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Quantum matter (partial list)
Entropy Low-energy

Effective Theory

Trivial 
Insulator Exp(-∆/T) 0

Topological
States

(TL)a

a < d TQFT / BCFT

Critical states
with Lorentz

invariance
(TL)d Relativistic QFT

Fermi surface
kF

d-1T Ld

= (TL) (kF L)d-1 QFT with infinitely
many degrees of freedom

( T : temperature,  L : linear system size, d : space dimension,  kF : Fermi momentum)



This lecture is about

low-energy effective theories of 
strongly correlated metals (non-Fermi liquids)

that arise near QCP
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Many-body eigenstates are labeled by the occupation numbers of 
single-particle states

H =
X

k,�

�0k nk,�



Interacting Fermions

Shape of Fermi surface is subject to quantum fluctuations 
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Quantum fluctuations



Fermi Liquids [Landau]
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V : microscopic interaction
𝛼 : kinematic constants

(FS shape, size, velocity)

Particles close to the Fermi surface have long life-time

[Shankar, Polchinski]
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• Low-energy eigenstates of interacting electrons are labeled by the 
occupation numbers of single-particle states 

• The well-defined single-particle excitations are quasiparticles with 
renormalized mass

• In Fermi liquids, low temperature properties of interacting 
electrons are qualitatively similar to those of free fermions
• Specific heat : C ~ T
•Magnetic susceptibility : χ ~ const.

Fermi Liquids

|nk1,�1 , nk2,�2 , .... >
0

[Landau]
[Shankar, Polchinski]

E

spectral function



[Hashimoto et al. Science 336, 1554 (2012)]

Breakdown of Fermi liquid near Quantum Critical Points 
[heavy fermion; pnictides; cuprates]

[Custers et al.(2003)]

• Experimentally, NFL’s are often characterized by anomalous 
thermodynamic / transport properties

• Spectroscopic evidences, while being more direct, are rarer

BaFe2(As1−xPx)2



kx

ky

Fermi surface
+ gapless collective mode

• At QCP, order parameter becomes gapless collective mode that 
mediates singular interactions between electrons

• Single-particle excitations created near FS no longer have long 
lifetime if the interaction is singular enough to generate strong 
non-forward scatterings

NFL’s are described by interacting field theories that are not 
diagonalizable in single-particle basis

k

K+q

NFL @ QCP



Two important factors that determines 
the nature of NFL near QCP

- space dimension
- wavevector of gapless collective mode



Space dimension

• 3d : quantum fluctuations are relatively weak
• 1d : no extended Fermi surface
• 2d : most challenging & interesting : 
– Extended Fermi surface 
– Strong quantum fluctuations at low energies

❊ We will focus on NFLs in d=2.



Wavevector of gapless collective mode (Q)

Q=0
Nematic, ferromagnetic QCP,
Spin liquids with emergent gauge boson,.. 

Q≠0
SDW, CDW,.. QCP

k

K+Q

Q
Hot Fermi surface Hot spot



Hot Fermi Surface

Ising-nematic quantum critical metal



Ising-Nematic QCP 

FL metal with 
broken rotational

symmetry (C2)

FL metal with 
unbroken rotational

symmetry (C4)

Quantum 
Critical Point

Coupling -1

Φ>0

Φ<0

Φ=0OR
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Low-energy theory at QCP

Kinetic energy
of electron

Kinetic energy of the 
critical Ising order parameter

Coupling between electrons and 
the order parameter

The order parameter couples to fermions as a momentum-dependent chemical 
potential, which deforms the Fermi surface in the l=2 channel.



Emergent locality in momentum space

• At low energies, fermions are primarily scattered along the directions 
tangential to FS

• Fermions with non-parallel tangential vectors are decoupled from each 
other in the low-energy limit (modulo pairing interaction in the presence 
of superconducting instability)

Fermi Sea
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p
⇤kF

k

K+q

q

[Polchinski,…]



Minimal theory : two-patch theory

sï

s+

KF
k

ïk ïKF

• represents the electron field defined near two opposite points of 
FS (patches s=±), where k is momentum measured from the center of each 
patch

• The fermion-boson coupling is relevant, and the theory becomes strongly 
coupled at low energies : a small parameter is needed for controlled 
expansion
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*spin flavor generalized to N



Perturbative approaches



1/N - expansion                                    

i=1,2,…,N

• Collective modes are heavily damped with 
fermions

• In relativistic QFT, quantum fluctuations are 
tamed in the large N limit

• However, this is not the case in the presence 
of FS : fluctuations are amplified at low 
energies as fermions are scattered along the 
Fermi surface

