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The role of symmetry in TBG band topology

det 𝑊 𝑘2 = ±1• In general, the 𝐶2𝑧𝑇 symmetry requires

Fang Xie, Zhida Song, Biao Lian, and B. Andrei Bernevig PRL 124, 167002 (2020)
Fang Xie, Jian Kang, B Andrei Bernevig, OV, Nicolas Regnault arXiv:2209.14322

det 𝑊 𝑘2 = +1 det 𝑊 𝑘2 = −1

• the two eigenvalues are complex conjugates
of each other

• the two eigenvalues are real and (1,-1)
independent of 𝑘2 (i.e. trivial winding)
(we find this in the 𝐶2𝑧𝑇 symmetric period-2 stripe state)



Recall: 𝑩 = 0 narrow band hybrid Wannier states of the non-interacting model
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C2T broken (QAH)

C2T sym.; broken  rot/transl. 

(iTensor) DMRG results
(spinless one valley)

J. Kang and OV, PRB 2020



(iTensor) DMRG results: almost 
exclusively single occupancy

J. Kang and OV, PRB 102, 035161 (2020)



J. Kang and OV arXiv:2002.10360



J. Kang and OV, PRB 102, 035161 (2020) 



Subsequently confirmed by a more accurate DMRG algorithm (Zaletel’s group) 

Soejima et al Phys. Rev. B 102, 205111 (2020)



Energetics from a more accurate DMRG algorithm Ny=6 (Zaletel’s group) 

Soejima et al Phys. Rev. B 102, 205111 (2020)



𝜐 = −3 for Τ𝑤0
𝑤1 ≠ 0

Fang Xie, Jian Kang, B Andrei Bernevig, OV, Nicolas Regnault arXiv:2209.14322

Chern ±1 Chern 0



Odd filling for Τ𝑤0
𝑤1 ≠ 0

Fang Xie, Jian Kang, B Andrei Bernevig, OV, Nicolas Regnault arXiv:2209.14322



Lecture 2:

• 𝐵 ≠ 0 Interacting Hofstadter spectrum at strong coupling of twisted bilayer graphene

• Outlook: Near degeneracy among many phases and strong sensitivity to strain motivated 
development of a more accurate continuum model than the minimal

from microscopic model to continuum theory via systematic gradient expansion
comparison of the structure with data



𝐸 − 𝐸𝜐
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Exact single particle excitation spectrum at integer filling in the strong 
coupling
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Hofstadter spectra at strong coupling

Xiaoyu Wang



We need to find a projector onto the narrow bands at finite B-field

X. Wang and OV arXiv:2112.08620

𝑉𝑖𝑛𝑡 =
1

2
න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)

• One option is to solve the BM model in LL basis

• Problematic at low B and near simple fractions 
because of the high number of LLs that needs 
to be kept

• Need a new method (that works even if the 
narrow bands are topological at B=0)



Recall: 𝑩 = 0 narrow band hybrid Wannier states of the non-interacting model
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Key insight 

• for the hybrid Wannier state centered at and near the 
origin, the Landau gauge vector potential 𝑨 = (0, 𝐵𝑥)
can be treated perturbatively, because the region in 
real space where 𝑨 is large gets suppressed by the 
exponential localization of the hybrid Wannier state. 

• the discrete translation symmetry along the 
𝑦 −direction used in constructing the hybrid Wannier
state is preserved by such 𝑨

• Generate the entire basis from the B=0 hybrid WS 
centered near origin by projecting onto irreps of MTG

Xiaoyu Wang and OV PRB, 106, L121111 (2022)



𝑡𝑳𝟐 , 𝐻𝐵𝑀 𝑝𝑥, 𝑝𝑦 −
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𝑡𝑳𝟐 , 𝐻𝐵𝑀 𝑝𝑥, 𝑝𝑦 −
𝑒
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2𝑞 orhonormal states

overlap gap
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Comparison of the non-interacting Hofstadter spectrum based on hybrid 
Wannier states method and based on the LL method

Xiaoyu Wang and OV PRB, 106, L121111 (2022) (SI)



Exact single particle excitation spectrum at CNP in the strong coupling limit 
at small B-field

𝑉𝑖𝑛𝑡 𝑋| ۧΩ =
1

2
න𝑑𝑟 𝑑𝑟′𝑉(𝑟 − 𝑟′) 𝛿𝜚 𝑟 , 𝛿𝜚 𝑟′ , 𝑋 | ۧΩ

• Landau quantization even in strong 
coupling

• Imbalance in the sublattice 
polarization reflects the topology 
of the bands (blue is subl. A)

