 

Nonlinear cavity ωin →ωn +ω−n =ωin

-n -(n-1) -1 1 n 

Optical 
frequency 
comb 

Cavity 
eigenmodes 



CRITICALITY WITHOUT 
FRUSTRATION 
Frustration free Hamiltonians: 

H = Hi∑      ,    Hi   are local non negative ( i.e. f Hi f ≥ 0 for all  f )

H Ψ = 0       and         Hi Ψ = 0  are local

Examples:   
-  Classical Hamiltonians such as Ising 
-  Toric Code 
-  AKLT model 
 
Typically commuting and gapped. 
 



MOTZKIN WALK 
HAMILTONIANS 

Ψ =
Motzkin
paths

∑

Ψ =
colored
Motzkin
paths

∑

Bravyi et al. 2012  “Criticality without frustration” 

Movassagh and Shor 2014  “Power law violation of the area law in 
quantum spin chains” 

Sn ∝
1
2

log(n)

Sn ∝ n



REPRESENTING SPIN 
STATES AS MOTZKIN WALKS 

|1 , 0, -1 , 2 , 1 ,-1 , 1 , 0, 2 , -2, -1 , 0, 0, -1> 

1 2n n n-1 

m 

   (    -   )  (    (    ) (   -   (     )   )   -  -    ) 

|1 , 0 , -1 , 1 , 1 , -1 , 1 , 0 , 1 , -1 , -1 , 0 , 0 , -1 > 

1 2n n n-1 

m 

 (    -   )  [    (    ) (   -   [     ]   )   -  -    ] 

Motzkin paths: 

Colored Motzkin paths: 



MOTZKIN HAMILTONIANS 
! =

! =! !

Basic idea -  locally: 

0     if 



MOTZKIN 
HAMILTONIANS 
Enforce a ground state superposition made of Motzkin paths by using projectors 
like: 

! =

" =

# =

H =$ # # + " " + ! ! +

h1 + h2n + (penalty!unmatched !colors)

Boundary 
terms: 

1 

2n h1h1h + h2n +



HOW COLOR 
ENHANCES ENTROPY 

Height  after  n steps = # of  unmatched  up steps

For  n >>1,  typical  Motzkin walk  is like a Brownian walk. 
⇒

Typical  height  after  n steps∝ n
⇒

# of  colorings of unmatched  up steps∝ s n

all coloringschemes of unmatched equally likely

⇒  Sn ∝ n



CAN WE SKEW THE MODEL TO 
PREFER RAINBOW STATES? 
Main idea – up moves are like electrons and down moves are like positrons.  
They should go in different directions! 
 
Can try: 

Φ = cosϕi             −sinϕi

Ψ = cosψi             −sinψi

Θ = cosθi             −sinθi



i

i+ 1 i+ 1

i+ 1

i+ 1i

ii

cot i+1 tan�i

1

cot i+1 tan ✓i ⌘ tan�i tan ✓i+1

Li+1

Fi+1Fi

Ri

Choice of angles must satisfy a consistency 
condition: 



THE UNIFORM MODEL 

! = t Area

colored
Motzkin
paths

"

! =!!!!!!!!!!!!"t

! =!!!!!!!!!!!!"t

! =!!!!!!!!!!!!"t

! = t Area

colored
MoMoM tztzt kin
paththt s

"



ENTANGLEMENT 
ENTROPY 
Schmidt decomposition 

! " pn,m
m=0

n

#
coloring
scheme

# t Area

paths ! from !0
to !height !m

#
$

%

&
&
&

'

(

)
)
)
* t Area

paths ! from !
height !m ! to !0

#
$

%

&
&
&

'

(

)
)
)

!

pn,m =
Mn,m

2

Nn

! Mn,m = si

i=0

(n!m)/2

" t Areaunder path  
path from0 to
height mwith
iunpaired colors

"  

Nn = sm

m=0

n

" Mn,m
2

! = t Area

colored
Motzkin
paths

"



SCALING OF ENTROPY.  

