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Linear response theory

Retarded Green's functions

» consider a quantum system in thermal equilibrium:

1
r=7z°

P> perturb weakly:
H — Hy — / dixdt h(x,t)O(x)

and assume h(t — —o0) — 0
» then to first order in h,

oo

(Alx, 1)) = / ds GRo(x.y,t — s)h(y, s)

—0o0

Glo(x,y,1) =0 {[A(x,1), O(y)])
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» singularity structure of correlators dominates response; e.g.
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Quasinormal modes dominate response

» singularity structure of correlators dominates response; e.g.
1

GR(k. w) ~ - - - -
(k,w) w 4+ iDk? +w+i7'—1+
—— ——

hydrodynamic diffusion finite lifetime

» quasiparticles replaced by these quasinormal modes

Im(w) Re(w) =0
r' 671

mfp

diffusion poles

mfp

non-hydrodynamic poles/branch cuts
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Linear response in holography

» recall in holography, bulk field ¢ obeys

0) ,/
=h d+1-A < A
¢ L/—’+2A—d—1r +
source S————
response

with r the bulk radial coordinate

P calculating linear response in holography:

» linearize bulk EOMs
» solve linear equations for a given h(x,t)
» if ¢ dual to O,

5(0(x,1))

R _
GOO(X7 Yy, t) - (Sh(y, 0)

» can generalize to evaluate higher-point (beyond linear
response) and far from equilibrium
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Linear response theory

Infalling boundary conditions

» calculating G® = infalling boundary conditions in the
presence of a black hole!

infalling

» stuff falling behind event horizon = thermalization
> e.g. scalar field ¢ obeys

o(k,w,r — 1Y) ~ (rh — r)_i“’/4"T
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Linear response theory

Holographic prescription for quasinormal modes

» holographic quasinormal mode = infalling solution without
boundary source!
» example for a scalar field in finite 7" CFT:

n=0 whe

—m

P> claim: every gapless holographic model has quasinormal
mode at frequency w, with

Im(wy) 2 =T

(Planckian decay rate)
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Transport and diffusion coefficients

Diffusion

P a particular quasinormal mode: hydrodynamic diffusion

ag
8tp = Dchargevzp = —V2/),
Xpp

T
O = Denergyv% = —HVQG,

€€
O P; = DmomentumVQF)i = LV2P1
XPP
with x denoting susceptibilities
» important technical comment: p/e diffusion generally mix
in a finite density state...

P> conjecture:

h
D =v*r 20—
~ kT
at least for some v? [Hartnoll; 1405.3651]
> transport coefficients o, x, 1 fixed by physics on the

horizon! (membrane paradigm) [Igbal, Liu; 0809.3808]
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P all holographic models with Einstein gravity + matter have

universal shear viscosity 7: [Kovtun, Son, Starinets; hep-th/0405231]
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Transport and diffusion coefficients

Viscosity bound

P all holographic models with Einstein gravity + matter have
universal shear viscosity 7: [Kovtun, Son, Starinets; hep-th/0405231]
n h
S - 4 kB
» conjecture: in a general (non-holographic) theory
ny b
s — 4rkp
P in a charge neutral system, ypp = T's:
n h
Dmomentum ~ JTS ~ kB_T

but at finite density, xpp # T's...



Transport and diffusion coefficients

Viscosity bound in experiment

» bound consistent with experiment: [Adams et al; 1205.5180]
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Transport and diffusion coefficients

Viscosity bound in experiment

» bound consistent with experiment: [Adams et al; 1205.5180]
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» theoretically, bound has been violated [Brigante et al; 0712.0805]
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Transport and diffusion coefficients

Conductivity at zero density

» at charge neutrality, conductivity o is a dissipative
hydrodynamic coefficient, like viscosity

> at a pure quantum critical point:
ok =0,w) = W'D F(w/T),

with F'(c0) fixed by ground state
» calculating F' is very hard:
» perturbative interaction methods have unphysical structure
due to quasiparticle decay
» numerical calculations usually in imaginary time — analytic
continuation ill-posed

