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Lecture 1
e Defects in conventional states

* Topologically ordered states, symmetries and twist
defects

* The simplest twist defects---genons

* Properties of genons, “projective” non-Abelian statistics
and parafermion zero modes

* Generalization to generic defects: A unified framework of
defects in Abelian topological states

Lecture 2

* Realizations of genons and more general defects
1. Bilayer FQH states with staircases
2. Fractional Chern Insulators
4. A spin model realization: generalized Kitaev model



Lecture 1

General properties of defects
in topologically ordered states



Why are we Iinterested In defects?

Defects provide ways to probe the state of matter.
New interesting properties may be carried by defects.

Example 1: Superfluid vortex.
Superfluid phase 6 is not detectable.
Global U(1) symmetry

l/) — \/ﬁeie N l/)@i(9+90),

The existence of vortex with quantized
vorticity tells us that 8 is a U(1) phase periodic in 2.

Vortex is a twist defect obtained by twisting the U(1)
symmetry
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A superfluid vortex has log L divergent energy. It’s an
extrinsic defect that has to be introduced by external
force.



Why are we Iinterested In defects?

Example 2: Superconductor
vortex at a corner junction

A superconductor vortex is
not a defect, but an excitation with finite energy.

. hc . .
A magnetic flux ® = [ d?xB = - localized in a vortex
core with size ¢
A corner junction between s-wave and d-wave

h L
superconductors traps a half vortex ® = 4—2, which is
an extrinsic defect.

Order parameter phase 6 d-wave

changes by .

An example of a defect at

interface between two phases.
S-wave



Topological states of matter

* Quantum Hall effect occurs in 2d
electron system with strong
perpendicular magnetic field

E/\

* Integer quantum Hall (IQH) state:
Filling integer number of Landau
levels. Momentum space Chern
number (Thouless et al 1982)

Chiral edge states

* Quantum Hall state is an example of
topological states of matter: New
states that are classified by topological
properties, such as robust edge states,
topological response

O

3D Topological
Insulator




Topologically ordered states

* Topologically ordered states such as
fractional quantum Hall (FQH) states
have topological ground state
degeneracy, and topological
quasiparticles with fractional charge
and fractional statistics.
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Key properties of topologically ordered states

* Quasiparticles have no knowledge about ’

distance. Only topology matters.
* Fusiona X b = NS, c
* Braiding . c

— Rflb ‘

e Braiding a, b and spinning a, b is equivalent to
spinning c. Topological spin of particles h,

a e — pl2mhg ¢c pc _ ,i2n(hg+hy—h,)
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Key properties of topologically ordered states

Spin also determines the transformation of the torus
ground states under modular transformations
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Symmetries In topologically ordered states

* Topologically ordered states are robust without
requiring any symmetry. However, symmetries may
exist in topologically ordered states

 Example 1: Bilayer FQH states with the symmetry of
exchanging two layers (Z, symmetry)

* E.g. (mnl) Halperin state with m = n:

Hi<j(Zi = j)m Hi<j(Wi — Wj)m Hi,j(Zi — Wj)l '

e~ Zi|Zi|2—2i|Wi|2
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Symmetries In topologically ordered states

* Example 2: particle-hole symmetry of Laughlin 1/m

state. | |
. Quasiparticle charge n+mn n+n
q=—,n=20,1,. — 1, |
— elenn’
* Braiding 0.,/ = 27‘[%
* Fusion a, X a,’ = p4p'(mod m) n n n n

* Braiding and fusion are invariant under the particle-hole
transformation n -» —n

* In a generic state, the particle-hole symmetry is not an
exact symmetry, but a topological symmetry:

e |¥) - |¥') topologically equivalent to |¥)



Twist defects and genons

* A discrete global symmetry can be twisted.

A topological particle

is acted by the symmetry
while crossing a “branch-cut”
line.

The branch-cut line is in-visible

(0,1/m)

and each end point of the branch-cut is a point-like

twist defect. (Kitaev&Kong, '11)

For bilayer FQH, the branch-cut line has a simple

geometrical meaning

The two layers are connected and

become a Riemann surface
Barkeshli&XLQ PRX ‘12




Genons--genus generators

* In bilayer FQH states, a pair of defect creates a “worm
hole” between the two layers. The defect is called a
genon---genus generator

A~ B flipthe B__ A
top layer
—




Quantum dimension of genons
* Every pair of defects add genus 1 to the manifold

2n defects on a sphere genus g = n — 1 surface
m—
\Jm states ; |
 Ground state degeneracy (GSD) is m"~1 = —~ (Vm)?"

