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• Please do not Pollute the Literature with 

Predictions on Impossible Materials 
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  protocol:	
  
	
  

Assume	
  hypothe3cal	
  structure,	
  then	
  predict	
  
(	
  e.g,	
  via	
  DFT)	
  an	
  interes3ng	
  proper3es.	
  

	
  
But	
  does	
  the	
  assumed	
  structure	
  have	
  a	
  chance	
  

to	
  	
  exist	
  ?	
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  of	
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• 	
  Optoelectronic	
  proper&es	
  of	
  120	
  hypothe&cal	
  ABX	
  
compounds	
  (e.g.	
  KCaN)	
  were	
  evaluated	
  (	
  literature)	
  	
  in	
  assumed	
  
structures	
  .We	
  found	
  (	
  via	
  DFT)	
  	
  most	
  of	
  these	
  compounds	
  	
  
would	
  	
  phase-­‐separate	
  	
  into	
  binaries.	
  
	
  
• 	
  	
  Topolgical	
  insula3ng	
  proper&es	
  were	
  predicted	
  for	
  	
  
LiHgAs,	
  LiHgSb,	
  NaHgAs	
  etc	
  (	
  literature)	
  .	
  	
  	
  We	
  found	
  these	
  
structures	
  are	
  	
  	
  thermodynamically	
  unstable	
  w.r.t.	
  
decomposi&on	
  into	
  binaries	
  
	
  
Fermion	
  quasipar3cle	
  in	
  the	
  SiO2-­‐	
  structure-­‐type	
  	
  of	
  BiO2.	
  	
  
	
  
• 	
  Harder-­‐than-­‐diamond	
  cubic	
  C3N4	
  	
  proposed	
  in	
  literature	
  	
  	
  
(actually	
  it	
  is	
  dynamically	
  unstable	
  in	
  this	
  crystal	
  structure)	
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(free	
  energy)	
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  parental	
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My Four Requests 
• Please do not Pollute the Literature with 

Predictions on Impossible Materials 

• Please do Consider the Limits of 
Synthesis  



Important Synthesis Rules 
• Gibbs’ Rule 
∆G < 0 to form stable phases 
 

• Matthias’s Rules for Superconductors 
… “Stay away from Theorists” 
 

• Pauling’s Rules for Crystal Structures 
Radius ratio criteria for stability 
 



Rules for QM Synthesis 
• Gibbs’ Rule 
∆G < 0 to form stable phases 
 

• Matthias’s Rules for Superconductors 
… “Stay away from Theorists” 
 

• Pauling’s Rules for Crystal Structures 
Radius ratio criteria for stability 
 



• Gibbs’ Rule 
∆G < 0 to form stable phases 
 

Break The Rules 



Epitaxial	
  Stabiliza4on	
  

versus 

∆G > 0 

∆G < 0 

∆G < 0 

Stable if free energy difference overcome by 
∆(interface energy) +  
∆(strain energy) + 
∆(surface energy) ∆G > 0 

Bulk	
  Synthesis	
  

Break 

E.S. Machlin and P. Chaudhari, in ���
Synthesis and Properties of Metastable Phases,���

edited by E.S. Machlin and T.J. Rowland, (The Metallurgical 
Society of AIME, Warrendale, 1980), pp. 11-29. 

Gibbs’ Rule 



• Gibbs’ Rule 
∆G < 0 to form stable phases 
Exploit interfacial energy from substrate 

Break the Rules 



Substrates are Important 

Epitaxial	
  Stabiliza4on	
  

Polariza4on	
  Doping	
  

E.S. Machlin and P. Chaudhari,���
“Theory of ‘Pseudomorphic Stabilization’ of���
Metastable Phases in Thin Film Form,” in ���

Synthesis and Properties of Metastable Phases,���
edited by E.S. Machlin and T.J. Rowland���

(The Metallurgical Society of AIME, Warrendale, 1980), pp. 11-29. 

“Indeed, to achieve the objective of 
‘psuedomorphic stabilization,’ the 

researcher should make the attempt 
to choose the substrate …” 



[110] GdScO3, d = 32 mm [110] DyScO3, d = 32 mm 

Commercial Perovskite Substrates 

D.G. Schlom, L.Q. Chen, C.J. Fennie,���
V. Gopalan, D.A. Muller, X.Q. Pan,���

R. Ramesh, and R. Uecker,���
“Elastic Strain Engineering���

of Ferroic Oxides,”���
MRS Bulletin 39 (2014) 118-130. 



