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Plan:

* Today:

The introduction of symmetry fractionalization:

(1) AKLT chain

(2) Generalized symmetry fractionalizations for:
topological defects (dislocations in topological insulators)
topological excitations in topologically ordered phases.

* Tomorrow:

(1) Quantum spin liguid phases in frustrated magnets, and related
experiments in materials

(2) Parton constructions of quantum spin liquids, and symmetry
fractionalization
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Symmetry protected topological phases

electrons can move along edge (conducting)

symmetry protected topological phases

electrons localized in orbits (insulating)

Top. Top.
Insulator superconductor

Ordinary bulk excitation

Integer quantum hall state: Symmetry-protected gapless edge modes

Chiral edge state

Quantum spin hall state:
helical edge state

 These characteristic gapless edge states are “anomalous”.
Namely, they can never be realized in a (d-1)-dimension system,
assuming certain global symmetry is respected.



Example: Anomalous edge states

* Chiral edge state of integer quantum hall liquid cannot be
realized in 1-spatial dimension:

Easy to show: 8 - e M

current Chemical potential
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Namely, a position dependent chemical
potential will break current conservation in 1D.
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Example: Anomalous edge states

* Chiral edge state of integer quantum hall liquid cannot be
realized in 1-spatial dimension:

*

Easy to show: 8 — e. M

e& M 00& current Chemical potential

Namely, a position dependent chemical
potential will break current conservation in 1D.
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This is just the hall effect at 2D boundary.



SPT phases --- Key feature:

* Gapped bulk. Conventional bulk excitations.

 Anomalous edge states that cannot be realized in local (d-1)-
dimensional quantum systems (assuming certain global
symmetries).

* |n some sense, this is precisely why these d-dimenional
topological phases are robust: One CANNOT think about the
system as a trivial bulk glued with a (d-1)-dimensional gapless
system.



Symmetry fractionalization in 1D SPT phases

Next, | will present the first example of symmetry protected
topological phases beyond quantum hall liquids

--- the AKLT spin—l chain model. Affleck, Kennedy, Lieb, Tasaki (PRL 1987)

AKLT model has a gapped bulk, but gapless spin-1/2 edge states.
--- Edge states are also anomalous. No way to realize in 0-d.
symmetry become “fractionalized”.

Confirmed in experiments: (e.g., in NENP spin-1 chain)
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Spin-1 chain: the AKLT model

* Consider an antiferromagetic spin-1 chain:

@ o @ @ o @
Si Si+1
* Let’s modify the usual Heisenberg model a little bit:

H = K3 [Si-Siy1 + B(Si-Sit1)*] (K >0)

| will show:
when =1/3, the model is (quasi-)exactly solvable,

with interesting ground state. Affleck, Kennedy, Lieb, Tasaki (PRL 1987)

Here “(quasi-)” means that one can solve the ground state(s) exactly, but not
the excited states.



Spin-1 chain: the AKLT model

Consider an antiferromagetic spin-1 chain:
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Let’s modify the usual Heisenberg model a little bit:

H = K3 [Si-Siy1 + B(Si-Sit1)*] (K >0)

Note that unlike the spin-1/2 case , for spin-1, (S?; : Sj)2 is an indepEndent operator
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Spin-1 chain: the AKLT model

* Consider an antiferromagetic spin-1 chain:
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Let’s modify the usual Heisenberg model a little bit:

H=KDY,[S; Sit1+B(Si-Sit1)?]
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Spin-1 chain: the AKLT model

* Consider an antiferromagetic spin-1 chain:
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Let’s modify the usual Heisenberg model a little bit:

H=%568[(si +8i+1) = 2] + const
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Spin-1 chain: the AKLT model

* Consider an antiferromagetic spin-1 chain:

O O O O O O
Si Si+1

* Let’s modify the usual Heisenberg model a little bit:

H=%568[(si +8i+1) = 2] + const

If we can find a quantum state |?>, such that the combined spin of nearest
neighbors can only be 0 or 1, then |2> will certainly be one ground state.

Surprisingly, it is quite easy to write down such a state |2>.



