
Defects in topologically  
ordered states 

Xiao-Liang Qi 

Stanford University 
Mag Lab, Tallahassee, 01/09/2014 

 



• References 

 

 

 

 

• Collaborators  

Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) 
Maissam Barkeshli, Chaoming Jian, XLQ, PRB 87 045130 
(2013) 
Maissam Barkeshli, XLQ, arxiv:1302.2673 (2013) 
Maissam Barkeshli, Chaoming Jian, XLQ, PRB 88, 
241103(R), PRB 88, 235103 (2013) 

Maissam Barkeshli Chaoming Jian 



Lecture 1 

• Defects in conventional states 

• Topologically ordered states, symmetries and twist 
defects  

• The simplest twist defects---genons 

• Properties of genons, “projective” non-Abelian statistics 
and parafermion zero modes 

• Generalization to generic defects: A unified framework of 
defects in Abelian topological states 

Lecture 2 

• Realizations of genons and more general defects 
    1. Bilayer FQH states with staircases 
    2. Fractional Chern Insulators 
    4. A spin model realization: generalized Kitaev model 
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Lecture 1 
General properties of defects 
in topologically ordered states 



• Defects provide ways to probe the state of matter. 

• New interesting properties may be carried by defects. 

• Example 1: Superfluid vortex.  
Superfluid phase 𝜃 is not detectable. 
Global U(1) symmetry  

𝜓 = 𝜌𝑒𝑖𝜃 → 𝜓𝑒𝑖 𝜃+𝜃0 , 

• The existence of vortex with quantized  
vorticity tells us that 𝜃 is a 𝑈 1  phase periodic in 2𝜋.  

• Vortex is a twist defect obtained by twisting the 𝑈(1) 
symmetry 

• A superfluid vortex has log 𝐿 divergent energy. It’s an 
extrinsic defect that has to be introduced by external 
force. 

Why are we interested in defects? 

𝑒𝑖𝜃 



• Example 2: Superconductor  
vortex at a corner junction 

• A superconductor vortex is  
not a defect, but an excitation with finite energy.  

A magnetic flux Φ = ∫ 𝑑2𝑥𝐵 =
ℎ𝑐

2𝑒
 localized in a vortex 

core with size 𝜉 

• A corner junction between 𝑠-wave and 𝑑-wave 

superconductors traps a half vortex Φ =
ℎ𝑐

4𝑒
, which is 

an extrinsic defect. 

• Order parameter phase 𝜃  
changes by 𝜋. 

• An example of a defect at 
interface between two phases. 

Why are we interested in defects? 

𝑑-wave 

𝑠-wave 



• Quantum Hall effect occurs in 2d 
electron system with strong 
perpendicular magnetic field  

• Integer quantum Hall (IQH) state: 
Filling integer number of Landau 
levels. Momentum space Chern 
number (Thouless et al 1982) 

Chiral edge states 

• Quantum Hall state is an example of 
topological states of matter: New 
states that are classified by topological 
properties, such as robust edge states, 
topological response 

Topological states of matter 
E 

x 

𝐵
⊗ 

3D Topological  

Insulator 



• Topologically ordered states such as 
fractional quantum Hall (FQH) states 
have topological ground state 
degeneracy, and topological 
quasiparticles with fractional charge 
and fractional statistics.  

𝐸 

𝐸𝑔𝑎𝑝 

𝐸 

𝐸𝑔𝑎𝑝 

𝑔 = 0 
1 ground state 

𝑔 = 1 
𝑚 ground states 

Topologically ordered states 

𝑎 

𝑏 

𝑐 

𝑐  

𝐵
⊗ 



• Quasiparticles have no knowledge about  
distance. Only topology matters. 