• Finite B-field causes splitting 
between the LLs even in the chiral 
limit due to broken C2T

Xiaoyu Wang and OV PRB, 106, L121111 (2022)



Exact single particle excitation 
spectrum at n=2 in the strong 
coupling limit at small B-field

𝑉𝑖𝑛𝑡 𝑋| ۧΩ =
1

2
න𝑑𝒓 𝑑𝒓′𝑉(𝒓 − 𝒓′) 𝛿𝜚 𝒓 , 𝛿𝜚 𝒓′ , 𝑋 | ۧΩ

𝑑𝒓׬+ 𝑑𝒓′𝑉(𝒓 − 𝒓′) 𝛿𝜚 𝒓 , 𝑋 𝛿 ҧ𝜚(𝒓′)| ۧΩ

• Naturally explains why the Landau 
fans point away from the CNP

Xiaoyu Wang and OV PRB, 106, L121111 (2022)



Analytic construction of exact zero modes at 𝑩 ≠ 0 in the chiral limit: 
anomaly and the index theorem

𝐻𝐵𝑀 =
𝑣𝐹𝜎 ∙ (𝒑 −

𝑒
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𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
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Unlike at 𝑩 = 0, there 
is no normalizable
state on B-sublattice

Popov and Milekhin PRB2021, Sheffer and Stern PRB2021; Xiaoyu Wang and OV PRB, 106, L121111 (2022)



Analytic construction of exact zero modes at 𝑩 ≠ 0 in the chiral limit: 
anomaly and the index theorem

𝑨 =
1

2
𝐵(−𝑦, 𝑥)symmetric gauge:

𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
2 Ψ𝐾𝑚

𝐵=0(𝒓)

0

𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
2 Ψ𝐾𝑚

′
𝐵=0(𝒓)

0

Γ

𝐾𝑚

𝐾𝑚
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𝑩 = 0 zero energy states at 𝐾𝑚and 𝐾𝑚
′ have an opposite 

parity under 𝑃𝐶2𝑦𝑇

Letting 𝑓 𝑧 = 1, 𝑧, 𝑧2, … , 𝑧𝑁−1 we therefore prove 
linear independence of 2Landau levels worth of exact 
zero energy states living on A sublattice

So for each 𝑘1 ∈ (0,1) and 𝑘2 ∈ (0,
1

𝑞
) we have 2𝑝 zero 

modes

Because 𝐻𝐵𝑀 , 𝜎𝑧 = 0, by index theorem we must have

𝑇𝑟 𝜎𝑧 = 𝑛+ − 𝑛− = 2𝑝

At 𝑩 = 0, 𝑇𝑟 𝜎𝑧 = 0.
Therefore 𝑇𝑟 𝜎𝑧 is discontinuous at 𝑩 = 0

Popov and Milekhin PRB2021, Sheffer and Stern PRB2021; Xiaoyu Wang and OV PRB, 106, L121111 (2022)



Exact single particle excitation spectrum at CNP in the strong coupling limit 
at small B-field at a single 𝑘1, 𝑘2



Outlook: 

Near degeneracy among many phases implies strong sensitivity terms in the minimal 
continuum model which were neglected. 

This motivates development of a more accurate continuum theory from microscopic model

We can derive the effective continuum model for graphene bilayers by systematically 
expanding in real space gradients of the slow fermion fields and the atomic displacements
allowing for an arbitrary inhomogeneous smooth lattice deformation, including a twist. 

• OV and Jian Kang, arXiv:2208.05933
• Jian Kang and OV, arXiv:2208.05953



𝑿𝑗,𝑆 = 𝒓𝑠 + 𝒖𝑗,𝑆 𝒓𝑠

𝒖𝑗 𝒓𝑠 = 𝒖𝑗,𝑆
∥ 𝒓𝑠 + 𝒖𝑗,𝑆

⊥ 𝒓𝑠

𝒓𝑠 = 𝑛1𝒂1 + 𝑛2𝒂2 + 𝝉𝑆

Lagrangian coordinates:



𝑿𝑗,𝑆 = 𝒓𝑠 + 𝑼𝑗,𝑆
∥ 𝑿𝑗,𝑆

∥ + 𝑼𝑗,𝑆
⊥ 𝑿𝑗,𝑆

∥

𝒓𝑠 = 𝑛1𝒂1 + 𝑛2𝒂2 + 𝝉𝑆

Eulerian coordinates:
(no overhangs ⇒ Monge gauge)



To illustrate the main idea, we assume that the microscopic hopping amplitude t to depend 
only on the separation of the two carbon atoms, as is the case in Slater-Koster type models. 