Spin-1 chain: the AKLT model

* Consider an antiferromagetic spin-1 chain:

O O O O O o
Si Si+1

* Let’s modify the usual Heisenberg model a little bit:

H =255 6[(si +8it+1) = 2] + const

If we can find a quantum state |?>, such that the combined spin of nearest
neighbors can only be 0 or 1, then |2> will certainly be one ground state.

The idea to write down |?> is to split each spin-1 into two auxillary spin-1/2’s:

5=1 Argument:
@—@—@>—@—@»—@» forevery two n.n. sites,
A A '\ 2 of the 4 spin-1/2’s form
two S=1/2 singlet, the other two can

Spin singlet bond only form J=0 or 1.



AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
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Spin singlet bond

Let’s construct the ground state |?> explicitly:
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
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Let’s construct the ground state |?> explicitly:
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const

S=1
@ Ho—D2 0—2 66— O— —D ©
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Spin singlet bond

Let’s construct the ground state |?> explicitly:
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
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Let’s construct the ground state |?> explicitly:

consider two-site chain: e,\-f—mm sirj\ef bond
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
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Spin singlet bond

Let’s construct the ground state |?> explicitly:

considor two-site ¢ hain: e,\-fmm sirj\ef bond
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
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Let’s construct the ground state |?> explicitly:

consider two-site chatn: ‘Ze,rfmm sitj\ef bond
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const

two S=1/2 \

Spin singlet bond

Let’s construct the ground state |?> explicitly:
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Is the spin-1/2 fake or real?
3 () [Hwe> + [Z)ep 196>
(23)| he> = (S Jwa [ tag> + (=)o L%
Although formally looks like two spin-1/2 at the edges:

 Two things to worry about:

(1) \ "—&Z(S>are not orthonormal.

(2) 1 have not constructed a local operator acting only on one edge
that implements the spin-1/2 rotation.



Local spin rotations

 Two things to worry about:

(1) \ 'Lkg > are not orthonormal.

- orthonormal up to exponentially small error as L increases

<4MW¢¢> <How| Yo > 3
L) gy = <Yal Yo T)

wd Sl Yusy ~ (D5 o aeris T 2o



Local spin rotations

 Two things to worry about:

(1) \ ’LE)Z > are not orthonormal.

- orthonormal up to exponentially small error as L increases

(2) I have not constructed a local operator acting only on one edge
that implements the spin-1/2 rotation.

--- result in (1) allows us to construct such an operator:

Consider a long chain:

Define local unitary (almost) operators /\_/\L‘
for the two edge segments: X A
p— -
SL[V_( {1>=(£)J'.{l'\h’ f1> /_\&_\ /*P\,
2 4y P

Sg | Vg, £ = (z)(s(s ’Vv’u,f? | bt fo> | Y. . f2



Key feature of symmetry fractionalization

We find: H = % Zz (S[(SZ + Sz'_|_1) — 2] + const
o BI dsizlg, o\i'i; st ae s ﬁ' o{pg

A A \
two S=1/2 o
Spin singlet bond
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Key feature of symmetry fractionalization

We find: H = % Zz (S[(S@ + Si+1) — 2] + const
oA B asizlg, o\iﬁ; %. e

A A \
two S=1/2 o
Spin singlet bond

+vtad spin votwfion, R
(ZSAJ | %F> = (g)wo( \%@ T (’g)@’@ | %>
= S 1 tag> + S 1>

This is striking: we started from SO(3) spin-1 model,
but we got spin-1/2 on edges.



AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
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S=1
oy, B, S

od B

We find 4 ground states for open chain. The ground state degeneracy comes from the
unpaired spin-1/2 on each ends of the chain.

One can further show that these are the only four ground states, and the many-body
excitation spectrum of the chain has a FINITE energy gap:
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AKLT model: the exact ground state(s)

H=%%6[(si +8i41) = 2] + const
s=1
d» B' u 2 d 3 trfa e =) Ol‘/
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two S=1/2 o
Spin singlet bond

We find 4 ground states for open chain. The ground state degeneracy comes from the
unpaired spin-1/2 on each ends of the chain!