• Fusion 𝑎 × 𝑏 = 𝑁𝑎𝑏
𝑐 𝑐 

• Braiding 

 

 

 

• Braiding 𝑎, 𝑏 and spinning 𝑎, 𝑏 is equivalent to 
spinning 𝑐. Topological spin of particles ℎ𝑎 

Key properties of topologically ordered states 

𝑎 𝑏 

𝑐 

𝑎 𝑏 𝑎 𝑏 

𝑐 𝑐 

= 𝑅𝑎𝑏
𝑐 ⋅ 

𝑎 = 𝑒𝑖2𝜋ℎ𝑎  𝑅𝑎𝑏
𝑐 𝑅𝑏𝑎

𝑐 = 𝑒𝑖2𝜋 ℎ𝑎+ℎ𝑏−ℎ𝑐  



• Spin also determines the transformation of the torus 
ground states under modular transformations 

𝑎 

𝑎 𝑎 

𝑎 

𝑎 𝑎 

2𝜋 rotation 
𝜃𝑎 = 𝑒𝑖2𝜋ℎ𝑎  

Dehn twist 

𝑇𝑎𝑎 = 𝜃𝑎𝑒
−𝑖

2𝜋𝑐

24 , 

𝑎 

= 

= 

≃ 

≃ 

Key properties of topologically ordered states 



• Topologically ordered states are robust without 
requiring any symmetry. However, symmetries may 
exist in topologically ordered states  

• Example 1: Bilayer FQH states with the symmetry of 
exchanging two layers (𝑍2 symmetry) 

• E.g. 𝑚𝑛𝑙  Halperin state with 𝑚 = 𝑛: 

 𝑧𝑖 − 𝑧𝑗
𝑚

𝑖<𝑗  𝑤𝑖 − 𝑤𝑗
𝑚

𝑖<𝑗  𝑧𝑖 − 𝑤𝑗
𝑙

𝑖,𝑗 ⋅

𝑒−  𝑧𝑖
2

𝑖 − 𝑤𝑖
2

𝑖   

Symmetries in topologically ordered states 

𝐵 



• Example 2: particle-hole symmetry of Laughlin 1/𝑚 
state.  

• Quasiparticle charge  
𝑞 =

𝑛

𝑚
, 𝑛 = 0,1, … ,𝑚 − 1,  

• Braiding 𝜃𝑛𝑛′ = 2𝜋
𝑛𝑛′

𝑚
 

• Fusion 𝑎𝑛 × 𝑎𝑛′ = 𝑎𝑛+𝑛′(mod 𝑚) 

• Braiding and fusion are invariant under the particle-hole 
transformation 𝑛 → −𝑛 

• In a generic state, the particle-hole symmetry is not an 
exact symmetry, but a topological symmetry: 

• Ψ → Ψ′  topologically equivalent to |Ψ〉 

Symmetries in topologically ordered states 

= 𝑒𝑖𝜃𝑛𝑛′  

𝑛 𝑛′ 𝑛 𝑛′ 

𝑛 + 𝑛′ 𝑛 + 𝑛′ 



• A discrete global symmetry can be twisted. 

• A topological particle 
is acted by the symmetry 
while crossing a “branch-cut”  
line.  

• The branch-cut line is in-visible  
and each end point of the branch-cut is a point-like 
twist defect. (Kitaev&Kong, ’11) 

• For bilayer FQH, the branch-cut line has a simple 
geometrical meaning 

• The two layers are connected and 
become a Riemann surface 

Twist defects and genons 

× × 𝑔 

1/𝑚, 0  

(0,1/𝑚) 

Barkeshli&XLQ PRX ‘12 



• In bilayer FQH states, a pair of defect creates a “worm 
hole” between the two layers. The defect is called a 
genon---genus generator 

 

 

 

 

 

 

𝐵 𝐴 𝐴 𝐵 flip the 

top layer 

Genons--genus generators 



• Every pair of defects add genus 1 to the manifold 

 

 

 

 

 

• Ground state degeneracy (GSD) is 𝑚𝑛−1 =
1

𝑚
𝑚 2𝑛 

• On comparison, 2𝑛 spins each with 𝑑 local states have 
total degeneracy 𝑑2𝑛.  

• A genon has the quantum dimension 𝑑 = 𝑚 

• The non-integer quantum dimension indicates that 
genons are non-Abelian 

 

2𝑛 defects on a sphere  genus 𝑔 = 𝑛 − 1 surface 

Quantum dimension of genons 

𝑚 states 



• For the Halperin 𝑚𝑚𝑙  state, the genon quantum 
dimension is 𝑑 = 𝑚 − 𝑙. For example 220  and 
(331) states both give 𝑑 = 2 the same as 
Majorana fermion. 