» holographic calculation of F: ODE in Mathematica
0y (Y1(r)0,A,) = —w?Ya(r) A,

with Y7 2 known from bulk geometry



Transport and diffusion coefficients

Conductivity at zero density: graphene

» recent experiment on graphene measured o = F(w/T):

D 15

o (e2/h)

® 298 K
@ 238K
© 192K
© 158 K7

[Gallagher et al; (2019)]
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Analytic continuation

» using holography to analytically continue F' in a 2d lattice
model: [Witczak-Krempa et al; 1309.2941]




Transport and diffusion coefficients

Analytic continuation

» using holography to analytically continue F' in a 2d lattice
model: [Witczak-Krempa et al; 1309.2941]

0 2 4 6 8 10 N2 U
/2T

> note: w > T region also understood with conformal
perturbation theory [Lucas et al; 1608.02586]



Conductivity at finite density

Planckian time in experiment?

» Planckian resistivity observed in many strange metals:

m kT
pr~ g
ne® h
[Bruin et al; (2013)]
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Conductivity at finite density

The problem of momentum relaxation

J=nvand £ =0

» o sensitive to how translational symmetry broken
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Conductivity at finite density

Drude peak

phenomenological momentum balance equation:

Pi

O P' = —iwP" = -— +  nE
T ~—
~—~ Lorentz force

momentum relaxation

P = (e + P)v", J = nv',
momentum density charge current
Drude peak:
() J; n? 1
o\W) = — = .
.
E;, e+P1L1 iw
T

» transport dominated by slow momentum relaxation

does this really work? what is 77
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Conductivity at finite density

Holography and the memory matrix formalism

P> assume perturbatively weak disorder:
H = H, - /ddx h(x)O(x)

with Hy momentum conserving

» memory matrix formalism predicts Drude, with

1 1 Im (G¥, (k,
Lo L [ e 22 tim (Goollew)
T XPP w—0 w
» holography reproduces this result! [Lucas; 1501.05656]

w—0 w

~ N/ ghorizon¢(rh)2

because horizon physics determines spectral weight!
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spectral weight of operators O generically quite
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Conductivity at finite density

No generic Planckian transport times

>

>

spectral weight of operators O generically quite
complicated!

quantum critical theory with disordered operator of
dimension A: [Lucas, Sachdev, Schalm; 1401.7993]

P~ T2(1—z+A)/z

near Ising-nematic criticality? [Hartnoll et al; 1401.7012]
-1/2 .
p~ (T|logT|)~/? 4 T0987
near spin density wave criticality? [Patel, Sachdev; 1408.6549)

p~TO+ T+ T
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» “mean field”: holographic (bulk) theory
1
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with @ = ma (an exact solution)  [Andrade, Withers; 1311.5157]

» geometry is homogeneous. coupling to Einstein-Maxwell /
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“Mean field” models of disorder

» non-perturbative disorder strengths?
» highly inhomogeneous black holes (very hard!)
> “mean field” models — homogeneous, momentum relaxing

» “mean field”: holographic (bulk) theory
1
S =Sy + / dd”:m/_—gé(a@)2

with @ = ma (an exact solution)  [Andrade, Withers; 1311.5157]

» geometry is homogeneous. coupling to Einstein-Maxwell /
RN black hole (d = 2):

u? AnT's . w(m? + u?)
o~lt— , A~ S
m pe+m 3
—_——— ~ ~
electrical conductivity electrical conductivity entropy

» field theory analogues in U(1)-symmetric theories?
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Conductivity at finite density

Absence of disorder-driven metal-insulator transition

v

mean field model predicts always conducting

» o >0, k > 0 hold for arbitrarily inhomogeneous systems

v

e.g. AdS-Einstein-Maxwell (minimal) model, d = 2:

o >1 (conductivity of clean neutral plasma)
42T
-3

K

[Grozdanov, Lucas, Sachdev, Schalm; 1507.00003]
[Grozdanov, Lucas, Schalm; 1511.05970]

» (not a serious connection to Wiedemann-Franz law)

v

bounds saturated by mean field model with m = oo
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Conductivity scaling zoo

>
>

v

mean field models — no Planckian bound?
adding dilaton to bulk action...