BaRuO3 Polymorphs 

C.Q. Jin, J.S. Zhou, J.B. Goodenough, Q.Q. Liu,���
J.G. Zhao, L.X. Yang, Y. Yu, R.C. Yu,���

T. Katsura, A. Shatskiy, and E. Ito,���
“High-Pressure Synthesis of the Cubic Perovskite 

BaRuO3 and Evolution of Ferromagnetism in ARuO3 
(A = Ca, Sr, Ba) Ruthenates,”���
PNAS 105 (2008) 7115–7119.

perovskite structure of space group Pm-3m. Results of Rietveld
analysis of the x-ray diffraction for perovskite ruthenates ARuO3
(A ! Ca, Sr, Ba) are given in Table 1, which illustrates a
systematical structural change from CaRuO3 to SrRuO3 and to
BaRuO3. The significant structural changes as a function of rA
include (i) the bending of the (180° " !) Ru–O–Ru bonds
decreases from 148.6° in CaRuO3 to 162.6 ° in SrRuO3 and finally
to 180° in cubic BaRuO3; (ii) the (Ru–O) bond length d ! 2.003
Å in cubic BaRuO3 is slightly stretched in comparison with the

average Ru–O bond length d ! 1.986 Å in SrRuO3 and d ! 1.996
Å in CaRuO3; (iii) the octahedral-site distortion as measured by
the difference between three Ru–O bond lengths becomes more
obvious in CaRuO3, but it remains within the level of intrinsic
structural distortion generally found in the orthorhombic per-
ovskite structure with Pbnm space group. The cubic BaRuO3 is
stable down to 10 K as checked by x-ray diffraction.

The transport properties of Fig. 2 show that cubic BaRuO3
remains metallic down to 4.2 K. However, the ferromagnetic
transition temperature Tc is 60 K, #100 K lower than that of
SrRuO3, and the saturation magnetization at 5 K in a magnetic
field of 5 Tesla remains near 0.8 "B/Ru, far $2.0 "B/Ru expected
for a localized electron-spin-only moment for low-spin
Ru(IV):t4e0 and significantly lower than the 1.4 "B/Ru in
SrRuO3. A small substitution of Ba for Sr in Sr1"yBayRuO3 does
not change the magnetization at 5 K; it remains #1.4 "B/Ru.
However, the effective magnetic moment "eff # 2.6 "B/Ru
calculated from the paramagnetic phase, which is close to the
spin-only 2.8 "B/Ru for S ! 1, is similar for all of the Ba doped
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Fig. 1. The crystallography of ARuO3. (a) Schematic drawing of the three
perovskites CaRuO3, SrRuO3, and BaRuO3 where red balls stand for O, blue
balls for Ru, and yellow balls for alkaline earth Ca, Sr, and Ba. (b) The crystal
structures of the BaRuO3 polytypes. Blocks of the face-shared and corner-
shared RuO6 octahedra are stacked alternately along the c axis. (c) X-ray
powder diffraction spectra of the perovskites CaRuO3, SrRuO3, and BaRuO3

and their best fit with the Rietveld analysis at room temperature.

Table 1. Results of the Rietveld refinement of the x-ray
diffraction of Fig.1c

CaRuO3

(Orthorhombic)
SrRuO3

(Orthorhombic)
BaRuO3

(Cubic)

Space group Pnma(62) Pnma(62) Pm-3m(221)
a, Å 5.35744(3) 5.57108(4) 4.0059(2)
b, Å 5.53298(3) 5.53543(4)
c, Å 7.66333(4) 7.85040(7)
Ru-O1 (Å) %2 1.9909(4) 1.9842(7) 2.0029
Ru-O2 (Å) %2 2.000(3) 1.986(7)
Ru-O2 (Å) %2 1.997(2) 1.988(6)
Ru-O1-Ru, ° 148.60(2) 163.08(3) 180
Ru-O2-Ru, ° 148.7(1) 162.4(3)
Rp, % 8.19 5.9 7.6
# 2 3.1 2.3 2.5
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Fig. 2. The primary electric and magnetic properties of BaRuO3 cubic
perovskite. (a) Temperature dependence of the resistivity $ and its derivative
d$/dT of cubic BaRuO3; dashed line on the curve d$/dT vs. T is a curve fitting to
the formula !(T " Tc)/Tc!"%, % ! 0.11. (Inset) Shown is the temperature depen-
dence of thermoelectric power. (b) Temperature dependence of the molar
magnetic susceptibility of perovskite BaRuO3. (Inset) Shown is the magneti-
zation at 5 K.