* On comparison, 2n spins each with d local states have
total degeneracy d*™.

* A genon has the quantum dimension d = \'m

* The non-integer quantum dimension indicates that
genons are non-Abelian



Quantum dimension of genons

* For the Halperin (mml) state, the genon quantum
dimension is d = vm — [. For example (220) and

(331) states both give d = /2 the same as
Majorana fermion.

* For a more generic topological state at each layer
with quasiparticles of quantum dimension d;, the
ground state degeneracy grows like GSD ~ D?9 with

D = /Zi d? the total quantum dimension of the

single layer theory. Therefore genon quantu
dimensionis dy = D.




Understanding the genon quantum dimension:
parafermion zero modes
* First, Consider (220) state, i.e. two layers of Laughlin %,

* Eachlayerhasag = 1/2 semion
(statistical angle 8; = /2)

N\ [} 1 1 . °
* The exciton” (E’ _E) is a fermion




The branchcut line as an exciton superconductor

e Two excitons can annihilate at the branchcut. A
“geometric” exciton superconductor

* A genon is the end of the branchcut line, which is the
end of the 1d p-wave superconductor (kitaev ‘01)

* Majorana zero mode at the genon, consistent with
gquantum dimension 2
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Geometrical understanding of the Majorana zero

mode f e
VN Y2

o—o 0—0 0—0 0—0 b 0—0 0—0 0—0 0—0 o 0—0 00
trivial p-wave TSC trivial

* The existence of Majorana zero mode means that a
fermion can be emitted or absorbed by the zero
mode, with no energy cost

* The same happens for the genon in (220) state:
Emission or annihilation [

of the exciton fermion

1 1

(E’ — E) can only occur at

the genon

. 1
exciton (—, — —)
2

( Particle-hole pair




From Majorana zero modes to parafermion
Zzero modes

 |In more general (mml) states, the genon can emit exciton
. . .2
with charge (1,—1), spin 8 = exp [l m—i]

* A Majorana zero mode is sqrt of a fermion. d = V2

* A parafermion zero mode is sqrt of an anyon. d =
m — [

* m — [ states are shared by a
pair of genons, which are not

locally detectable. exciton (q,-q)

P R X

Particle-hole pair




Edge theory description of twist defects

e “Cutand glue” p A B A
1R i > ;
scheme bon : K K
by g K== F==K R
b1 ' Y < 4

* Genons are domain walls along 1D cuts in the system
e Chiral Luttinger liquid theory (wen) with backscattering terms

¢ L:LL+LR+Lint
* LL — %KljatquLaxqb]L o Vljax¢ILax¢]L
* Lp= —%Kljatﬁbmaxqu — Vljax¢IRax¢]R

Y. J cos(KY(¢;r — ¢;1)), A region

T ine = Y] cos(K"(¢;r — ¢,1.)), B region



Edge theory description of twist defects

 For example, forl =0
* Lint =
J COS(m(¢1R — ¢1L)) +/ COS(m(¢2R — ¢2L)) , A region
COS(m(¢1R — ¢2L)) +/ COS(m(¢2R — ¢1L)) , B region

* Decompose ¢ijr = P1r £ P2r, P41 = P11 * P21,
the mass term for ¢ is the same in both regions. Only

¢_ see the twist defect.
* Focus on the

- == n A 0, 4

sector AL T L >k S
¢2L 4 ! ¥ < ! !
/ \

cos((m =D (¢p_, — d_r)) cos((m —D(p_, + ¢p_z))




Relation with other twist defects

* The twist defect is a domain wall between particle-hole

and particle-particle mass term for the exciton created
by ei(d)—L_(p—R)

e The same defects can be realized in FQH or FQSH in
proximity with SC (Linder et al, Clarke et al, Cheng, Vaezi, 2012)

* Quasiparticle ¢ replaces exciton ¢_
FQH

) = =5 SC.- - X npormal
FQH

FQSH

DEM ¥ —> SC.-— X FM




Braiding statistics of genons

* When two genons are braided, the corresponding genus
g = n — 1 surface carries a nontrivial large coordinate
transformation---a Dehn twist

* This can be seen by tracking the change of nontrivial
loops




Braiding statistics of genons

* Braiding genons 1, 2=»Dehn twist around the orange loop
Ty

* Braiding genons 2,3=»Dehn twist around the red-
loop T,

* Ty, T, non-commuting. Genons have non-Abelian
statistics.