We need the asymptotics of Mn,m 

Mn,m = si

i=0

(n−m)/2

∑ t Areaunder path  
path from0 to
height mwith
iunpaired colors

∑  

t Areaunder path  
path from0 to
height mwith

∑  ≈
X (0)=0

X (n)=m

∫ dX[τ ] e
−

0

n

∫ ( dX
ds

)2−log(t )X (s)ds

Charged particle in a field, 
Brownian particle with a drift 

S = − sm pn,m log pn,m∑



FREDKIN CHAIN 
The Fredkin model of Salberger/Korepin 2016 has as ground state 
superposition of Dyck paths: 

Entropy scales linearly with n log(s)! Same phase diagram. 
 
Model has 3-nearest neighbor interactions.  
O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, IK and V. Korepin, JSTAT (2017) 

Ψ =
colored
Dyck
paths

∑

We deform it into: 

Ψ = t Area  under

colored
Dyck
paths

∑



EXCITATION GAP 
uncolored  Motzkin   S ~ 1

2
log(n)   Δ ≤ n−c,  c ~ 2 +

t =1, Motzkin,   S ~ n log(s)     n−c ≤ Δ ≤ n−2 (c >>1)
t =1,  Fredkin

Here :

t >1, Motzkin,   S ~ nl og(s)     Δ ≤ 8nst−n2 /3

Levine and Movassagh, JphysA 2017 

Beautiful proof uses mapping to Markov Chains and Cheeger Inequality  

Alternative approach   à 



VARIATIONAL PROOF 
FOR GAP SCALING: 

σ Ψ = t Area∑
Switch color 

Result is orthogonal to g.s. Energy exponentially small with t. 

Ψ = t Area∑

More sophisticated: flip the color of the last down making the larges interval 
gives t^-n^2/2 gap. 



Colorless model:  
Gap for t<1 
Gapless for t>1  (although entropy obeys area law!) 

Variational approach: 

Ψ = t Area∑

Z Zhang and IK, JPA2017 

EXCITATION GAP IN 
COLORLESS MODEL 



TENSOR NETWORK FOR 
AREA-LAW STATES 
Matrix Product States are a useful description for chains with area law. 
Take D matrices  A: 

! = C(!1...! N ) !1...! N" !!!!!!!!1 # {1,2,..D}!!!!!!!!!!

C(!1! 2...! N ) = As1s2

!1 As2s3

!1 As3s4

!1 ...AsNsN+1

!1 = s1 A!1
A! 2

...A! N
sN+1

!1 ! 2 ! N! N!1! 3

s1 s2 s3 sN sN+1

Tensor network description: 

Entanglement obtained by cutting a bond. It is bounded by log (dimension A). 



EXACT HOLOGRAPHIC TENSOR 
NETWORK 

s colors  

t 

t2 



THE TN IS NOT OPTIMAL FOR T=1. CAN WE DO 
BETTER? 

… T1 T1 T1 T1 T1 T1 T1 T1 

Tm 

T2 T2 T2 T2 

T3 T3 

S1 S2 S3 S2
m

-7 
 

S2
m

-6 
 

S2
m … … 

Replace boundary term 
in Hamiltonian with 
amplitude of 
magnetization |

2nX

i=1

Sz
i |

l1
l2
l3 r3

r2
r1

u4
u3
u2
u1

k < m, 
          Tk= 

kX

d=1

2d�1(ld + rd) =
k+1X

d=1

2d�1ud1, if 

0, else 

Tm= 
mY

d=1

�(ld, rd)

Si = 
0 #

"1

, for 

, for 



!1 ! 2 ! N! N!1! 3

Ddual(x,y)=2 
 
S=const 

!1 ! 2 ! N! N!1! 3

Consistent with graph distance D(x,y)=|y-x| 

Exponential decay of 
correlations 
<"x"y>#exp(- a|y-x|) 

But entanglement is bound: 

Remark about holographic metric 