7116 ! www.pnas.org"cgi"doi"10.1073"pnas.0710928105 Jin et al.

perovskite structure of space group Pm-3m. Results of Rietveld
analysis of the x-ray diffraction for perovskite ruthenates ARuO3
(A ! Ca, Sr, Ba) are given in Table 1, which illustrates a
systematical structural change from CaRuO3 to SrRuO3 and to
BaRuO3. The significant structural changes as a function of rA
include (i) the bending of the (180° " !) Ru–O–Ru bonds
decreases from 148.6° in CaRuO3 to 162.6 ° in SrRuO3 and finally
to 180° in cubic BaRuO3; (ii) the (Ru–O) bond length d ! 2.003
Å in cubic BaRuO3 is slightly stretched in comparison with the

average Ru–O bond length d ! 1.986 Å in SrRuO3 and d ! 1.996
Å in CaRuO3; (iii) the octahedral-site distortion as measured by
the difference between three Ru–O bond lengths becomes more
obvious in CaRuO3, but it remains within the level of intrinsic
structural distortion generally found in the orthorhombic per-
ovskite structure with Pbnm space group. The cubic BaRuO3 is
stable down to 10 K as checked by x-ray diffraction.

The transport properties of Fig. 2 show that cubic BaRuO3
remains metallic down to 4.2 K. However, the ferromagnetic
transition temperature Tc is 60 K, #100 K lower than that of
SrRuO3, and the saturation magnetization at 5 K in a magnetic
field of 5 Tesla remains near 0.8 "B/Ru, far $2.0 "B/Ru expected
for a localized electron-spin-only moment for low-spin
Ru(IV):t4e0 and significantly lower than the 1.4 "B/Ru in
SrRuO3. A small substitution of Ba for Sr in Sr1"yBayRuO3 does
not change the magnetization at 5 K; it remains #1.4 "B/Ru.
However, the effective magnetic moment "eff # 2.6 "B/Ru
calculated from the paramagnetic phase, which is close to the
spin-only 2.8 "B/Ru for S ! 1, is similar for all of the Ba doped
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Fig. 1. The crystallography of ARuO3. (a) Schematic drawing of the three
perovskites CaRuO3, SrRuO3, and BaRuO3 where red balls stand for O, blue
balls for Ru, and yellow balls for alkaline earth Ca, Sr, and Ba. (b) The crystal
structures of the BaRuO3 polytypes. Blocks of the face-shared and corner-
shared RuO6 octahedra are stacked alternately along the c axis. (c) X-ray
powder diffraction spectra of the perovskites CaRuO3, SrRuO3, and BaRuO3

and their best fit with the Rietveld analysis at room temperature.

Table 1. Results of the Rietveld refinement of the x-ray
diffraction of Fig.1c

CaRuO3

(Orthorhombic)
SrRuO3

(Orthorhombic)
BaRuO3

(Cubic)

Space group Pnma(62) Pnma(62) Pm-3m(221)
a, Å 5.35744(3) 5.57108(4) 4.0059(2)
b, Å 5.53298(3) 5.53543(4)
c, Å 7.66333(4) 7.85040(7)
Ru-O1 (Å) %2 1.9909(4) 1.9842(7) 2.0029
Ru-O2 (Å) %2 2.000(3) 1.986(7)
Ru-O2 (Å) %2 1.997(2) 1.988(6)
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Fig. 2. The primary electric and magnetic properties of BaRuO3 cubic
perovskite. (a) Temperature dependence of the resistivity $ and its derivative
d$/dT of cubic BaRuO3; dashed line on the curve d$/dT vs. T is a curve fitting to
the formula !(T " Tc)/Tc!"%, % ! 0.11. (Inset) Shown is the temperature depen-
dence of thermoelectric power. (b) Temperature dependence of the molar
magnetic susceptibility of perovskite BaRuO3. (Inset) Shown is the magneti-
zation at 5 K.
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FM 
TC = 60 K 



Example — BaRuO3 / SrTiO3 

• Epitaxially stabilized for ≤ 5 unit cells 

• No octahedral rotations 
(2.5% compressive strain è tetragonal) 

• ρ300 K 

• No FM 

Suppression of ferromagnetism due to dimensional confinement in ultrathin BaRuO3

quantum wells

Bulat Burganov,1 Hanjong Paik,2 Jason Kawasaki,1, 3 Shin,4 D. G. Schlom,2, 3 and K. M. Shen1, 3, ⇤

1
Laboratory of Atomic and Solid State Physics, Department of Physics,

Cornell University, Ithaca, New York 14853, USA

2
Department of Materials Science and Engineering,

Cornell University, Ithaca, New York 14853, USA

3
Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

4
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

Quantum confinement is a powerful tool for manip-
ulating the electronic and magnetic properties of elec-
tronic materials, for instance, in the formation of two-
dimensional electron gases in AlGaAs-GaAs based het-
erostructures, or at the interface between LaAlO3 and
SrTiO3. Here we demonstrate quantum confinement in
atomically thin films of the cubic ruthenate BaRuO3, a
close analogue of SrRuO3.