• All planar graphs (in the one-patch theory) 
and beyond (in the two-patch theory) 
remain important [similar to a matrix model]

[Lee(09); Metlitski, Sachdev (10)]

[Altshuler, Ioffe, Millis;
Kim, Furusaki, Wen, Lee,
Polchinski,…]



Dynamical tuning

• Tame quantum fluctuations by suppressing DOS of critical boson
• All symmetries kept
• Breaks locality of the theory : the bosonic mode can not have an 

anomalous dimension perturbatively

q

E

[Nayak, Wilczek(94); Mross, McGreevy, Liu, Senthil(10)]

|q|2�2 ! |q|1+✏�2

UV divergent non-local terms such as                                      can not arise as
perturbative quantum correction 



d
(space dim)

m
(FS dim)0 21

1

2

3

Dimensional Regularization scheme : 
no unique way to extend dimension 



Tuning dim of space along with the dim of FS

• Size of FS enters as a scale
(UV/IR mixing)

d
(space dim)

m
(FS dim)

0 21
1

2

3

[Chakravarty, Norton, Syljuasen(95), Fitzpatrick, Kachru, Kaplan, Raghu (13),..] 

[Mandal, SL (15)] 

• Crossover function f(x) is singular in the small x limit, and m→1 limit and ω→0 
limit do not commute

• You want to probe the region with f(1), but end up probing the f(0) limit in this 
scheme



Tuning co-dimension of FS

d
(space dim)

m
(FS dim)0 21
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3

kz

kx

• A non-local version [Senthil, Shankar (09)]
• We will use local version [Dalidovich, Lee (13)]



The theory at d = 3 describes a spin 
triplet p-wave SC
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Perturbative NFL near d=5/2

sï

s+

KF
k

ïk ïKF Strongly interaction 
Non-Fermi liquid

Fermi liquid
with decoupled bosond

m0 21

1

2

3

d=5/2
Marginal

Fermi liquid ε Perturbative
Non-Fermi liquid



Two-loop results for the Ising-nematic
critical metal 
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[Dalidovich, SL (13)]



Physical properties 
of the Ising-nematic critical metal

• Fermion propagator :

• Boson propagator  :

• Specific heat : 

G(k) =
1

|�k|1�0.1508�2
g

 
| ⇥K|1/z

�k

!

D(k) =
1

k2
d

f

 
| �K|1/z

k2
d

!

c ⇠ T (d�2)+ 1
z

up 𝝐2 order

e⇤4/3

N
= 11.417�+ 55.498�2

z =
3

3� 2�

• The collective mode does not have an anomalous dimension up to three-loop, but it 
is likely that a non-trivial anomalous dimension arises at higher orders [Holder, 
Metzner(15)] 

• Near d=5/2, there is no SC instability
• At d=2, low-energy scaling will be cut off by SC instability



Summary of proposed control schemes

Deformation schemes Pro Con

1/N Increase the # of flavors Symmetry,
locality

Not 
controlled

Dynamical 
tuning

Modify the dispersion
symmetry Locality 

lost

Dim. reg. 
Tune the dimension
of FS Symmetry,

locality
spurious 

UV/IR mixing

Co-Dim. 
reg.

Tune the co-dimensions
of FS

Locality,
No UV/IR 

mixing

Some
symmetry 

broken

|q|2�2 ! |q|1+✏�2



The main purpose of a perturbative 
expansion is to reveal new organizing 

principles, which may lead to non-
perturbative understanding of physics

in the deep quantum regime

• For Q=0 NFL, non-perturbative solution is available only for the chiral NFL
(without T, P symmetry)

• Understanding non-chiral NFL with Q=0 in d=2 remain an open problem
• More progress made for NFL with Q≠0 

[Sur, SL (14)]



Hot spots

Antiferromagnetic quantum critical metal



Antiferromagnetic phase transition in 
metal

Metal with 
antiferromagnetic

order

Paramagnetic
Metal

Quantum 
Critical Point

~� 6= 0 ~� = 0

Coupling -1



Minimal Theory

e±1 (�k) = �e±3 (�k) = vkx ± ky

e±2 (�k) = �e±4 (�k) = ⇥kx + vky
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[Abanov, Chubukov, Schmalian; Metlitski, Sachdev; ..]