However if the chain is a closed loop (periodic boundary condition), there is only a
UNIQUE ground state:
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The crucial feature of symmetry fractionalization

H=%%6[(si +8i41) = 2] + const
=1
od B bls . O LI 4 o

A A '\
two S=1/2 o
Spin singlet bond

; LI

Symmetry fractionalization at chain edges --- Crucial feature

In a degenerate sector of energy eigenstates, global symmetry is

implemented by product of two local operators spatially far away from each
other:

a[ﬁ)}ll'm>: @/ﬁ) /M\R[ﬁ)]%>
9 € S Csymmetry 9p)



The crucial feature of symmetry fractionalization

H=%%6[(si +8i41) = 2] + const
s=1
d» B' u 2 d 3 trfa e =) Ol‘/

A A \
two S=1/2 o
Spin singlet bond

This is why it is possible to have spin-1/2 edge states in a spin-1 model ---
although a single spin-1/2 is NOT a representation of SO(3) symmetry, the
product of two spin-1/2’s is a representation: ax’a=0+1

U{ﬁ)}l/'o\>: i{z/ﬁ) /M\R(ﬁ)lll’a>
9 € S Csymmetry 9p)



The crucial feature of symmetry fractionalization

H=%%6[(si +8i41) = 2] + const

oA B usizlg, o\iﬁ; ﬁ,. e

A A '\
two S=1/2 o
Spin singlet bond

This is also why the 4-fold degeneracy is robust: consider a local SO(3)
symmetric perturbation V:

0 Gw)=o = 0, 0ml=0 AW (T, Te)=0

The two SU(2) symmetries are individually respected!

Gmlt>= W@ U®1t>
JeSh Hymmgl‘g ijuF)



The crucial feature of symmetry fractionalization

H=%%6[(si +8i41) = 2] + const

-
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Spin singlet bond

This is also why the 4-fold degeneracy is robust: consider a local SO(3)
symmetric perturbation V:

0 fwl=0 = 0. 0)=0 AD(Y, T)=0

The two SU(2) symmetries are individually respected!

However if perturbation is not SO(3) symmetric, the 4-fold degeneracy is gone.

Such spin-1/2 edge states are characteristic feature in the whole AKLT phase.
You can kill the spin-1/2 edge states only by (1) a phase transition OR (2)
removing the symmetry. ---- called Symmetry Protected Topological Phase



How to generally understand 1D SPT phases?

Turner, Pollmann, Berg, Oshikawa, Chen, Gu, Wen....

* From AKLT chain, we know, undermternalsy/[{netryg

0(9) | 4> = LD o Ur) 1>

There is a potential phase ambiguity in the definition of u,,,,49>.
They do not have to form reps of SG. Instead they can be
“projective representation” of SG. (e.g. spin-1/2 is projective rep of SO(3))

a\k(ﬁt) 0 T/f\z.(ﬁg) = ¢'00%,%) Z(\L(ﬁ vy



How to generally understand 1D SPT phases?

Turner, Pollmann, Berg, Oshikawa, Chen, Gu, Wen....

* From AKLT chain, we know, under internal syry{wetry g:

0(9) | 4> = (D) - L) I¥>

There is a potential phase ambiguity in the definition of ﬁ;,k(ﬂ),
They do not have to form reps of SG. Instead they can be
“projective representation” of SG. (e.g. spin-1/2 is projective rep of SO(3))

i{l(ﬁ,) 0 T/f\z.(ﬁz) = ¢'004.%) Z{\L(ﬂ vy

 Mathematically, the phase factor here is called a factor system. It is a function
of group elements and have to satisfy consistency condition:

{,QL(SI_) o au(gz)j o &\463) = /GL(ﬁl)" ’\)(/'5-(6’:) il &z{ﬁS)J

> Gi0(5) 60888 _ o 700%) 6059

Mathematically this is 2-cocycle condition.
Inequivalent proj. reps are classified by 2" cohomology group: H TS.&; U”)



A simple example:

Turner, Pollmann, Berg, Oshikawa, Chen, Gu, Wen....