BaRuO3 can be crystallized in a number of structures,
including the 9R, 4H, and 6H polytypes. Only recently
has the cubic perovskite 3C polytype been synthesized in
polycrystalline form under 18 GPa of pressure. Until this
work, there have been no experimental reports on sin-
gle crystalline BaRuO3, either in bulk or thin film form.
Here we employ epitaxial stabilization to synthesize ul-
trathin film samples of cubic perovskite BaRuO3 and in-
vestigate its electronic and magnetic properties through
a combination of x-ray and electron di↵raction, electri-
cal resistivity, and angle-resolved photoemission spec-
troscopy. We find that the atomically thin nature of these
films (2-4 unit cells) gives rise to quantum confinement
of the electronic structure into well-defined sub-bands.
Furthermore, we find that ferromagnetism is suppressed
in the ultrathin limit in favor of a clean, paramagnetic
metallic ground state. We propose that the reduction of
the density of states (DOS) at the Fermi energy (E

F

)
due to the quantum confinement is responsible for the
absence of ferromagnetism in the atomically thin limit,
in contrast to bulk materials. BaRuO3 provides an ideal
platform to investigate the e↵ects of quantum confine-
ment on the emergent properties of correlated quantum
materials. First of all, BaRuO3 exhibits a ferromagnetic
ground state whose dependence can be explored versus
thickness, in contrast to materials like SrVO3 or LaNiO3,
which have Fermi liquid ground states. Second, BaRuO3

should possess a relatively simple electronic structure
due to its 180� Ru-O-Ru bonds, in contrast to its close
cousins, SrRuO3 and CaRuO3, which possess a Pbnm
space group due to octahedral rotations, resulting in a
larger unit cell (4 Ru atoms / unit cell) and a much more
complex band structure. Third, BaRuO3 may o↵er a
unique insight into ferromagnetism of perovskite ruthen-
ates as a case where FM order is weakened compared to
SrRuO3 despite the the van Hove peak in the density of
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FIG. 1. (a) Crystal structure (b) Low-energy electron di↵rac-
tion image (c) Resistivity (d) Valence band spectrum near
k = (⇡,⇡) (red) and DOS from GGA (grey) (e) RHEED im-
age taken during growth.

states being stronger and almost at the Fermi level.
BaRuO3 thin films were grown by reactive oxide molec-

ular beam epitaxy (MBE) at 600� and 2 ⇥10�7 torr of
10% distilled O3 on SrTiO3 substrates. The lattice mis-
match between SrTiO3 (3.905 Å) and BaRuO3 (4.0059
Å) indicate that the films are under 2.5% compressive
strain at room temperature. Above a critical thickness
of 5 u.c., the films converted to a secondary phase, likely
either the 4H or 6H hexagonal polytypes, which revealed
itself as additional di↵raction peaks in RHEED, as shown
in Figure 1(e). Therefore, all the thin films that we re-
port in this study range from 2-5 u.c. thickness. In
Supplemental Figure 1, we show structural character-
izations of our BaRuO3 thin films by synchrotron x-
ray di↵raction at the Cornell High-Energy Synchrotron
Source, which confirms the cubic Pm-3m space group
of the thin films. In Figure 1(c), we also show electri-
cal resistivity measurements which reveal a number of
crucial features about these samples. First, the residual

ρ4 K 
_____  = 7 



• Gibbs’ Rule 
∆G < 0 to form stable phases 
Exploit interfacial energy from substrate 

• Matthias’s Rules for Superconductors 
… “Stay away from Theorists” 

Break the Rules 
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From Steve Girvin’s lecture (Boulder Summer School 2000) courtesy of Mike Norman via Matthew Fisher 
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Thin-Film Synthesis 

Team up with Theorists 
Break         Matthias’ Rule 



Provide useful Feedback to Theory 
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• Gibbs’ Rule 
∆G < 0 to form stable phases 
Exploit interfacial energy from substrate 

• Matthias’s Rules for Superconductors 
… “Stay away from Theorists” 
Team up with theorists 
(and provide them with useful feedback 
e.g., Thin-Film Synthesis + ARPES) 

Break the Rules 



Why Thin-Film Synthesis + ARPES ? 
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Example—Hidden Phases of LuFe2O4
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Extended Data Figure 9 | Spin configurations of the COI and COII 
structures of LuFe2O4. a, Left, calculated density of states (DOS) for 
LuFe2O4 with the COI magnetic ground state, along with the occupancy 
of the iron 3d channel. Upper and lower panels show the DOS for the 
Fe2+ and Fe3+ ions, respectively. Oxygen 2p states are plotted in each case. 
Right, the crystal field splitting from the trigonal bipyramid symmetry 
and occupancy of the iron 3d channel. b, Low-energy spin configurations 
of COI and COII states labelled with the corresponding magnetization. 