• For a more generic topological state at each layer 
with quasiparticles of quantum dimension 𝑑𝑖, the 
ground state degeneracy grows like 𝐺𝑆𝐷 ∼ 𝐷2𝑔 with 

𝐷 =  𝑑𝑖
2

𝑖  the total quantum dimension of the 

single layer theory. Therefore genon quantum 
dimension is 𝑑𝑋 = 𝐷. 

 

Quantum dimension of genons 

𝑖 



𝑞 

−𝑞 

𝑞 

−𝑞 

𝜈 =
1

2
 

𝜈 =
1

2
 

• First, Consider (220) state, i.e. two layers of Laughlin ½  

• Each layer has a 𝑞 = 1/2 semion  
(statistical angle 𝜃1 = 𝜋/2) 

• The ``exciton” 
1

2
, −

1

2
 is a fermion 

 

Understanding the genon quantum dimension: 

parafermion zero modes 



• Two excitons can annihilate at the branchcut. A 
“geometric” exciton superconductor 

• A genon is the end of the branchcut line, which is the 
end of the 1d p-wave superconductor (Kitaev ‘01) 

• Majorana zero mode at the genon, consistent with 

quantum dimension 2 

 

× × 
𝜓 

𝜓+ 

𝜓 

𝜓 

× × 

SC normal normal 

𝜓𝐿
+𝜓𝑅 𝜓𝐿

+𝜓𝑅
+ 

The branchcut line as an exciton superconductor 



• The existence of Majorana zero mode means that a 
fermion can be emitted or absorbed by the zero 
mode, with no energy cost 

• The same happens for the genon in (220) state: 
Emission or annihilation 
of the exciton fermion 
1

2
, −

1

2
 can only occur at 

the genon 

Geometrical understanding of the Majorana zero 

mode 

trivial p-wave TSC trivial 

𝛾1 𝛾2 
𝑓 

× × 
Particle-hole pair 

exciton 
1

2
, −

1

2
 



• In more general (𝑚𝑚𝑙) states, the genon can emit exciton 

with charge 1,−1 , spin 𝜃 = exp 𝑖
2𝜋

𝑚−𝑙
 

• A Majorana zero mode is sqrt of a fermion. 𝑑 = 2 

• A parafermion zero mode is sqrt of an anyon.  𝑑 =

m − 𝑙 

• 𝑚 − 𝑙 states are shared by a 
pair of genons, which are not 
locally detectable. 

From Majorana zero modes to parafermion 

zero modes 

× × 

Particle-hole pair 

exciton (q,-q) 



• “Cut and glue” 
scheme 
 
 

 
• Genons are domain walls along 1D cuts in the system 
• Chiral Luttinger liquid theory (Wen) with backscattering terms 

• ℒ = ℒ𝐿 + ℒ𝑅 + ℒ𝑖𝑛𝑡 

• ℒ𝐿 =
𝑚

4𝜋
𝐾𝐼𝐽𝜕𝑡𝜙𝐼𝐿𝜕𝑥𝜙𝐽𝐿 − 𝑉𝐼𝐽𝜕𝑥𝜙𝐼𝐿𝜕𝑥𝜙𝐽𝐿 

• ℒ𝑅 = −
𝑚

4𝜋
𝐾𝐼𝐽𝜕𝑡𝜙𝐼𝑅𝜕𝑥𝜙𝐽𝑅 − 𝑉𝐼𝐽𝜕𝑥𝜙𝐼𝑅𝜕𝑥𝜙𝐽𝑅 

• ℒ𝑖𝑛𝑡 =  
 𝐽 cos 𝐾𝐼𝐽 𝜙𝐽𝑅 − 𝜙𝐽𝐿𝐼 , 𝐴 region 

 𝐽 cos 𝐾𝐼𝐽 𝜙𝐽𝑅 − 𝜙𝐽′𝐿𝐼 , 𝐵 region 
 

 

