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The quasiparticle idea is the key reason for the many 
successes of quantum condensed matter physics:

 Fermi liquid theory of metals, insulators, semiconductors

 Theory of superconductivity (pairing of quasiparticles)

 Theory of disordered metals and insulators (diffusion and 
localization of quasiparticles)

 Theory of metals in one dimension (collective modes as 
quasiparticles)

 Theory of the fractional quantum Hall effect (quasiparticles 
which are `fractions’ of an electron)

Quantum matter with quasiparticles:



• Note: The electron liquid in one dimension and the fractional

quantum Hall state both have quasiparticles; however, the quasi-

particles do not have the same quantum numbers as an electron.

Quantum matter with quasiparticles:

• Quasiparticles are additive excitations:
The low-lying excitations of the many-body system
can be identified as a set {n↵} of quasiparticles with
energy "↵

E =
P

↵ n↵"↵ +
P

↵,� F↵�n↵n� + . . .

In a lattice system ofN sites, this parameterizes the energy
of ⇠ e↵N states in terms of poly(N) numbers.



Quantum matter with quasiparticles:

• Quasiparticles eventually collide with each other. Such
collisions eventually leads to thermal equilibration in a
chaotic quantum state, but the equilibration takes a long
time. In a Fermi liquid, this time diverges as

⌧eq ⇠ ~EF

(kBT )2
, as T ! 0,

where EF is the Fermi energy.



A simple model of a metal with quasiparticles

Pick a set of random positions



Place electrons randomly on some sites

A simple model of a metal with quasiparticles



Electrons move one-by-one randomly
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Electrons move one-by-one randomly

A simple model of a metal with quasiparticles



H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj + . . .

cicj + cjci = 0 , cic
†
j + c

†
jci = �ij

1

N

X

i

c
†
i ci = Q

Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables with tij = 0 and |tij |2 = t2

A simple model of a metal with quasiparticles



Feynman graph expansion in tij.., and graph-by-graph average,
yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = t2G(⌧)

G(⌧ = 0�) = Q.

G(!) can be determined by solving a quadratic equation.

!

�ImG(!)

µ

Infinite-range model with quasiparticles



Infinite-range model with quasiparticles

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ⇠ T�2 at the Fermi level.

Now add weak interactions

H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj +

1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c
†
i c

†
jckc`

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J
2
. We

compute the lifetime of a quasiparticle, ⌧↵, in an exact eigenstate  ↵(i) of the

free particle Hamitonian with energy E↵. By Fermi’s Golden rule, for E↵ at the

Fermi energy

1

⌧↵
= ⇡J

2
⇢
2
0

Z
dE�dE�dE�f(E�)(1� f(E�))(1� f(E�))�(E↵ + E� � E� � E�)

=
⇡
3
J
2
⇢
2
0

4
T

2

where ⇢0 is the density of states at the Fermi energy.



A simple model of a metal with quasiparticles

!

Let "↵ be the eigenvalues of the matrix tij/
p
N .

The fermions will occupy the lowest NQ eigen-
values, upto the Fermi energy EF . The density
of states is ⇢(!) = (1/N)

P
↵ �(! � "↵).

EF

⇢(!)



A simple model of a metal with quasiparticles

Quasiparticle
excitations with
spacing ⇠ 1/N

There are 2N many
body levels with energy

E =
NX

↵=1

n↵"↵,

where n↵ = 0, 1. Shown
are all values of E for a
single cluster of size

N = 12. The "↵ have a
level spacing ⇠ 1/N .

Many-body
level spacing

⇠ 2�N
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A simple model of a metal with quasiparticles

Quasiparticle
excitations with
spacing ⇠ 1/N

There are 2N many
body levels with energy
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The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions



Place electrons randomly on some sites

The SYK model



Entangle electrons pairwise randomly
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Entangle electrons pairwise randomly

The SYK model



This describes both a strange metal and a black hole!