Parameters of the theory

v

1

• v : Fermi velocity  perpendicular to QAF
• c : boson velocity
• g : coupling bet’n fermion and boson

• If v=0, hot spots connected by QAF are nested



parameter 
space

• g2 /v is the coupling that controls perturbation

0

∞

1

1

2d weak coupling
limit

1d FS

2d strong coupling
region

c



Gaussian scaling analysis

• Interaction is relevant
• The same perturbative approaches discussed for Q=0 

case can be employed in this case
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Perturbative window with tuning co-dim.

Strongly interaction 
Non-Fermi liquid

d=3
Marginal NFLd

m0 21

1

2

3
ε Perturbative

Non-Fermi liquid

global U(1) can be kept



• One-loop is not enough even to the leading order in ε: 
quantum fluctuations are not organized by number of loops

• Emergent quasi-locality with a hierarchy in velocities

• Collective mode is damped by particle-hole excitation and 
acquires an O(ε) anomalous dimension

• Fermions remain largely coherent

Emergent hierarchy of velocities   v << c << 1
• One may use the ratios of the velocities as small parameters to 

organize dynamics at d=2

Lesson from the ε-expansion
[Sur, Lee (14); Lunts, Andres, Lee(17)]

v, c ! 0
⇣
v

c
! 0

⌘
, g ! 0

✓
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2
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Non-perturbative solution in d=2

D(q)�1 = mCT � ⇡v
X

n

Z
dk Tr [�1Gn̄(k + q)�(k, q)Gn(k)]

• In general, it is hard to solve the self-consistent equation because 
G(k), Γ(k,q) depend on D(q)

• However, the Dyson equation can be first solved in the  v<< c << 1 
limit, and the solution can be used to show that v, c and v/c flows 
to zero in the low-energy limit



Reduced Dyson equation in the v << 1 limit

• Boson propagator is entirely generated from 
particle-hole fluctuations

• v << c(v)  if v <<1

D(q)�1 = |q0|+ c(v)
h
|qx|+ |qy|

i
,

c(v) =
1

4

p
v log(1/v)

-1 = +



Flow of v
• In the small v limit, v indeed flows to zero in 

the low energy limit, which completes the 
cycle of self-consistency

dv

d lnµ
=

6

⇡2
v2 log

✓
1

c(v)

◆
v =

2⇡2

3

✓
log

1

µ
log log

1

µ

◆�1

Exact exponents :
[Schlief, Lunts, SL (16)]



Crossovers

• Two-stage RG flow
• Stage I
– Non-perturbative effects generate 

flow from the perturbative regime 
(g2/v <<1) to strongly coupled regime 
(g2/v ~ 1)

– RG flow is quickly attracted to a 
universal manifold parameterized by 
v

– The place where the initial RG flow 
lands on the attractor depends on the 
bare value of v

power-law

0

∞

1

1
c



power-law

0

∞

1

1

• Due to the slow flow of v, the attractor approximately 
acts as a line of fixed points
– `Transient dynamical critical exponent’ is determined by v

• Stage II
– In the low-energy limit, v and 

v/c(v) flows to zero 
logarithmically

– The expansion in v/c(v) 
becomes asymptotically exact

– Eventually the system flows to 
the fixed point with z=1, η=1 
(exact)

logarithmicc

Crossovers



• Only C4 symmetric; no emergent O(2)
qx

qy

Dynamical Spin Susceptibility



Electron spectral function 
at the hot spots

• No quasiparticle at the hot spots

A(!) ⇠ 1

!e
2
p
3
(log 1

! )
1/2

log log 1
!



power-law

logarithmic

• Most likely, one needs small v with g2/v~1 to enter z=1 scaling regime 
before SC sets in (a target for numerics)

Superconductivity
• In d=2, SC kicks in, and 

RG flow is cut off
• Tc is not a universal 

quantity but depends 
on microscopic theory 
(bare parameters)

SC



Latest numerics
Hierarchy of energy scales in an O(3) symmetric antiferromagnetic quantum critical metal:

a Monte Carlo study

Carsten Bauer,1 Yoni Schattner,2 Simon Trebst,1 and Erez Berg3

1Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
2Department of Physics, Stanford University, CA 94305, USA

3Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
(Dated: January 6, 2020)

