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Counterflow Ordering



Motivating experiment



Ba1−x Kx Fe2 As2
Nature Physics 17, 1254 (2021)



V. Grinenko et al., Nature Physics 17, 1254 (2021)

BTRS metal

BTRS =  broken time-reversal symmetry



Counterflow ordering: Composite order parameters

⟨ ψα ⟩ = 0 , ⟨ ψα ψ*β ⟩ ≠ 0 , α, β = 1, 2, 3, … N .

ψα = |ψα |eiθα , Φαβ = θα − θβ , ⟨ eiΦαβ ⟩ ≠ 0 .

As opposed to individual phases, relative phases are ordered:

Counterflow supercurrents:

∮C
d l ⋅ ∇Φαβ = 2π × integer

C

The fields themselves can be composite, but this is not relevant for our 
discussion.—Think of He-4 consisting of 6 fermions.

[U(1)]NSymmetry of the Hamiltonian:

Order parameters:



Two scenarios leading to supercounterfluidity

1. Finite-temperature proliferation of composite vortices (Babaev, 2002; we will 
discuss this scenario a bit later).

E. Babaev, arXiv:cond-mat/0201547 

A. Kuklov and BS, PRL 90, 100401 (2003)

2. SCF ground state:  super-exchange on top of the multi-component Mott state 
    (Kuklov and BS, 2002):





  is very different from  in terms of topological excitationsN ≥ 3 N = 2

±2π θ1θ2

±2π θ1θ2

θ3

Only one type of elementary vortices.

N types of elementary vortices.

Borromean ordering:  the number of superfluid modes is 
larger than the number of ordered phase variables.  

Somehow all the N phases are relevant despite being not 
uniquely defined!

Borromean rings

relative winding

relative winding



∀β ≠ α : ∮ d l ⋅ ∇Φαβ = ± 2π , ∀β ≠ α, ∀γ ≠ α : ∮ d l ⋅ ∇Φβγ = 0

±2π θα

…

Symmetric way of specifying  N elementary vortices in Borromean SCF

This part exists only for N > 2. 

relative winding



Finite-temperature proliferation of composite vortices



Stack of 2D superconductors E. Babaev, 2002

Proliferation of “shared” (=composite) vortices at any finite temperature.

Due to the long-range coupling via vector potential, vortices of the same sign in 
different layers attract each. At low enough temperature, they are bound into a 
composite vortex, which costs only a finite energy.

Global (=composite) vortex: 
goes through all the N layers.



Another example is a slightly doped lattice bosonic supercounterfluid 
at a finite temperature, when the net flow becomes normal.

Kuklov, Prokof’ev, and BS, PRL 2003



More examples can be found in Chapter 6 of our book:



Let us try to guess the form of the ground-state hydrodynamic Hamiltonian based 
on the effective theory  of finite-T of proliferation of composite vortices.

Hydrodynamics of Borromean Counterfluids

E. Babaev and BS, arXiv:2311.04340

Egor Babaev
KTH



 Finite-T proliferation of composite vortices: free-energy argument

J. Smiseth, E. Smørgrav, E. Babaev, and A. Sudbø,  PRB 71, 214509 (2005)

E. Blomquist, A. Syrwid, and E. Babaev, PRL 127, 255303 (2021)

Can we generalize this to the ground-state hydrodynamic counterflow Hamiltonian?

Sounds weird:    

(i) Why would the individual phases have hydrodynamic meaning in the 
absence of corresponding order? 

(ii) What would arrest the net flow ?!

F =
ρ*

2 (∑
α

∇θα)
2

+
Λ
2 ∑

α,β
(∇θα − ∇θβ)

2
, ρ* ≪ Λ

On the other hand, old good London-Ginzburg-Landau theory provides us with a 
hope in the form of Anderson effect.



ℋ =
1
2 ∑

α,β

καβ ηαηβ +
1
2 ∑

α<β

Λαβ (∇θα−∇θβ)
2

, ηα = nα − n̄α

·ηα = − ∑
β

Λαβ (Δθα−Δθβ) , ·θα = − ∑
β

καβ ηβ

∂
∂t

N

∑
α=1

ηα(r, t) = 0
N

∑
α=1

ηα(r, t) ≡ 0consistent with 

·ηα + ∇ ⋅ jα = 0 , jα = ∑
β

Λαβ (∇θα−∇θβ) , ∑
α

jα = 0

Equations of motion for densities have the form of continuity equations:

Hydrodynamic Hamiltonian

Hamiltonian 
equations of motion

Summing up all the equations for    we get:·ηα



Compact-gauge invariance

∀α : θα(r) → θα(r) + ϕ(r)

The constrain      emerges as a local Noether’s constant of motion.
∂
∂t

N

∑
α=1

ηα(r, t) = 0

Compactness: As opposed to the standard gauge transformation,  the field     
is not single-valued.