The SYK model



A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

The SYK model

H =
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Uij;k` are independent random variables with Uij;k` = 0 and |Uij;k`|2 = U2

N ! 1 yields critical strange metal.



GPS:   A. Georges, O. Parcollet, and S. Sachdev, 
PRB 63, 134406 (2001)

Many-body
level spacing ⇠
2�N = e�N ln 2

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

Non-quasiparticle
excitations with
spacing ⇠ e�Ns0

There are 2N many body levels
with energy E, which do not

admit a quasiparticle
decomposition. Shown are all

values of E for a single cluster of
size N = 12. The T ! 0 state
has an entropy SGPS = Ns0

with

s0 =
G

⇡
+

ln(2)

4
= 0.464848 . . .

< ln 2

where G is Catalan’s constant,
for the half-filled case Q = 1/2.

The SYK model
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Many-body
level spacing ⇠
2�N = e�N ln 2

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

Non-quasiparticle
excitations with
spacing ⇠ e�Ns0

There are 2N many body levels
with energy E, which do not

admit a quasiparticle
decomposition. Shown are all

values of E for a single cluster of
size N = 12. The T ! 0 state
has an entropy SGPS = Ns0

with

s0 =
G

⇡
+
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4
= 0.464848 . . .

< ln 2

where G is Catalan’s constant,
for the half-filled case Q = 1/2.

No quasiparticles !
E 6=

P
↵ n↵"↵

+
P

↵,� F↵�n↵n� + . . .

The SYK model



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

The SYK model

Feynman graph expansion in Jij.., and graph-by-graph average,
yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �U2G2(⌧)G(�⌧)

G(⌧ = 0�) = Q.

Low frequency analysis shows that the solutions must be gapless
and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

where A = e�i⇡/4(⇡/U2)1/4 at half-filling. The ground state is a
non-Fermi liquid, with a continuously variable density Q.
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Feynman graph expansion in Jij.., and graph-by-graph average,
yields exact equations in the large N limit:
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The SYK model
The equations for the Green’s function can also be solved at non-
zero T . We “guess” the solution

G(⌧) = B sgn(⌧)

����
⇡T

sin(⇡T ⌧)

����
⇢

Then the self-energy is

⌃(⌧) = U2B3sgn(⌧)

����
⇡T

sin(⇡T ⌧)

����
3⇢

Taking Fourier transforms, we have as a function of the Matsubara
frequency !n

G(i!n) = [iB⇧(⇢)]
T ⇢�1 �

⇣⇢
2
+

!n

2⇡T

⌘

�
⇣
1� ⇢

2
+

!n

2⇡T

⌘

⌃sing(i!n) =
⇥
iU2B3⇧(3⇢)

⇤ T
3⇢�1 �

✓
3⇢

2
+

!n

2⇡T

◆

�

✓
1� 3⇢

2
+

!n

2⇡T

◆ ,

where we have dropped a less-singular term in ⌃, and

⇧(s) ⌘ ⇡s�12s cos
⇣⇡s

2

⌘
�(1� s).

Now the singular part of Dyson’s equation is

G(i!n)⌃sing(i!n) = �1

Remarkably, the � functions appear with just the right arguments,
so that there is a solution of the Dyson equation at ⇢ = 1/2 !

A. Georges and O. Parcollet
PRB 59, 5341 (1999)
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So the Green’s functions display thermal ‘damping’ at a
scale set by T alone, which is independent of U .



The SYK model

So the Green’s functions display thermal ‘damping’ at a
scale set by T alone, which is independent of U .

!

�ImGR(!)�ReGR(!)

GR(!)GA(!)

FIG. 1. Plots of the Green’s functions in Eq. (3) for � = 1/4, q = 1, T = 1, A = 1, E = 1/4 with

~ = kB = 1. Note that while neither ImGR(!) or ReGR(!) have any definite properties under ! $ �!,

the product GR(!)GA(!) becomes an even function of ! after a shift by !S = 2⇡qET = ⇡/2.

where SBH is the Bekenstein-Hawking entropy densiy of the AdS2 horizon. Indeed, Eq. (8) is a

general consequence of the classical Maxwell and Einstein equations, and the conformal invariance

of the AdS2 horizon, as we shall show in Section III B. Moreover, a Legendre transform of the

identity in Eq. (8) was established by Sen [15, 16] for a wide class of theories of gravity in the

Wald formalism [17–21], in which SBH is generalized to the Wald entropy.