Edge theory description of twist defects  

𝐴 𝐴 𝐵 𝜙1𝑅 

𝜙1𝐿 
𝜙2𝐿 

𝜙2𝑅 



• For example, for 𝑙 = 0 

• ℒ𝑖𝑛𝑡 =

 
𝐽 cos 𝑚 𝜙1𝑅 − 𝜙1𝐿 + 𝐽 cos 𝑚 𝜙2𝑅 − 𝜙2𝐿 , 𝐴 region 

𝐽 cos 𝑚 𝜙1𝑅 − 𝜙2𝐿 + 𝐽 cos 𝑚 𝜙2𝑅 − 𝜙1𝐿 , 𝐵 region 
 

• Decompose 𝜙±𝐼𝑅 = 𝜙1𝑅 ± 𝜙2𝑅 , 𝜙±𝐼𝐿 = 𝜙1𝐿 ± 𝜙2𝐿,  
the mass term for 𝜙+ is the same in both regions. Only 
𝜙− see the twist defect.  

• Focus on the 
𝜙− = 𝜙1 − 𝜙2  
sector 

 

Edge theory description of twist defects  

𝐴 𝐴 𝐵 𝜙1𝑅 

𝜙1𝐿 
𝜙2𝐿 

𝜙2𝑅 

cos 𝑚 − 𝑙 𝜙−𝐿 − 𝜙−𝑅  cos 𝑚 − 𝑙 𝜙−𝐿 + 𝜙−𝑅  



• The twist defect is a domain wall between particle-hole 
and particle-particle mass term for the exciton created 

by 𝑒𝑖 𝜙−𝐿−𝜙−𝑅  

• The same defects can be realized in FQH or FQSH in 
proximity with SC (Linder et al, Clarke et al, Cheng, Vaezi, 2012) 

• Quasiparticle 𝜙 replaces exciton 𝜙− 

 

 

Relation with other twist defects 

FQSH 

SC FM           FM 

FQH 

FQH 

SC normal 



• When two genons are braided, the corresponding genus 
𝑔 = n − 1 surface carries a nontrivial large coordinate 
transformation---a Dehn twist 

• This can be seen by tracking the change of nontrivial 
loops 

Braiding statistics of genons 

= 



Braiding statistics of genons 

braiding 

• Braiding genons 1, 2Dehn twist around the orange loop 
𝑇𝑥 

• Braiding genons 2,3Dehn twist around the red-yellow 
loop 𝑇𝑦 

• 𝑇𝑥 , 𝑇𝑦 non-commuting. Genons have non-Abelian 

statistics. 

1 2 3 4 



• Example: (220) state. 2 ground states for 4 defects. 
The braiding matrices are 

• 𝑈12 = 𝑒𝑖𝜃
1 0
0 𝑖

, 𝑈23 = 𝑒𝑖𝜙
1

2

1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

 

• Abelian phases are undetermined. 

• The non-Abelian statistics is identical to Ising anyon! 
(Barkeshli, Jian & XLQ PRB ‘13) 

• Related to intrinsic topological particles in orbifolding 
of topologically ordered states (Barkeshli-Wen ‘10) 

Properties of genons: braiding statistics 

1 
2 3 4 

1 

2 
3 

4 



• Twist defects can be defined in a topological state 
with a global symmetry. 

• In bilayer (or multilayer) states with the symmetry 
of permuting different layers, genons are defined 
around which particles move to different layers. 

• Genons have non-Abelian projective statistics, and 
nontrivial quantum dimensions. 

• Genons are different from topological 
quasiparticles: they have long range interaction. 
Statistics is only defined projectively. 

Summary of general properties of genons 



• By twisting other symmetries, one can define other types 
of twist defects.  

• Many twist defects can be understood as genons. 