C(\a(ff\_) 0 l//f\l.(ﬁ"-) = ¢'0l%%) Z{\L(ﬂ’ojz)

Z\/A\L(Sl_) o T/{\L.(gz)] o &\463) = al.(ﬁl)" (az—(ﬁ’:) ° ML(ﬁS)J
= ei 8 (5116:.)’ 6 F 9 (5 31193) = e >, (ﬁh ?zﬁa)e )0(§2,@3)
Consider SG=Z12\x Z2 H 2(22 X 22_ , U”)) = zz'
{1» oy X {1,/(:11. Z2= 0. —hﬁvto\f‘

Z=1: =  Ulod UE)
= _ U@ -ULo)

QSFTh -7



How to generally understand 1D SPT phases?

Turner, Pollmann, Berg, Oshikawa, Chen, Gu, Wen....

« 2" cohomology group can be used to classify 1D (bosonic) SPT phases.

H6,0i0 ]

Svmmetry of Hamiltoman [ Number of Ihfferent Phases
None ]
S0(3) 2
D 2
T 2
SO(3)+T 4
Da+T 16

Chen, Gu, Wen (2010)



Summary of discussion so far, and outlook

* SPT phase protected by local symmetries:
trivial bulk + gapless anomalous edge states.
higher dimensions:

- Fermion: Integer quantum hall states, topological insulators
(can be realized even with weak interaction)
Boson: Bosonic integer quantum hall states, bosonic topological insulators

(require strong interaction to realize)

* In 1D, we find SPT phases host symmetry fractionalized edge
states.



Summary of discussion so far, and outlook

* SPT phase protected by local symmetries:
trivial bulk + gapless anomalous edge states.

higher dimensions:
- Fermion: Integer quantum hall states, topological insulators
(can be realized even with weak interaction)
Boson: Bosonic integer quantum hall states, bosonic topological insulators
(require strong interaction to realize)

* In 1D, we find SPT phases host symmetry fractionalized edge
states.

Next, let’s attempt to generalize these concepts.



Some imaginations

* The essence of SPT phases are:

anomalous lower dimensional gapless states are realized at the edge
of the system.

What is so special about edges? Can one realize these anomalous
lower dimensional states in other situations?



Some imaginations

* The essence of SPT phases are:

anomalous lower dimensional gapless states are realized at the edge
of the system.

What is so special about edges? Can one realize these anomalous
lower dimensional states in other situations?

Edges are special because:

(1) In 1d, edges must be created in pairs. (This is why fractional quantum
number can be realized.)

(2) In 2d, edge must form a closed loop. (This is why non-stoppable
helical/chiral modes can be realized.)

(3) In 3d, edge must form a closed surface.(This is why single Dirac-cone
can be realized in Tl with time-reversal symmetry.)
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 Can we replace the edges by some other objects?
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 Can we replace the edges by some other objects?

Edges are special because:
* In 1d, edges must be created in pairs. (This is why fractional quantum number

can be realized.) g
replacing by point-like topological objects: /® /gvortex

domain walls in 1d, vortices in 2d, ... and gauge charges >=2 dimensions...

(gauss’s law)
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modes can be realized.) '

replacing by loop-like topological objects: (
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vortices in 3d, and gauge-flux loops in >=3 dimensions 3d vortex




Some imaginations

 Can we replace the edges by some other objects?

Edges are special because:
* In 1d, edges must be created in pairs. (This is why fractional quantum number

can be realized.) g
replacing by point-like topological objects: /® /gvortex

domain walls in 1d, vortices in 2d, ... and gauge charges >=2 dimensions...

(gauss’s law)

* In 2d, edge must form a closed loop. (This is why non-stoppable helical/chiral
modes can be realized.) '

replacing by loop-like topological objects: (

1 1 - I >= I i .. ,: _____________________
vortices in 3d, and gauge-flux loops in >=3 dimensions 3d vortex

* In 3d, edge must form a closed surface.(This is why single Dirac-cone can be
realized in Tl with time-reversal symmetry.)

replacing by surface-like topological objects: domain walls in 3d ....