The main result of this paper is the identical forms of the relationship Eq. (7) for the statistical

entropy of the SY state, and Eq. (8) for the Bekenstein-Hawking entropy of AdS2 horizons. This

result is strong evidence that there is a gravity dual of the SY state with a AdS2 horizon. Con-

versely, assuming the existence of a gravity dual, Eqs. (7) and (8) show that such a correspondence

is consistent only if the black hole entropy has the Bekenstein-Hawking value, and endow the black

hole entropy with a statistical interpretation [30].

It is important to keep in mind that (as we mentioned earlier) the models considered here have

a di↵erent ‘equation of state’ relating E to Q: this is specified for the SY state in Eq. (A5), for the

planar black hole in Eq. (58), and for the spherical black hole in Eq. (B8).

The holographic link between the SY state and the AdS2 horizons of charged black branes has

been conjectured earlier [22–24], based upon the presence of a non-vanishing zero temperature

entropy density and the conformal structure of correlators. The results above sharpen this link by

establishing a precise quantitative connection for the Bekenstein-Hawking entropy [31, 32] of the

black hole with the UV complete computation on the microscopic degrees of freedom of the SY

5

Green’s functions away from half-filling
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The SYK model

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �U2G2(⌧)G(�⌧)

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z



A. Kitaev, 2015
S. Sachdev, PRX 5, 041025 (2015)

X X
X

The SYK model

At frequencies ⌧ U , the i! + µ can be dropped,
and without it equations are invariant under the
reparametrization and gauge transformations.
The singular part of the self-energy and the Green’s
function obey

Z �

0
d⌧2 ⌃sing(⌧1, ⌧2)G(⌧2, ⌧3) = ��(⌧1 � ⌧3)

⌃sing(⌧1, ⌧2) = �U2G2(⌧1, ⌧2)G(⌧2, ⌧1)

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �U2G2(⌧)G(�⌧)

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z
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The SYK model
Z �

0
d⌧2 ⌃(⌧1, ⌧2)G(⌧2, ⌧3) = ��(⌧1 � ⌧3)

⌃(⌧1, ⌧2) = �U2G2(⌧1, ⌧2)G(⌧2, ⌧1)

These equations are invariant under

⌧ = f(�)

G(⌧1, ⌧2) = [f 0(�1)f
0(�2)]

�1/4 g(�1)

g(�2)
eG(�1,�2)

⌃(⌧1, ⌧2) = [f 0(�1)f
0(�2)]

�3/4 g(�1)

g(�2)
e⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.
By using f(�) = tan(⇡T�)/(⇡T ) we can
now obtain the T > 0 solution from the T = 0 solution.



A. Kitaev

Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2

⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�3/2.

The saddle point will be invariant under a reperamateri-
zation f(⌧) when choosing G(⌧1, ⌧2) = Gs(⌧1 � ⌧2) leads
to a transformed eG(�1,�2) = Gs(�1 � �2) (and similarly
for ⌃). It turns out this is true only for the SL(2, R)
transformations under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

The SYK model



Connections of SYK to gravity and AdS2
horizons

• Reparameterization and gauge
invariance are the ‘symmetries’ of
the Einstein-Maxwell theory of
gravity and electromagnetism

• SL(2,R) is the isometry group of AdS2.

SYK and AdS2

ds2 = (d⌧2 + d⇣2)/⇣2 is invariant under

⌧ 0 + i⇣ 0 =
a(⌧ + i⇣) + b

c(⌧ + i⇣) + d

with ad� bc = 1.