Co(T)
o~ CU(T) + 2(_2)“
N—— m
“incoherent” « .
coherent

with C} 2(T") ~ T2 having tunable scaling
the usual “metal-insulator” transition is

Ci(T) ~T% « tunable through 0

and is neither Anderson or Mott
Planckian p = 1/0 ~ T not “universal” at strong coupling

many mean field models are unstable at large m — is there
a sensible endpoint?
[Caldarelli et al; 1612.07214]



Conductivity at finite density

Diffusion and chaos

» some universality: the thermal diffusion constant obeys

Vi
D =c—
thermal T

for O(1) constant ¢, in homogeneous systems
[Blake; 1604.01754]



Conductivity at finite density

Diffusion and chaos

» some universality: the thermal diffusion constant obeys

Vi
D =c—
thermal T

for O(1) constant ¢, in homogeneous systems
[Blake; 1604.01754]

> v = “butterfly velocity” of many-body chaos



Conductivity at finite density

Diffusion and chaos

» some universality: the thermal diffusion constant obeys
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thermal T
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» electron-phonon bad metal (large N)[Werman et al; 1705.07895]
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Conductivity at finite density

Diffusion and chaos

» some universality: the thermal diffusion constant obeys
2
v
D =c2B
thermal T
for O(1) constant ¢, in homogeneous systems
[Blake; 1604.01754]
> v = “butterfly velocity” of many-body chaos

» a similar relation in some CMT models

» SYK chains (large N) [Gu et al; 1609.07832]
» electron-phonon bad metal (large N)[Werman et al; 1705.07895]
> weakly interacting/ disordered metal [Patel et al; 1703.07353]

» this relation fails in inhomogeneous systems:

vi
Dihermal < C?

(left hand side can be arbitrarily smaller) [Gu et al; 1702.08462]
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Far from equilibrium dynamics

Nonlinear gravity is hard...

» holography far from linear response regime?
» quantum quenches

» superfluid turbulence [Adams et al; 1212.0281]
» (breakdown of?) Kibble-Zurek scaling [Chesler et al; 1407.1862)
» quantum entanglement spreading [Liu, Suh; 1305.7244]

» but ... numerical general relativity = hard!
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» long wavelength dynamics of black holes reproduces
nonlinear hydrodynamics!
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Far from equilibrium dynamics

Fluid-gravity correspondence

» long wavelength dynamics of black holes reproduces
nonlinear hydrodynamics!

as* = L2 [adri (@)da, + (1 = (0 B(@) (@), + dad ]

\ \ '51—:& / / /ﬁau <1 -

[Bhattacharyya, Hubeny, Minwalla, Rangamani; 0712.2456]

» this method can be used to generate high order corrections
to fluid dynamics: e.g.

O3 = DV?B + D,V*B + DgVop

Borel resummability of hydrodynamics can be investigated
[Grozdanov, Kovtun, Starinets, Tadic; 1904.01018]
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with O an operator of dimension A
[Das, Galante, Meyers; 1401.0560]
» energy density injected into CFT:

N dt1-A
- ()
€= 2A—d-1 T

with a holographic prediction for F(x) = Fy + Fiz + - - -
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Far from equilibrium dynamics

Quantum quenches

» consider a rapid change in the Hamiltonian:
t
H = Hcpr + Asech—O
T

with O an operator of dimension A
[Das, Galante, Meyers; 1401.0560]
» energy density injected into CFT:

N dt1-A
- ()
€= 2A—d-1 T

with a holographic prediction for F(x) = Fy + Fiz + - - -
» if O marginal (A =d + 1), Vaidya metric, describing

formation of a black hole: [Bhattacharyya, Minwalla; 0904 .0464]
L2 d+1
ds? = = {—Zdrdt - (1 — C%) de* + dx2]
r r

» (numerical) correlators tractable in these time-dependent
backgrounds



Open questions

» some questions for AdS/CMT?
» strongly disordered fixed points?
» thermalization of hot excitations in a critical soup?
> “floating black holes” as a breakdown of thermalization?
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» questions raised by AdS/CMT:

» thermal chaos/diffusion in spin chains?

» “incoherent” metals? resistivity saturation at strong
coupling?

» CFTs at finite T' — defects? OPE?
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