 

 

 

 

Other twist defects 

Topological 
order 

Symmetries Transformation of 
QP 
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• Different types of defects discussed here can all be 
mapped to gapped boundaries and domain wall 
between different boundary conditions 

• Genons  boundary in 4-layer systems 

 

 

 

• Most general case, line defect between two phases  
boundary of bilayer system 

A unified view to defects in Abelian states 

𝐴1 

𝐴2 

× 

𝐴1 × 𝐴2 

folding 

× × × × 

𝑏 𝑎 folding 
𝑏 

𝑎 



• Point defects are mapped to domain wall points 
between different line defects/boundary conditions 

• Even the corner defect connecting three phases can 
still be viewed in this way 

         𝐴1 × 𝐴2 𝐴1 

𝐴2 

𝐴3 × 

folding 

𝐴3 × 𝐴2 

𝐴3 × 𝐴2  𝐴1 × 𝐴2 
folding 

𝐴1 × 𝐴2 × 𝐴3 × 𝐴2  

Generic line defects are equivalent to boundary 

defects  



• In the folded picture, a boundary condition is 
determined by the particle that can annihilate 
(condense) at the boundary 
 

 

 

 

 

 

• The condensed particles must be boson, and mutually 
bosonic.  

• Edge is completely gappedNo particle is left after the 
boson condensation (Levin ‘13) 

 
 

 

Boson condensation and Lagrangian subgroups 

𝐴 𝐵 
𝐴 region: 
1,0, −1,0  and (0,1,0, −1)  
𝐵 region:  
1,0,0, −1  and (0,1, −1,0) 



• A maximal set of condensed bosons form a Lagrangian 
subgroup (Levin ‘13, Barkeshli et al ’13) 

• Two conditions of Lagrangian subgroup 𝑀: i) 
𝑚𝑖

𝑇𝐾−1𝑚𝑗 ∈ 𝑍. ii) No other particle 𝛼 satisfies 
𝛼𝑇𝐾−1𝑚𝑗 ∈ 𝑍. 

 

 

 

 

 

• One-to-one correspondence between boundary 
conditions and Lagrangian subgroups (Barkeshli, et al ’13, Levin 
‘13) 

 

Boson condensation and Lagrangian subgroups 

= 
𝑖 𝑗 𝑖 𝑗 

≠ 

, ∀ 𝑖, 𝑗 ∈ 𝑀 

, ∀ 𝛼 ∉ 𝑀, ∃𝑖 
𝑖 𝛼 𝑖 𝛼 



• Point defect carries nontrivial degeneracy, due to 
nontrivial braiding between different groups of 

bosons: 𝑚𝑖 ∈ 𝑀,𝑚𝑖
′ ∈ 𝑀′, 𝑚𝑖

𝑇𝐾−1𝑚𝑗
′ ∉ 𝑍 

• Wilson loop algebra 

𝑊𝑚 𝑎 𝑊𝑚′ 𝑏 = 𝑊𝑚′ 𝑏 𝑊𝑚 𝑎 𝑒𝑖2𝜋𝑚
𝑇𝐾−1𝑚′

 
determines the (minimal) ground state degeneracy  

• Defect quantum dimension 𝑑 = 1/ det |𝐿| with 

 𝐿𝑖𝑗 = 𝑚𝑖
𝑇𝐾−1𝑚𝑗

′ .  

• 𝑚𝑖  and 𝑚𝑖
′ are minimal basis 

sets for lattices 𝑀 and 𝑀′. 

A unified view to defects in Abelian states 

× × × × 
𝐴 𝐵 𝐴 𝐵 

𝑎 𝑏 

𝑚 𝑚′ 

1 2 3 4 



• Topological zero modes can be understood as pairs of 
particles 𝑙 = 𝑚 +𝑚′ 

• Two bosons with nontrivial mutual statistics fuse into 
a nontrivial particle 

• Generalization of the  
parafermion zero modes  
(Linder et al, Clarke et al, Fendley, ‘12) 

• Effective “braiding” can be  
defined by coupling defects. 

Parafermion zero modes and non-Abelian 

“statistics” 

𝐴 𝐵 

𝑚 𝑚′ 

𝑙 = 𝑚 +𝑚’ 

× × 



• Defects can be used to probe topologically 
ordered states 

• Genons are simplest defects for multi-layer 
systems 

• Non-Abelian defects can be realized in Abelian 
theories 

• Generic point-like and line-like defects in Abelian 
theories can be understood based on the 
intuition from genons. General classification 
given by Lagrangian subgroups. 

• Open question: Defects in non-Abelian theories? 

Summary of the first lecture 