After introducing replicas a = 1 . . . n, and integrating out the dis-
order, the partition function can be written as

Z =

Z
Dcia(⌧) exp

"
�
X

ia

Z �

0
d⌧ c†ia

✓
@

@⌧
� µ

◆
cia

� U2

4N3

X
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Z �

0
d⌧d⌧ 0

�����
X

i

c†ia(⌧)cib(⌧
0)

�����

4
3

5 .

For simplicity, we neglect the replica indices, and introduce the
identity

1 =

Z
D⌃(⌧1, ⌧2) exp

"
�N

Z �

0
d⌧1d⌧2⌃(⌧1, ⌧2)

 
G(⌧2, ⌧1)

+
1

N

X

i

ci(⌧2)c
†
i (⌧1)

!#
.

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

Z =

Z
DG(⌧1, ⌧2)D⌃(⌧1, ⌧2) exp(�NS)

S = ln det [�(⌧1 � ⌧2)(@⌧1 + µ)� ⌃(⌧1, ⌧2)]

+

Z
d⌧1d⌧2⌃(⌧1, ⌧2)

⇥
G(⌧2, ⌧1) + (J2/2)G2(⌧2, ⌧1)G

2(⌧1, ⌧2)
⇤

At frequencies ⌧ J , the time derivative in the determinant is less
important, and without it the path integral is invariant under the
reparametrization and gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0(�1)f
0(�2)]

�1/4 g(�1)

g(�2)
G(�1,�2)

⌃(⌧1, ⌧2) = [f 0(�1)f
0(�2)]

�3/4 g(�1)

g(�2)
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.

Infinite-range (SYK) model without quasiparticles
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Infinite-range (SYK) model without quasiparticles

After introducing replicas a = 1 . . . n, and integrating out the dis-
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Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

Z =

Z
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S = ln det [�(⌧1 � ⌧2)(@⌧1 + µ)� ⌃(⌧1, ⌧2)]

+

Z
d⌧1d⌧2⌃(⌧1, ⌧2)

⇥
G(⌧2, ⌧1) + (U2/2)G2(⌧2, ⌧1)G
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At frequencies ⌧ U , the time derivative in the determinant is less
important, and without it the path integral is invariant under the
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Reparametrization and phase zero modes
We can write the path integral for the SYK model as

Z =

Z
DG(⌧1, ⌧1)D⌃(⌧1, ⌧2)e

�NS[G,⌃]

for a known action S[G,⌃]. We find the saddle point, Gs, ⌃s, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
gauge symmetries by writing

G(⌧1, ⌧2) = [f 0(⌧1)f
0(⌧2)]

1/4Gs(f(⌧1)� f(⌧2))e
i�(⌧1)�i�(⌧2)

(and similarly for ⌃). Then the path integral is approximated by

Z =
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Df(⌧)D�(⌧)e�NSeff [f,�].

Symmetry arguments, and explicit computations, show that the e↵ective action is
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where f(⌧) ⌘ ⌧ + ✏(⌧), the couplings K, �, and E can be related to thermodynamic
derivatives and we have used the Schwarzian:
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Specifically, an argument constraining the e↵ective at T = 0 is

Se↵


f(⌧) =

a⌧ + b

c⌧ + d
,�(⌧) = 0

�
= 0,

and this is origin of the Schwarzian.

The SYK model



• Low energy, many-body density of states
⇢(E) ⇠ eNs0 sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function is incoherent: G(⌧) ⇠
⌧�1/2 at large ⌧ . (Fermi liquids with quasiparticles have

the coherent: G(⌧) ⇠ 1/⌧)

• T > 0 Green’s function has conformal invariance
G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)
D. Stanford and E. Witten, 1703.04612

A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593
D. Bagrets, A. Altland, and A. Kamenev, 1607.00694   
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J. Maldacena and D. Stanford, 1604.07818
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• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function is incoherent: G(⌧) ⇠
⌧�1/2 at large ⌧ . (Fermi liquids with quasiparticles have

the coherent: G(⌧) ⇠ 1/⌧)

• T > 0 Green’s function has conformal invariance
G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arXiv:1706.07803

The SYK model

• The last property indicates ⌧eq ⇠ ~/(kBT ), and this
has been found in a recent numerical study.