ϕ(r)



Modular arithmetic of topological charges

Gauge redundant way of specifying topological charges via individual winding 
numbers for each component: 

   

- Respects symmetry between components. 

- Convenient for addition.

(m1, m2, …, mN)

Addition/equivalence is modulo  .(1, 1, …, 1)

Characteristic examples for the N=3 case:

(1, 0, 0) + (0, 1, 0) + (0, 0, 1) = (1, 1, 1) ≡ (0, 0, 0)

(1, 0, 0) + (0, 1, 0) = (1, 1, 0) ≡ (0, 0, −1)

A system of three different elementary vortices of the same sense is topologically trivial.

A system of two different elementary vortices of the same sense is topologically equivalent 
to the third elementary vortex of the opposite sense.

Signature feature of the compact-gauge invariant theory



Borromean metals and insulators



Ba1−x Kx Fe2 As2
Nature Physics 17, 1254 (2021)



V. Grinenko et al., Nature Physics 17, 1254 (2021)

BTRS metal

BTRS =  broken time-reversal symmetry



V. Grinenko et al., Nature Physics 17, 1254 (2021)



Minimal microscopic model for Borromean insulating ground state  
with broken time-reversal symmetry

Augment  -component,  [U(1)] -symmetric  Bose-Hubbard Hamiltonian with 
weak frustrating intercomponent Josephson couplings:

3 3

H → H + J0 ∑
j,α≠β

a†
jαajβ

θ1θ2

θ3

Im ⟨ aα a†
β ⟩ ≠ 0 , α, β = 1, 2, 3 .Order parameter:



Hydrodynamic theory has to account for the qualitative difference between 
BTRS Borromean insulator/metal and a generic normal BTRS state: 

Existence of very specific multiple domain walls and corresponding domain-
wall vortices (sort of topological ordering).



Multiple domain walls

θ1θ2

θ3

θ1
θ2

θ3

θ1θ2

θ3

domain (1, 2, 3) domain (1, 3, 2)domain wall  (1 ↔ 2)

The three domain walls:  (1 ↔ 2), (1 ↔ 3), (2 ↔ 3) .

At finite T:  Garaud, Carlström,  Babaev, and Speight, PRB 87, 014507 (2013)



Domain wall vortices

At finite T:  Garaud, Carlström,  Babaev, and Speight, PRB 87, 014507 (2013)

domain wall  (1 ↔ 2)

domain wall  (1 ↔ 3)

vortex :  phase 1 does a  twist  
with respect to the other two components

(1) 2π



Hydrodynamic Hamiltonian for Borromean insulators



Off-diagonal intercomponent couplings

ℋ → ℋ −
1
2 ∑

α,β

𝒬αβ(θα−θβ)

𝒬αβ(θ) = 𝒬βα(θ) = 𝒬αβ(−θ) are   -periodic functions. 2π

·ηα + ∇ ⋅ jα = 𝒥α , 𝒥α = ∑
β

𝒲αβ (θα−θβ) , 𝒲αβ (θ) =
∂𝒬αβ(θ)

∂θ

∑
α

𝒥α = 0



General form of the counterflow Hamiltonian

ℋ ≡ ℋ({η}, {w}, {θ}, {v})

{η} ≡ (η1, …ηN) , {w} ≡ (w1, …wN), {θ} ≡ (θ1, …θN) , {v} ≡ (v1, …vN)

∑
α

∂ℋ
∂θα

= 0 , ∑
α

∂ℋ
∂vα

= 0 conditions of compact-gauge invariance

jα =
∂ℋ
∂vα

({v} → {∇θ})

𝒥α =
∂ℋ
∂θα

({v} → {∇θ})

·ηα + ∇ ⋅ jα = 𝒥α ,

Works for both  Borromean supercounterfluids and Borromean insulators

placeholders for  
phase gradients

∑
α

𝒥α = 0

∑
α

jα = 0
Net flow is arrested.

placeholders for  
gradients of densities



Conclusions

Borromean counterfluids: N-1 phonon modes, N elementary vortices/supercounterflow 
states.

Borromean insulator:  A ground state with broken time reversal symmetry and sort of 
“topological-like” order manifesting itself in multiple domain walls.

Hydrodynamic description of Borromean states: 
Compact-gauge-symmetric  N-component hydrodynamic Hamiltonian.

Bulk of a multi-band (N > 2) superconductor as a Borromean insulator: Gauge 
invariance arrests the net flow (Anderson effect) and the inter-band Josephson coupling 
does the rest.