In general, t depends also on the orientation of this vector relative to the nearest neighbor 

sites of the atom at 𝑿𝑗,𝑆 and at 𝑿𝑗′,𝑆′
′ . Moreover, the general on-site term acquires 

configuration dependence. We treat this more intricate case in the papers.



𝐻𝑡𝑏
𝑆𝐾 =෍

𝑆,𝑆′

෍

𝑗,𝑗′

෍

𝒓𝑠,𝒓𝑠
′

𝑡 𝑿𝑗,𝑆 − 𝑿𝑗′,𝑆′
′ 𝑐𝑗,𝑆,𝒓𝑠

† 𝑐𝑗′,𝑆′,𝒓𝑠′

𝑡 𝑿 = 𝑡∗(−𝑿)

𝑡 𝑿 = 𝑡∗(𝑿)

because 𝐻𝑡𝑏
𝑆𝐾 is Hermitian

because 𝐻𝑡𝑏
𝑆𝐾 preserves spinless time 

reversal symmetry

𝑉𝑝𝑝𝜋
0 = −2.7𝑒𝑉

G. Trambly de Laissardiere et al, Nano Lett. 10, 804-808 (2010).

𝑡 𝑿 = 𝑉𝑝𝑝𝜋
0 𝑒−

|𝑿|−𝑎0
∆ 1 −

𝑿 ∙ Ƹ𝑧

|𝑿|

2

+ 𝑉𝑝𝑝𝜎
0 𝑒−

|𝑿|−𝑑0
∆

𝑿 ∙ Ƹ𝑧

|𝑿|

2
Example:

𝑉𝑝𝑝𝜎
0 = 0.48𝑒𝑉 𝑎0 = 𝝉𝐵 = 0.142𝑛𝑚 ∆= 0.319𝑎0𝑑0 = 0.335𝑛𝑚



𝐻𝑡𝑏
𝑆𝐾

=෍

𝑆,𝑆′

෍

𝑗,𝑗′

෍

𝒓𝑠,𝒓𝑆′
′

න𝑑2𝒓න𝑑2𝒓′ 𝛿 𝒓 − 𝒓𝑠 𝛿 𝒓′ − 𝒓𝑆′
′ 𝑡 𝒓 + 𝒖𝑗,𝑆 𝒓 − 𝒓′ − 𝒖𝑗′,𝑆′ 𝒓

′ 𝑐𝑗,𝑆,𝒓
† 𝑐𝑗′,𝑆′,𝒓′

෍

𝒓𝑠

𝛿 𝒓 − 𝒓𝑠 =
1

𝒂1 × 𝒂2
෍

𝑮

𝑒𝑖𝑮∙(𝒓−𝝉𝑠) ; 𝑮 = 2𝜋 𝑚1𝒂2 −𝑚2𝒂1 ×
Ƹ𝑧

𝒂1 × 𝒂2

The physically important states come from the vicinity of the Dirac points. Therefore, we can 
decompose the fermion fields into two slowly spatially varying fields 𝜓 and 𝜙 multiplied by the 
fast spatially varying functions from the valley 𝑲 = 4𝜋𝒂1/(3𝑎

2) and 𝑲′ = −𝑲. 

1

𝒂1 × 𝒂2
𝑐𝑗,𝑆,𝒓 ≅ 𝑒𝑖𝑲∙𝒓𝜓𝑗,𝑆 𝒓 + 𝑒−𝑖𝑲∙𝒓𝜙𝑗,𝑆 𝒓

𝜓𝑗,𝑆 𝒓 , 𝜓
𝑗′,𝑆′
† 𝒓′ = 𝜙𝑗,𝑆 𝒓 , 𝜙

𝑗′,𝑆′
† 𝒓′ = 𝛿𝑗,𝑗′𝛿𝑆,𝑆′𝛿 𝒓 − 𝒓′



1

𝒂1 × 𝒂2
෍

𝑆,𝑆′

෍

𝑗,𝑗′

෍

𝑮,𝑮′

න𝑑2𝒓න𝑑2𝒓′ 𝑒𝑖𝑮∙ 𝒓−𝝉𝑠 𝑒−𝑖𝑮
′∙ 𝒓′−𝝉

𝑆′ 𝑡 𝒓 + 𝒖𝑗,𝑆 𝒓 − 𝒓′ − 𝒖𝑗′,𝑆′ 𝒓
′ 𝑒−𝑖𝑲∙ 𝒓−𝒓

′
𝜓𝑗,𝑆
† 𝒓 𝜓𝑗′,𝑆′(𝒓

′)

