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[Quantum matter with quasiparticles:j

The quasiparticle idea is the key reason for the many
successes of quantum condensed matter physics:

@ Fermi liquid theory of metals, insulators, semiconductors
® Theory of superconductivity (pairing of quasiparticles)

® Theory of disordered metals and insulators (diffusion and
localization of quasiparticles)

® Theory of metals in one dimension (collective modes as
quasiparticles)

® Theory of the fractional quantum Hall effect (quasiparticles
which are fractions’ of an electron)



(Quantum matter with quasiparticles:j

e (Quasiparticles are additive excitations:
The low-lying excitations of the many-body system
can be identified as a set {n.} of quasiparticles with
energy &,

E =5 MnNacq+ Za’ﬁ Fognong + ...

In a lattice system of IV sites, this parameterizes the energy
of ~ e*N states in terms of poly(N) numbers.



(Quantum matter with quasiparticles:j

e (Quasiparticles eventually collide with each other. Such
collisions eventually leads to thermal equilibration in a
chaotic quantum state, but the equilibration takes a long
time. In a Fermi liquid, this time diverges as

hE R

hpT)E as 1" — 0,

Teq ™

where Er is the Fermi energy.



A simple model of a metal with quasiparticles
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A simple model of a metal with quasiparticles

Electrons move one-by-one randomly
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A simple model of a metal with quasiparticles

H = 1/2 Z twczcﬁ

1,7=1

cici +cjc; =0 | C.CT- + ch-cZ- = 04
r -

t;; are independent random variables with ¢;; = 0 and |t;;]% = t°

Fermions occupying the eigenstates of a
N x N random matrix



Infinite-range model with guasiparticles

Feynman graph expansion in t¢;; , and graph-by-graph average,
yields exact equations in the large N limit:
1
iw 4 b — N(iw)
Gir=0")=0Q.

Giw) = . X(1) = t*°G(T)
G(w) can be determined by solving a quadratic equation.

A

—Im G(w)




Infinite-range model with guasiparticles

Now add weak interactions

1
_ | T
— 1/2 E twcZ Cj e )3/2 g Jijke C;C iCrCy

7.7 1 ,],k,e 1

Jij.ke are independent random variables with J;;.ke = 0 and |J;;.x¢]? = J*. We
compute the lifetime of a quasiparticle, 7., in an exact eigenstate 1, (¢) of the
free particle Hamitonian with energy E,. By Fermi’s Golden rule, for E,, at the
Fermi energy

Ti = 1.J%ps / dEgdE,dEs f(Eg)(1 — f(E,))(1 — f(E5))d(Ea + Eg — Ey — Es)
7TSJZP(Q) 72
4

where pg is the density of states at the Fermi energy.

Fermi liquid state: Two-body interactions lead to a scattering time
of quasiparticle excitations from in (random) single-particle eigen-
states which diverges as ~ T2 at the Fermi level.




A simple model of a metal with quasiparticles

Let £, be the eigenvalues of the matrix ¢;; /v N.
The fermions will occupy the lowest N Q eigen-
values, upto the Fermi energy Er. The density

of states is p(w) = (1/N) > o(w —€q).

p(w)




A simple model of a metal with quasiparticles

There are 2% many
body levels with energy

rMauﬂy bodyw

N
level spacing E = Z N s
-‘/& ~27

where n, = 0,1. Shown

are all values of F for a
single cluster of size

N = 12. The ¢, have a

™ level spacing ~ 1/N.

g (Quasiparticle
excitations with

&« ng ~
| spacing 1/N y




A simple model of a metal with quasiparticles

Let £, be the eigenvalues of the matrix ¢;;/ V' N.
The fermions will occupy the lowest N Q eigen-
values, upto the Fermi energy E'r. The density
of states is p(w) = (1/N) > o(w —€q).

4 )
co level

R Spacing ~ 1/ NJ

p(w)




A simple model of a metal with quasiparticles

There are 2% many
body levels with energy

rMauﬂy bodyw

N
level spacing E = Z N s
-‘/& ~27

where n, = 0,1. Shown

are all values of F for a
single cluster of size

N = 12. The ¢, have a

™ level spacing ~ 1/N.
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The Sachdev-Ye-Kitaev (SYK) model
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The SYK model
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This describes both a strange metal and a black hole!



The SYK model

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, ). Flores, |.B. French, PA. Mello, A. Pandey, and S.S.M.Wong, Rev. Mod. Phys. 53, 385 (1981))

N

1

o (2N)3/2 > Usgimeeicjopey =1 cic;
ij.k f=1 i

cic; +cjci =0 cic; — cT.cZ- = 0j;

J
Q = %chcz

U;;.xe are independent random variables with U;.xe = 0 and |U;;.5e|? = U?
N — oo yields critical strange metal.

