

Competing electronic ground states in CeRh_2As_2

Joanna Blawat¹, Grzegorz Chajewski², Daniel Gnida², John Singleton¹, Oscar Ayala Valenzuela¹, Dariusz Kaczorowski², Ross McDonald¹

¹National High Magnetic Field Laboratory, ²Institute of Low Temperature and Structure Research, Polish Academy of Sciences

Funding Grants: K. M. Amm (NSF DMR-2128556); J. Blawat, R. McDonald (CATS EFRC DEAC02-07CH11358); J. Singleton (DOE BES “Science of 100 T”)

CeRh_2As_2 is one of a small number of materials exhibiting two distinct superconducting phases. This, plus a lack of local inversion symmetry and an upper critical field well above the Pauli limit led to proposals that CeRh_2As_2 hosts new topological quantum states and Majorana zero modes, suggesting its use in quantum computation. To uncover what gives CeRh_2As_2 such desirable properties, its resistivity (ρ_{xx}), Hall effect (ρ_{xy}) and magnetization were measured in pulsed fields of up to 73 T at temperatures down to 0.5 K. The low resistance of CeRh_2As_2 single crystals makes pulsed-field resistivity measurements challenging. Therefore, devices optimized for pulsed fields (Figure insets) were made using focused-ion-beam (FIB) methods, a cutting-edge technique combination. The devices allowed the current to be driven in different directions relative to the field and crystal axes.

The experiments (using the NHMFL 3D-printed goniometer to rotate devices to precise angles in the field), revealed the strongly anisotropic properties of CeRh_2As_2 . Hence, detailed phase diagrams were derived for field H along the [100], [110] and [001] crystal axes. For $H \parallel [001]$, a kink in ρ_{xy} [Fig. (a)] signaled a large change in hole density due to a valence transition; as temperature grows, this moves to higher fields [Fig. (b)]. As with other Ce compounds, the valence transition is caused by f -electrons moving from the Fermi sea to Ce multiplets. For $H \parallel [100]$ and [110], features in resistivity [Fig.(c)] showed three distinct phases (I, II, III), due to field-induced density-waves [Fig. (c,d)]; here, the f -electrons stay itinerant and the transitions represent changes in Fermi-surface nesting. The upper limit of the density-wave phases merges with the T_0 transition, a known precursor to superconductivity.

The fact that phase transitions of very different natures are induced just by changing the direction of the field shows that electrons in CeRh_2As_2 experience several competing interactions of a similar strength. In such a situation, the electrons exist in a delicate energy balance; small changes in a control parameter such as magnetic field, temperature or pressure can alter their quantum-mechanical state dramatically. It is from such a fertile ground that the unusual superconducting phases blossom.

Facilities and instrumentation used: 65 T short-pulse and 73 T Duplex Magnet at Pulsed Field Facility

Citation: Blawat, J.; Chajewski, G.; Gnida, D.; Singleton, J.; Ayala Valenzuela, O.E.; Kaczorowski, D.; McDonald, R.D., *Competing Electronic Ground States in the Heavy-Fermion Superconductor CeRh_2As_2* , *Physical Review X*, **15**, 041057 (2025) doi.org/10.1103/m44c-tzrj

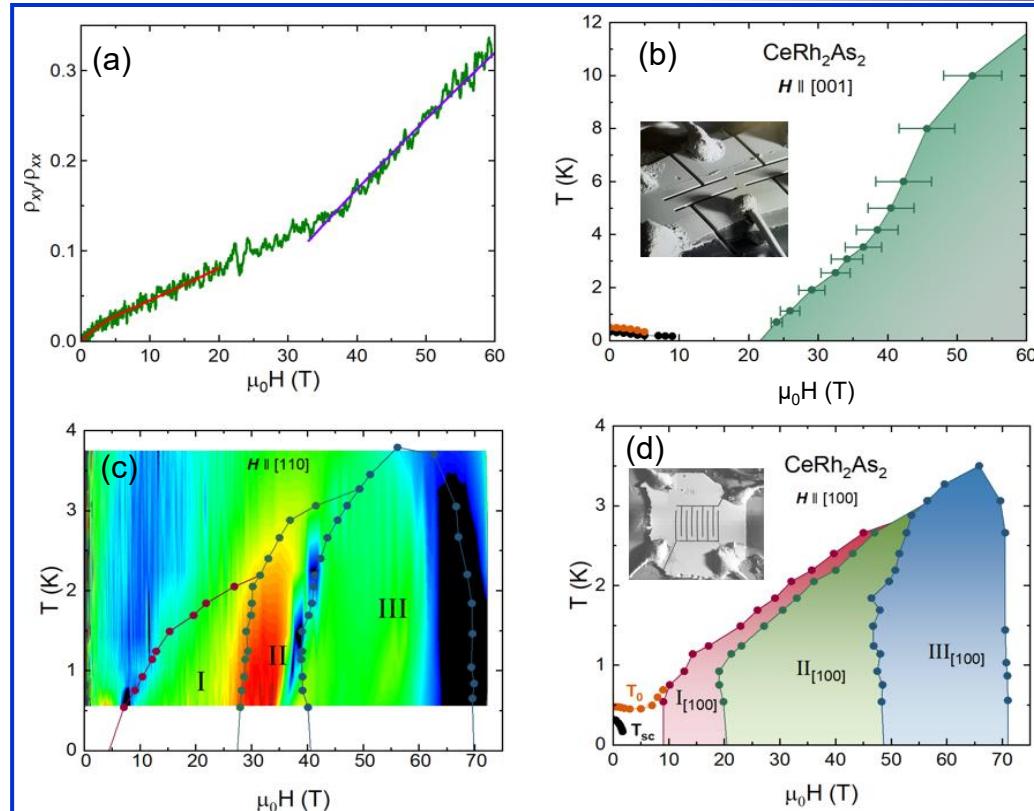


Figure: (a) ρ_{xy}/ρ_{xx} shows the kink due to the valence transition; data (green) are fitted by a model (red, purple) revealing the change in hole density. (b) Phase diagram for $H \parallel [001]$; the superconducting phase is seen at low field. (c) Contour plots of $d\rho_{xx}/dH$ used to track boundaries ($H \parallel [110]$) between density-wave phases. (d) Phase diagram of density-wave states, T_0 transition and superconductivity ($H \parallel [100]$). Some of the FIB devices are shown in insets.