Although the ground states of COI and COII have magnetizations of 
0.5µB/Fe and 1.17µB/Fe, respectively, each has additional low-energy 
configurations with M ranging from 0µB/Fe to 1.17µB/Fe. Lutetium,  
Fe3+, Fe2+ and oxygen are shown in turquoise, yellow (spins in red), green 
(spins in blue) and brown, respectively. c, Low-energy spin configurations 
of hole-doped COI and COII states labelled with the corresponding 
magnetization.
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MBE ≈ Atomic Spray Painting 
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Oxide MBE + ARPES 

Angle-Resolved 
Photoemission  
Spectroscopy 
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ARPES of BaRuO3 / SrTiO3 
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Quantum Well States in BaRuO3 
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How about Pyrochlores? 
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Break the Rules 
• Gibbs’ Rule 
∆G < 0 to form stable phases 
Exploit interfacial energy from substrate 

• Matthias’s Rules for Superconductors 
… “Stay away from Theorists” 
Team up with theorists 
(and provide them with useful feedback) 

• Pauling’s Rules for Crystal Structures 
Radius ratio criteria for stability 
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In Table 1, we present the calculated results of the magnetic
exchange interactions (J) for the first, second and third NN Eu
ions for the ETO I4/mcm structure for both bulk (zero boundary
conditions) and under ! 0.9% compressive strain, simulating
epitaxial growth on the LSAT substrate. The exchange constants
are broken down further into in-plane (xy) and out-of-plane (z),
with positive and negative values indicating FM and AFM,
respectively. We find that both the first and second NN Eu atoms
interact in aggregate, with FM order. The third NN interaction,
however, is AFM coupled. This diagonal exchange is most likely
facilitated by the central Ti 3d0 band coupled to the Eu 4f7 spins
through a 1801 SE mechanism mediated by the intra-atomic-
hybridized 4f-5d orbitals, similar to the previously proposed 901
SE mechanism between the first NN Eu ions29. As a result, the
G-AFM structure is dependent upon this third NN interaction.
Moreover, the strength of this SE coupling is reliant upon the Eu–
Ti–Eu bond alignment and the degree of interatomic orbital
overlap, thus sufficient angular distortion could significantly alter
the magnetic structure of the entire system35.

Applying electric fields. Upon this premise, the paraelectric
nature of the ETO film becomes central to the feasibility of ME
control. In Fig. 4a, the cartoon illustrates how the third NN
interaction bond angle alignment is distorted by the Ti dis-
placement from its central position under an applied E-field,
reducing the efficacy of the interaction. Under biaxial compres-
sion, the system is expected to have a preferential uniaxial polar
anisotropy with the Ti displacement out of the film plane. Thus in
order to examine the capability of ME cross-field control, we
measured the magnetic signature of the strained ETO–LSAT film

where the competition between the magnetic interactions is
prevalent and applied an E-field across the film to further alter the
magnetic balance, as illustrated in the sample schematic in
Fig. 4b.

A series of reciprocal space scans through the G-AFM (1/2 1/2
5/2) ETO magnetic reflection at 1.9 K versus E-field strength is
presented in Fig. 4c. The suppression of the XRMS intensity with
E-field is clearly displayed and is ostensibly eliminated by 1.0"
105 V cm! 1. The transition lacks hysteresis, is continuous and
reproducible. In Fig. 4d, the resonant magnetic scattering
amplitude at the fixed film Q position is plotted with decreasing
E-field strength and on the return the data are extracted from a
series of L scans through the magnetic reflection at each field
point. This plot exemplifies the reversibility and demonstrates the
stability of the transition with each data point separated by
30 min on the return.

To further establish the proposed underlying ME microscopic
mechanism, we performed first-principles DFT calculations to
replicate the response of the applied E-field on the strained film.
In Fig. 4d, the calculated enthalpy difference between the G-AFM
and FM spin configurations is plotted against the effective
polarization. The simulation calculates the lowest-frequency polar
Eigen mode, and forcibly displaces the oxygen ions incrementally
further from the face centre in conjunction with the Ti shift to
maintain this frequency minimum. The resulting energy differ-
ences between both magnetic states are calculated. The system
responds by energetically trending from AFM towards FM order
with increasing polarization. Crucially, it is the paraelectric
ground state that allows for the ability to displace the Ti atom.
This shift affects the relative strength of the local magnetic
interactions reducing the third NN exchange coupling. This
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Figure 4 | Electric field control of the magnetic state. (a) The response of the Ti atom to E-field is represented pictorially as a displacement along the
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first-principles DFT focused on the first and second NN Eu ion
interactions, illustrated in Fig. 3a—inset29,30. Without significant
volume (lattice) expansion, the calculations found FM order
preferential. However, to investigate the underlying factor leading
to the G-AFM magnetic structure, the issue of symmetry needed
to be addressed, in order to best know the structure at hand. This
was accomplished through a combination of DFT calculations
and X-ray diffraction (XRD) measurements. Until recently, bulk
EuTiO3 under zero stress boundary conditions was traditionally
believed to be in high-symmetry cubic Pm-3m space group.
However, our first-principles calculations indicated that there
were strong rotational instabilities as recently discussed by
Rushchanskii et al.31 With full ionic relaxation, we show that
the lowest energy structure is I4/mcm or (a0a0c! ) in Glazer
notation with the emergence of antiferrodistortive (AFD) oxygen
octahedral rotations32. The energy gained from this distortion is
30 meV f.u.! 1(formula unit); however, the energy difference
between this state and another metastable state, Imma,
(a! a! c0), is less than an meV f.u.! 1 The competition between
these two possible rotation patterns becomes evident when we
consider the structures under strain. To simulate strain, geometric
relaxations were performed keeping the in-plane lattice constant
fixed and relaxing the out-of-plane lattice length corresponding to