𝐻𝑆𝐾,𝑒𝑓𝑓
𝑲 =

short ranged

𝑿

Ψ𝑗,𝑆 𝑿∥ = 𝐽
𝜕𝒓

𝜕𝑿∥
𝜓𝑗,𝑆 𝒓 Ψ𝑗,𝑆 𝑿∥ , Ψ

𝑗′,𝑆′
† 𝑿′∥ = 𝛿𝑗,𝑗′𝛿𝑆,𝑆′𝛿 𝑿∥ − 𝑿′∥

1

𝒂1 × 𝒂2
෍

𝑆,𝑆′

෍

𝑗,𝑗′

෍

𝑮,𝑮′

𝑒−𝑖 𝑮∙𝝉𝑠−𝑮
′∙𝝉

𝑆′ න𝑑2𝑿∥ 𝐽
𝜕𝒓

𝜕𝑿∥
න𝑑2𝑿′∥ 𝐽

𝜕𝒓′

𝜕𝑿′∥
𝑒
−𝑖(𝑮−𝑲)∙𝑼𝑗,𝑆

∥ (𝑿∥)
𝑒
𝑖(𝑮′−𝑲)∙𝑼

𝑗′,𝑆′
∥ (𝑿′∥)

𝑡ቀ

ቁ

𝑿∥

+𝑼𝑗,𝑆
⊥ (𝑿∥)− 𝑿′∥ − 𝑼𝑗′,𝑆′

⊥ (𝑿′∥) 𝑒𝑖(𝑮∙𝑿
∥−𝑮′∙𝑿′∥)𝑒−𝑖𝑲∙(𝑿

∥−𝑿′∥)Ψ𝑗,𝑆
† 𝑿∥ Ψ𝑗′,𝑆′ 𝑿

′∥

𝐻𝑆𝐾,𝑒𝑓𝑓
𝑲 =



1

𝒂1 × 𝒂2
෍

𝑆,𝑆′

෍

𝑗,𝑗′

෍

𝑮,𝑮′

𝑒−𝑖 𝑮∙𝝉𝑠−𝑮
′∙𝝉

𝑆′ න𝑑2𝑿∥ 𝐽
𝜕𝒓

𝜕𝑿∥
න𝑑2𝑿′∥ 𝐽

𝜕𝒓′

𝜕𝑿′∥
𝑒
−𝑖(𝑮−𝑲)∙𝑼𝑗,𝑆

∥ (𝑿∥)
𝑒
𝑖(𝑮′−𝑲)∙𝑼

𝑗′,𝑆′
∥ (𝑿′∥)

𝑡ቀ

ቁ

𝑿∥

+𝑼𝑗,𝑆
⊥ (𝑿∥)− 𝑿′∥ − 𝑼𝑗′,𝑆′

⊥ (𝑿′∥) 𝑒𝑖(𝑮∙𝑿
∥−𝑮′∙𝑿′∥)𝑒−𝑖𝑲∙(𝑿

∥−𝑿′∥)Ψ𝑗,𝑆
† 𝑿∥ Ψ𝑗′,𝑆′ 𝑿

′∥

𝐻𝑆𝐾,𝑒𝑓𝑓
𝑲 =

𝒙 =
1

2
𝑿∥ + 𝑿′∥ 𝐲 = 𝑿∥ − 𝑿′∥

𝑒𝑖(𝑮∙𝑿
∥−𝑮′∙𝑿′∥) = 𝑒𝑖(𝑮−𝑮

′)⋅𝒙𝑒𝑖(𝑮+𝑮
′)⋅𝒚/2

Oscillates strongly unless 𝑮 = 𝑮′. All other factors a slow functions of 𝒙

𝑼𝑗,𝑆
∥ 𝑿∥ = 𝑼𝑗,𝑆

∥ 𝒙 +
1

2
𝒚 ≃ 𝑼𝑗,𝑆

∥ 𝒙 +
1

2
𝒚 ⋅ 𝜕𝑼𝑗,𝑆

∥ 𝒙 +⋯



𝐽
𝜕𝒓

𝜕𝑿∥
1

𝒂1 × 𝒂2

• OV and Jian Kang, arXiv:2208.05933
• Jian Kang and OV, arXiv:2208.05953



• OV and Jian Kang, arXiv:2208.05933
• Jian Kang and OV, arXiv:2208.05953



Example: rigid twist



Beyond rigid twist