We present numerically exact results from sign-problem free quantum Monte Carlo simulations for a spin-
fermion model near an O(3) symmetric antiferromagnetic (AFM) quantum critical point. We find a hierarchy
of energy scales that emerges near the quantum critical point. At high energy scales, there is a broad regime
characterized by Landau-damped order parameter dynamics with dynamical critical exponent z = 2, while the
fermionic excitations remain coherent. The quantum critical magnetic fluctuations are well described by Hertz-
Millis theory, except for a T −2 divergence of the static AFM susceptibility. This regime persists down to a lower
energy scale, where the fermions become overdamped and concomitantly, a transition into a d−wave supercon-
ducting state occurs. These findings resemble earlier results for a spin-fermion model with easy-plane AFM
fluctuations of an O(2) SDW order parameter, despite noticeable differences in the perturbative structure of the
two theories. In the O(3) case, perturbative corrections to the spin-fermion vertex are expected to dominate at
an additional energy scale, below which the z = 2 behavior breaks down, leading to a novel z = 1 fixed point
with emergent local nesting at the hot spots [Schlief et al., PRX 7, 021010 (2017)]. Motivated by this prediction,
we also consider a variant of the model where the hot spots are nearly locally nested. Within the available tem-
perature range in our study (T ≥ EF �200), we find substantial deviations from the z = 2 Hertz-Millis behavior,
but no evidence for the predicted z = 1 criticality.

I. INTRODUCTION

Quantum criticality in itinerant many-fermion systems is
of great importance in the study of strongly correlated ma-
terials. Due to strong inherent correlations, many classes of
materials, such as the cuprates [1], iron-pnictides [2], organic
superconductors [3], and heavy-fermion compounds [4] host
rich phase diagrams with magnetic order, non-Fermi liquid
regimes, and strange metal transport. It is generally believed
that quantum critical points (QCPs) at T = 0 are playing a role
in these systems [5–8]. Perhaps the most prominent feature in
those materials is an extended phase of high temperature su-
perconductivity, which is generally observed in the vicinity
of antiferromagnetic order. It has been proposed [9–16] and
numerically demonstrated [17–21] that nearly-quantum criti-
cal fluctuations can mediate unconventional superconductivity
and anomalously enhance the transition temperature Tc. How-
ever, an in-depth understanding of this universal mechanism
still remains highly desirable.

Despite of numerous analytical attempts over the past
decades [5, 7, 15, 22–25] few definite statements about
the critical properties could be made due to the inherently
non-perturbative nature of the interactions between gapless
bosonic (magnetic) and fermionic (electronic) degrees of free-
dom. An audacious line of research [26–28] carried out by
Sung-Sik Lee and collaborators, however, has recently made
notable progress in identifying a route to a controlled expan-
sion in an emergent control parameter to compute the prop-
erties of a strongly coupled fixed point at the O(3) antifer-
romagnetic QCP in an exact manner. One concrete predic-
tion of this non-perturbative analysis is a low temperature
regime exhibiting a dynamical scaling exponent z = 1 [26–
28]. At this fixed point, the tendency towards superconduc-
tivity is strongly suppressed. This general prediction calls for

a complementary numerical study inspecting the hierarchy of
energy scales in the vicinity of an antiferromagnetic metallic
QCP.

It is the purpose of this manuscript, to provide precisely
this type of comprehensive numerical insight for an elemen-
tary microscopic model – the spin-fermion model [24, 28, 29]
capturing the interplay of itinerant electrons and quantum crit-
ical fluctuations of an antiferromagnetic O(3) spin density
wave (SDW) order parameter. We employ large-scale quan-
tum Monte Carlo simulations, using a controlled and unbi-
ased Monte Carlo flavor, determinant quantum Monte Carlo
(DQMC) [30–34], which does not suffer from the infamous
sign problem [35]. On a technical level, it is the presence of an

FIG. 1. Fermi surface with hot spots. The black lines correspond to
the Fermi surfaces of the two fermion flavors x (solid),  y (dashed).
One band has been shifted by Q = (⇡,⇡) such that hot spot pairs
(red) occur at crossing points. The energy of the  x band across the
Brillouin zone is shown as background (color shading).
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Summary 

• Theories of NFL @ QCP can be divided into 
two classes 
– Hot Fermi surface
– Hot Spots

• Various control schemes have been developed
• Perturbative solutions obtained from tuning  

the co-dim of FS eventually led to the non-
perturbative solution for the SU(2) symmetric 
AF quantum critical metal in 2+1D



Open problems

• Beyond patch theory
– Capturing momentum dependent universal data

• Superconductivity
• Disorder
• Local moments
• Full scope of the non-perturbative method 

that uses hierarchy between velocities 
(Migdal-like)