the films fixed biaxial boundary conditions. When we compare
energies of different rotation patterns under these conditions, the
two aforementioned patterns compete. Consequently the
(a! a! c0) pattern is favoured under tensile strain and (a0a0c! )
is preferred under compressive strain. XRD confirmed the I4/
mcm symmetry in the compressed ETO film on LSAT(001).The
combination of the non-zero H¼ L (1/2 5/2 1/2)ETO reflection
with the absence of the H¼K (1/2 1/2 5/2)ETO peak presented in
Fig. 3b indicates the emergence of a pure in-plane AFD rotation
finding agreement with the DFT calculations33.

Including the octahedral rotations in our DFT calculations
increases the compressive strain required to induce the predicted
polar instability24. The competitive coupling between the polar
and rotational structural instabilities leads to the calculated
suppression of the phonon instability state34. The biaxial
compression drives the AFD in-plane rotation in an attempt to
maintain the Ti–O bond lengths, consequently preventing the
T01 phonon from ‘freezing’ out of the film plane by providing a
mechanism to minimize bond length changes. While the previous
calculations without rotations (pm-3m) indicated a B! 0.9%
strain generating the polar instability, our current calculations,
including the AFD rotations, require B! 2.5% compressive
strain beyond what is currently achievable.
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Figure 3 | Magnetic critical behaviour of the three strain states and XRD of the oxygen octahedral rotations in the ETO on LSAT. (a) The temperature
dependence of the XRMS Eu LII amplitudes for all three strain states, STO—unstrained, LSAT—0.9% compressive and DSO—1.1% tensile. The solid lines
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tensile (DSO) films show typical three-dimensional Heisenberg behaviour while the compressively strained (LSAT) film shows significant suppression, a
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(002)ETO reciprocal position with respect to the substrate (002)LSAT.

Table 1 | Calculated magnetic exchange constants.

ETO–LSAT J1xy J1z J2xy J2z J3

J/KB(K)–bulk þ0.075 !0.114 þ0.062 þ0.083 !0.031
# Neighbours 4 2 4 8 8
J/KB(K)–LSAT þ0.086 !0.147 þ0.06 þ0.087 !0.034

Shown are the exchange constants (J) calculated between the Eu ions within the unconstrained bulk I4/mcm ETO and the ETO film on LSAT with (a0a0c! ) structure under !0.9% compressive strain,
including the first, second and third NN Eu ions describing both the in-plane (xy) and out-of-plane (z) interactions. Positive indicates FM and negative AFM coupling. The second row indicates the number
of neighbours for each particular interaction. The first and second NN interactions are mostly FM bar the first NN out-of-plane J1z exchange constant. The calculations indicate the importance of J3 in
determining the G-AFM structure in ETO.
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[110] GdScO3, d = 32 mm [110] DyScO3, d = 32 mm 

Commercial Perovskite Substrates 

D.G. Schlom, L.Q. Chen, C.J. Fennie,���
V. Gopalan, D.A. Muller, X.Q. Pan,���

R. Ramesh, and R. Uecker,���
“Elastic Strain Engineering���

of Ferroic Oxides,”���
MRS Bulletin 39 (2014) 118-130. 



TC goes down with 
increasing  pressure 

 N. Shirakawa, K. Murata, S. Nishizaki, Y. Maeno, T. Fujita, 
Phys. Rev. B 56 (1997) 7890-7893.

Pressure (kbar) 

T c
 (K

) 

Effect of Strain on Sr2RuO4 
(a spin-triplet superconductor) 

Apply 
negative 
pressure  

 
TC 

increases? 
 