Some imaginations

* These objects in principle also could host anomalous lower dimensional states!
Indeed, there are already lots of examples.

Edges are special because:

* In 1d, edges must be created in pairs. (This is why fractional quantum number
can be realized.)

replacing by point-like topological objects: /@”Zd vortex

domain walls in 1d, vortices in 2d, ... and gauge charges >=2 dimensions...

(gauss’s law)

* In 2d, edge must form a closed loop. (This is why non-stoppable helical/chiral
modes can be realized.) '

replacing by loop-like topological objects: (
vortices in 3d, and gauge-flux loops in >=3 dimensions.. _______ 41
3d vortex

* In 3d, edge must form a closed surface.(This is why single Dirac-cone can be
realized in Tl with time-reversal symmetry.)

replacing by surface-like topological objects: domain walls in 3d ....



Some examples:

Topological defects:

* Vortex hosted majorana modes in p+ip 2d superconductor.
(Read, Green, Ivanov, Fu, Kane....)

* Line defect (dislocations) hosting helical modes in 3d TI.
(YR, Zhang, Vishwanath, Teo,Kane...)



Some examples:

Topological defects:

* Vortex hosted majorana modes in p+ip 2d superconductor.
(Read, Green, Ivanov, Fu, Kane....)

* Line defect (dislocations) hosting helical modes in 3d TI.
(YR, Zhang, Vishwanath, Teo,Kane...)

Topological dynamical excitations: --- “symmetry enriched” phenomena
* Symmetry fractionalizations for gauge charges

Laughlin state e*=e/3

Spin-charge separation in gapped quantum spin liquids.

* Alarge class of exactly solvable models: (Mesaros&YR, 2012)
Showing: gauge charge hosted symmetry fractionalization in 2d
gauge flux loop hosted anomalous line states in 3d...



Plan:

* Tomorrow | will talk about symmetry fractionalization for gauge
charge excitations in quantum spin liquids.

* Today, if time is allowed, let’s have a simple derivation of the so-

called “worm-hole” effect in 3D TI. (G. Rosenberg, H.-M. Guo, M. Franz,
2010)



Plan:

* Tomorrow | will talk about symmetry fractionalization for gauge
charge excitations in quantum spin liquids.

* Today, if time is allowed, let’s have a simple derivation of the so-

called “worm-hole” effect in 3D TI. (G. Rosenberg, H.-M. Guo, M. Franz,
2010)

---If a pi-flux loop (TR sym.)is threaded
through the bulk 3D strong Tl, the loop

is topological bound with helical modes:
(same as the anomalous edge state of 2D TI).

---If one interpret the pi-flux as a dynamical Z2 gauge flux excitation, namely if the
Tl are not formed by electrons, but by fermions carrying Z2 gauge charge, this
effect is an example of symmetry-enriched phenomena.



The wormhole effect

* Asimple model of the pi-flux loop:

Step (1): Cut the 3D TI

Two surfaces-- two sets of Dirac nodes:
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The wormhole effect

* Asimple model of the pi-flux loop:
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Step (2): Gluing back,
but trapping a pi flux (black) line in the middle —
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The wormhole effect

* Asimple model of the pi-flux loop:

Dirac equation mass changing sian:
H = (kgoz + kyﬂ'y)ﬁz + m(x)pa
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The wormhole effect

* Asimple model of the pi-flux loop:

Dirac equation mass changing sian:
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M,, : Weak index vector in momentum space

Dislocations in 3D TI
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e Although magnetic pi-flux is difficult to realize in Tl, even here in

magnetic lab, the crystalline topological defects --- dislocations

can have similar effect. (YR, zhang, Vishwanath 2009)

Condition for existence of helical modes:

—

B : Burger’s vector in real space.

Realized in Tl with nonzero weak index: e.g., SmB6....



Plan:

| was mentioning Z2 gauge excitations, like flux loops, and their
symmetry enriched phenomena.

But can these be realized in materials?

e Tomorrow:

(1) Quantum spin liguid phases in frustrated magnets, and related
experiments in materials

(2) Parton constructions of quantum spin liquids, and symmetry
fractionalization.