• If there are no quasiparticles, then

E 6=
X

↵

n↵"↵ +
X

↵,�

F↵�n↵n� + . . .

• If there are no quasiparticles, then

⌧eq = #
~

kBT

• Systems without quasiparticles are the fastest possible in reaching local
equilibrium, and all many-body quantum systems obey, as T ! 0

⌧eq > C
~

kBT
.

– In Fermi liquids ⌧eq ⇠ 1/T 2, and so the bound is obeyed as T ! 0.

– This bound rules out quantum systems with e.g. ⌧eq ⇠ ~/(JkBT )1/2.
– There is no bound in classical mechanics (~ ! 0). By cranking up

frequencies, we can attain equilibrium as quickly as we desire.

                S. Sachdev, 
Quantum Phase Transitions, 

Cambridge (1999)

Quantum matter without quasiparticles:
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Black 
holes

• Black holes have an entropy
and a temperature, TH =
~c3/(8⇡GMkB).

• The entropy is proportional
to their surface area.

• They relax to thermal equi-
librium in a time⇠ ~/(kBTH).
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• The ring-down is predicted by General Relativity to happen in a

time
8⇡GM

c3
⇠ 8 milliseconds. Curiously this happens to equal

~
kBTH

: so the ring down can also be viewed as the approach of a

quantum system to thermal equilibrium at the fastest possible rate.!
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The SYK model

• The last property indicates ⌧eq ⇠ ~/(kBT ), and this
has been found in a recent numerical study.

• Low energy, many-body density of states
⇢(E) ⇠ eNs0 sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function G(⌧) ⇠ ⌧�1/2 at
large ⌧ . (Fermi liquids with quasiparticles have G(⌧) ⇠
1/⌧)

• T > 0 Green’s function has conformal invariance
G ⇠ (T/ sin(⇡kBT ⌧/~))1/2



The SYK model

• The last property indicates ⌧eq ⇠ ~/(kBT ), and this
has been found in a recent numerical study.

• Low energy, many-body density of states
⇢(E) ⇠ eNs0 sinh(

p
2(E � E0)N�)

• Low temperature entropy S = Ns0 +N�T + . . ..

• T = 0 fermion Green’s function G(⌧) ⇠ ⌧�1/2 at
large ⌧ . (Fermi liquids with quasiparticles have G(⌧) ⇠
1/⌧)

• T > 0 Green’s function has conformal invariance
G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

Black holes with a near-horizon AdS2 geometry 
(described by quantum gravity in 1+1 spacetime 

dimensions) match these properties of 
the 0+1 dimensional SYK model:

Ns0 is the Bekenstein-Hawking entropy
S. Sachdev, PRL 105, 151602 (2010); A. Kitaev (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857



Many-body quantum chaos

A. Kitaev, unpublished
J. Maldacena and D. Stanford, 

arXiv:1604.07818

• Using holographic analogies, Shenker and Stanford
introduced the “Lyapunov time”, ⌧L, the time over
which a generic many-body quantum system loses
memory of its initial state.

• A shortest-possible time to reach quantum chaos was
established

⌧L � ~
2⇡kBT

• The SYK model, and black holes in Einstein gravity,
saturate the bound on the Lyapunov time

⌧L =
~

2⇡kBT

S. Shenker and D. Stanford, arXiv:1306.0622

          J. Maldacena, S. H. Shenker and 
D. Stanford, arXiv:1503.01409
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Quantum matter without quasiparticles:

• No quasiparticle
decomposition of low-lying states:
E 6=

P
↵ n↵"↵

+
P

↵,� F↵�n↵n� + . . .

• Thermalization and many-body chaos in
the shortest possible time of order ~/(kBT ).

• These are also characteristics of black holes
in quantum gravity.