→ apply negative pressure 

-15        -10        -5  

Pressure (kbar) n = 1 

Sr2RuO4 



C.W. Hicks, D.O. Brodsky, E.A. Yelland, A.S. Gibbs, J.A.N. Bruin, M.E. Barber, S.D. Edkins, K. Nishimura, S. Yonezawa, 
Y. Maeno, and A.P. Mackenzie, Science 344 (2014) 283–285.���

+ arXiv:1604.06669

0.5% strain along [100] 

enhancements in Tc may be tied to proximity of van Hove singularity to EF, but 
strains that can be applied to single crystal Sr2RuO4 are relatively modest 

(≤ 0.8%; Tc,max of 3.4 K at 0.6% uniaxial compressive strain) 

In-plane Uniaxial Strain Dramatically 
Increases Tc in Sr2RuO4 



bulk 
Sr2RuO4 

3.860 

In-Plane Lattice Constant (Å) 

3.868 
(+0.2%) 

bulk 
Sr2RuO4 
(uniaxial) SrTiO3 

3.905 
(+0.9%) 

Much Larger Elastic Strains are 
Possible in Epitaxial Thin Films 



Unstrained Sr2RuO4 Sr2RuO4 on SrTiO3 (+0.9%) 

thin films still non-superconducting due to extreme sensitivity of 
spin-triplet SC to disorder, but low resistivities (5 µΩ·cm) 

k
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Strain Control of Fermi Surface in 
Sr2RuO4  



bulk 
Sr2RuO4 

3.860 3.868 
(+0.2%) 

bulk 
Sr2RuO4 

(uniaxial) SrTiO3 

3.905 
(+0.9%) 

In-Plane Lattice Constant  (Å) 

Lifshitz transition 

3.942 
(+2.1%) 

3.960 
(+2.6%) 

DyScO3 GdScO3 

•  Ba2RuO4 is isoelectronic and isostructural to Sr2RuO4 
•  Metastable in bulk, but can be epitaxially stabilized 

Pushing to Higher “strains” using 
Epitaxial Stabilization of Ba2RuO4 



Unstrained Sr2RuO4 Sr2RuO4 on SrTiO3 (+0.9%) Ba2RuO4 on GdScO3 (+2.6%) 

�

Large epitaxial strains turn the large electron-like Fermi 
surface closed around Γ to a hole-like Fermi surface 

closed around X 

X

M

Strain Control of Fermi Surface in 
Sr2RuO4 
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Strain Control of Band Structure and 
van Hove singularity 

B. Burganov, C. Adamo, A. Mulder, M. Uchida, P.D.C. King,���
J.W. Harter, D.E. Shai, A.S. Gibbs, A.P. Mackenzie, R. Uecker,���

M. Bruetzam, M.R. Beasley, C.J. Fennie, D.G. Schlom, and K.M. Shen, 
Physical Review Letters 116 (2016) 197003. 



Spin-triplet superconductivity is predicted to be strongly enhanced 
when the van Hove singularity is brought near the Fermi level 

(see arXiv:1604.06661) 

0.5 2.0 2.5 

Theory Predicts Enhancement of 
Spin-triplet Superconductivity 

Eun-Ah Kim 

Craig Fennie 



Imagine Tuning Quantum Materials 
Independent Control of 
•  Strain 

•  Doping 

•  Octahedral 
Rotations 

•  Proximity 
Effects 

•  Dimensionality 

•  … 

With ability to see 
changes in electronic structure 

Metal- 
Insulator 

Transitions 

Carrier Density 
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Multiferroics



Rules for QM Synthesis 
• Gibbs’ Rule 
∆G < 0 to form stable phases 
 

• Matthias’s Rules for Superconductors 
… “Stay away from Theorists” 
 

• Pauling’s Rules for Crystal Structures 
Radius ratio criteria for stability 
 



My Four Requests 
• Please do not Pollute the Literature with 

Predictions on Impossible Materials 

• Please do Consider the Limits of 
Synthesis  

• Please do use the new NSF-MIP National 
User Facilities (PARADIM + 2DCC) 



ICMSE 
AMM 

DMREF 

Materials Genome Initiative 

CMS 

PMS&C 

Enabling the discovery, development, manufacturing, and deployment of advanced 
materials at least twice as fast as possible today, at a fraction of the cost. 

Leading a culture shift 
in materials research 

Integrating experiment, 
computation, and theory 

Making digital  
data accessible 

Creating a world-class 
materials workforce 

ICME 

CAMD 

MIP 

Credit:  Chuck Ward (AFRL)  



Broad access to compelling synthetic tools with integrated theory support
2D chalcogenide monolayers, surfaces and interfaces are emerging as a compelling class of systems with 
transformative new science that can be harnessed for novel device technologies in next-generation electronics. 