=

braidin?g

—




Properties of genons: braiding statistics

Example: (220) state. 2 ground states for 4 defects.
The braiding matrices are

b= () 0= 2(1 4 11

Abelian phases are undetermined.

The non-Abelian statistics is identical to Ising anyon!
(Barkeshli, Jian & XLQ PRB ‘13)

Related to intrinsic topological particles in orbifolding
of topologically ordered states (Barkeshli-wen ‘10)




Summary of general properties of genons

Twist defects can be defined in a topological state
with a global symmetry.

In bilayer (or multilayer) states with the symmetry
of permuting different layers, genons are defined
around which particles move to different layers.

Genons have non-Abelian projective statistics, and
nontrivial guantum dimensions.

Genons are different from topological
qguasiparticles: they have long range interaction.
Statistics is only defined projectively.



Other twist defects

* By twisting other symmetries, one can define other types
of twist defects.

* Many twist defects can be understood as genons.

Topological Symmetries Transformation of References
order (0]

Zy toric code

N-layer FQH

1/k Laughlin

bilayer Z,, toric
code

bilayer toric
code (2d&3d)

Electromagnetic duality

Z;

Particle-hole Z,

Layer permutation Sy

Particle-hole Z,

S3 symmetry

Layer permutation Z,

(e,m) > (m,e)
(e,m) - (—e,—m)
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“Hidden” S5
permutation of QP
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Bombin; You&Wen

You&Jian&Wen

(Z5 subgroup)
Barkeshli&Jian&Qi
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Teo&Roy&Chen
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A unified view to defects in Abelian states

» Different types of defects discussed here can all be
mapped to gapped boundaries and domain wall
between different boundary conditions

* Genons =» boundary in 4-layer systems

\/
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a b

5':')( X-57X

folding

—

* Most general case, line defect between two phases =
boundary of bilayer system
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Generic line defects are equivalent to boundary
defects

* Point defects are mapped to domain wall points
between different line defects/boundary conditions

* Even the corner defect connecting three phases can
still be viewed in this way

AN |
2 folding
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A 1 X A,
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Boson condensation and Lagrangian subgroups

* In the folded picture, a boundary condition is

determined by the particle that can annihilate

(condense) at the boundary
A B

A region:

(1,0,—1,0) and (0,1,0,—1)
B region:

(1,0,0,—1) and (0,1, —1,0)

 The condensed particles must be boson, and mutually
bosonic.

* Edge is completely gapped=>»No particle is left after the
boson condensation (Levin ‘13)



Boson condensation and Lagrangian subgroups

A maximal set of condensed bosons form a Lagrangian
subgroup (Levin ‘13, Barkeshli et al '13)
 Two conditions of Lagrangian subgroup M: i)
m; K~'m; € Z.ii) No other particle a satisfies
a'K™'m; € Z.
[ J i Ji
Vi jEM

-+  Vad& M, 3i

* One-to-one correspondence between boundary

conditions and Lagrangian subgroups (sarkeshli, et al 13, Levin
13)



A unified view to defects in Abelian states

Point defect carries nontrivial degeneracy, due to
nontrivial braiding between different groups of

bosons: m; € M,m; € M’, miTK‘lm]’- ¢ 7

Wilson loop algebra
Wm(a)W,m, (b) — Wm,(b)Wm(a)eianTK—lml
determines the (minimal) ground state degeneracy

Defect quantum dimension d = 1/\/det |L| with

— ! - !
Lij—ml-Klmj. A1B 2A3B A

m; and m; are minimal basis
sets for lattices M and M.




Parafermion zero modes and non-Abelian
“statistics”

* Topological zero modes can be understood as pairs of
particlesl = m + m’

e Two bosons with nontrivial mutual statistics fuse into
a nontrivial particle

e Generalization of the

parafermion zero modes
(Linder et al, Clarke et al, Fendley, ‘12)

e Effective “braiding” can be
defined by coupling defects.




Summary of the first lecture

Defects can be used to probe topologically
ordered states

Genons are simplest defects for multi-layer
systems

Non-Abelian defects can be realized in Abelian
theories

Generic point-like and line-like defects in Abelian
theories can be understood based on the
intuition from genons. General classification
given by Lagrangian subgroups.

Open question: Defects in non-Abelian theories?