An NSF user facility with broad access:

Hybrid MBE
Chalcogenide MOCVD

CVT, Bridgman

STM/AFM
ARPES
4-probe

Raman, PL

DFT
Reactive FF
Monte Carlo
Phase field

insights into growth in situ measurement 

characterization & 
interpretation 

• Open calls for user proposals,
• No user fees for academic use
• Access to a team of local experts 
• Community knowledge-base of synthetic 

protocols

• Webinars, Workshops, Website resources
•  Partnership opportunities with PUI, MSI

mip.psu.edu
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New $25 Million National 
User Facility to help YOU 

Break 
the Rules! 

for FREE 
 

www.paradim.org 



User 
Facilities 

New Chemistry 
New Physics 

New Materials Science 
New Materials 

Thin Film Bulk 

Theory & Computation Electron Microscopy 
Characterization 

kx (π/a) 

k y
 (π

/a
) 



Bulk Crystal Growth User Facility 
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Rou3ne,	
  in	
  situ	
  Growth	
  Guidance	
  Expanded	
  Growth	
  Condi3ons	
  

P	
  =	
  300	
  atm	
  (first	
  in	
  world)	
  
Supercri&cal	
  fluids	
  

Safe	
  highly	
  toxics,	
  
Bridgeman	
  in	
  FZ	
  

(first	
  FeSc2S4	
  crystals)	
  	
  

X-­‐ray	
  CT	
  and	
  Laue	
  

Vapor	
  Equilibria	
  

Identify origin of 
defect structures Tyrel McQueen 



Thin Film User Facility (opens 2017) 
Expanded	
  Growth	
  Condi3ons	
   Rou3ne,	
  in	
  situ	
  Growth	
  and	
  Characteriza3on	
  

Any	
  11	
  of	
  62	
  elements	
  by	
  MBE	
  at	
  one	
  &me	
  
(and	
  refills	
  without	
  breaking	
  chamber	
  vacuum)	
  

Tsub	
  <	
  1400	
  °C	
  
Many	
  others	
  (e.g.,	
  chalcogenides)	
  via	
  MOCVD	
  

Jiwoong 
Park 



Electron Microscopy User Facility 
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Park, McEuen, Muller,  
Nature 469 (2011) 389 

Imaging grains in 
2D materials 

Atomic resolution Elemental 
Mapping 

Muller, Kourkoutis, Murfitt, Song, Hwang, Silcox, 
Dellby, Krivanek, Science 319 (2008) 1073  

Atomic resolution Imaging 

2 nm
Kourkoutis, Song, Hwang, Muller, 

PNAS 107 (2010) 11682  
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First 5th order 
aberration 

corrected STEM 

-  Atomic resolution 
imaging + spectroscopic 

mapping at LN2 temp. 
-  Magnetic imaging by 

Lorentz TEM 

First of its 
kind 

cryoSTEM 

Lena Kourkoutis 



Electron Microscopy for Materials 
Characterization at the Atomic Scale 

Chemical Imaging 

Mn 

Ti La 

Science 319, 1073 (2008). Nano Lett. 12, 1081 (2012) 

Seeing Every Atom Physical Properties 

Microsc. and Microanal. 
22, 237 (2016) 

Tools for: 



Theory User Facility 
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Consulta&on—Advise	
  and	
  Help 	
  	
  	
  	
  Collabora&on—coauthoring	
  
Key elements:   

•  Fundamental theory 
•  Well-known Algorithms 
•  Software packages 
•  Efficiency techniques 

Aided by:  Materials-by-Design Toolbox 
•  Community  
•  On-Line Short Courses 
•  Open-source code 
•  Databases 
•  Tutorials 
•  Written instructions 

Key elements:   
•  Advanced/new theory 
•  Advanced/new Algorithms 
•  Specialty Software packages 
•  Runtime optimization 
 

Aided by:  Materials-by-Design Toolbox 
•  Community 
•  Databases 
•  Commercial codes 
•  Specialized codes  
•  Code modifications 

Helping to close the gap with experiment 
Two	
  modes	
  of	
  opera&on	
  

Larry Wang 



PARADIM — A National User Facility 
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•  Theory to help guide experiment 

•  High-pressure (supercritical fluid) floating-zone growth 

•  Mass spectrometry and computed tomography during 
bulk crystal growth 

•  Integrated MOCVD + MBE + ARPES 

•  High sensitivity, high dynamic range pixel array 
detector for quantitative mapping of E and B fields 
with sub-nm resolution 

•  Stable cryo-stages for STEM and STEM-EELS 
at 20 K and 80-1200 K 

FREE to the academic community via 2-page proposals 
Summer Schools to build a community of practitioners 

Crystal Growth and Design, July 16th-21th, 2017 
Electron Microscopy, June 18th-23th, 2017 

http://paradim.cornell.edu 



My Four Requests 
• Please do not Pollute the Literature with 

Predictions on Impossible Materials 

• Please do Consider the Limits of 
Synthesis  

• Please do use the new NSF-MIP National 
User Facilities (PARADIM + 2DCC) 

• Please do Tell me First if you Predict a 
Materials-Specific Embodiment of a 
Room-Temperature Superconductor 