S.Sachdev and |.Ye, PRL 70, 3339 (1993)
A. Kitaey, unpublished; S. Sachdev, PRX 5,041025 (2015)



The SYK model

There are 2% many body levels
with energy E, which do not
admit a quasiparticle
decomposition. Shown are all
values of E for a single cluster ot
8 Many-body ) size N = 12. The T' — 0 state
has an entropy Saps = Nsg

level spacing ~

;———————— A/LQ_N — ¢~ Nln ZJ with

————— G In(2

= Sog = | n(2) = 0.464848 . ..
T 4

< In2

where G is Catalan’s constant,
rNon—quaSipartiClQ for the half-filled case Q = 1/2.

excltations le\}le GPS: A. Georges, O. Parcollet, and S. Sachdey,
— 1V S0

Spacing ~ e PRB 63, 134406 (2001
4—\>Pats D (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)



The SYK model

There are 2% many body levels
with energy E, which do not
admit a quasiparticle
decomposition. Shown are all
values of E for a single cluster ot
8 Many-body ) size N = 12. The T' — 0 state
has an entropy Saps = Nsg

level spacing ~

;———————— A/LQ_N — ¢~ Nln ZJ with

————— G In(2

= Sog = | n(2) = 0.464848 . ..
T 4

Qﬂen

(No quasiparticles !

E NaE
rNon—ql;lasiparticleﬁ # ZO‘ A

excitations with k_l_ Za,ﬁ Faﬁnanﬁ + . )
+— spacing ~ e” Vo0 " PRB 63, 134406 (2001)

~

W. Fu and S. Sachdev, PRB 94, 035135 (2016)



The SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large /N limit:

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large /N limit:

Low frequency analysis shows that the solutions must be gapless
and obey

where A = e~ /4(r /U?)Y/4 at half-filling. The ground state is a
non-Fermi liquid, with a continuously variable density O.

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

The equations for the Green’s function can also be solved at non-
zero 1T'. We “guess” the solution

il P
G(t) =B
(7) sgn(7) sin(7w1'T)
Then the self-energy is
T %
N(r) = U2B3 "
(7) sgn(7) sin(7w1'T)

A. Georges and O. Parcollet
PRB 59, 5341 (1999)



The SYK model

The equations for the Green’s function can also be solved at non-
zero 1T'. We “guess” the solution

il P
G(t) =B
(7) sgn(7) sin(7w1'T)
Then the self-energy is
T %
N(r) = U2B3 "
(7) sgn(7) sin(7w1'T)

Taking Fourier transtorms, we have as a function of the Matsubara

frequency w,

Tr—17T (B i Wn ) A. Georges and O. Parcollet
: o : ) 27T PRB 59,5341 (1999)
G(an) o [ZBH(IO)] T (1 B B | Wh, )
2 27T
3 n
T3 (L4 2
2 27l

1— =+

Zsing(iwn) — [iUZBSH(Bp)] 3 o :
r Py n
( 2 2WT>



The SYK model

TP—1T (B 1 Wn )

Gliwn) = [iBTI(p)] o
r (1 -2 )
2 21T
T3,0—1 1" (3’0 I Wn )
Sumgliwn) = [iU2BTI(3p) S

T 1—3p| L
2 21T

where we have dropped a less-singular term in 2., and

s

I1(s) = 75 12% cos (7) ['(1—s).

. : L
Now the singular part of Dyson’s equation is A. Georges and O. Parcollet

PRB 59,5341 (1999)
G (twn ) Lging (twy ) = —1

Remarkably, the I' functions appear with just the right arguments,
so that there is a solution of the Dyson equation at p =1/2!

So the Green’s functions display thermal ‘damping’ at a
scale set by 1" alone, which is independent of U.



The SYK model

GR(w)GA ()
10}
ReGF(w) 0/5 ¢ TnGA(w)
T Y N e
W

Green’s functions away from half-filling

So the Green’s functions display thermal ‘damping’ at a
scale set by 1" alone, which is independent of U.



The SYK model

S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



The SYK model

At frequencies < U, the w

1 can be dropped,

and without it equations are invariant under the
reparametrization and gauge transtormations.
The singular part of the self-energy and the Green’s

function obey

B
/ 07> Saing (71, 72) G (72, 73) = —3(71 — 73)
0

Zsing (7-17 7-2) — _U2G2 (7-17 TQ)G(7-27 7-1)

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The SYK model

b
/ dTQ E(Tl,TQ)G(TQ,Tg) - —5(7'1 — 7'3)
0

2(7'1,7'2) - —UQGQ(Tl,TQ)G(TQ,Tl)

These equations are invariant under

r = f(o)

T,72) = [f(o1)f (o ~1/4 (o) 01,0
G(t1,12) = [f'(01)f (02)] o(0s) G(o1,02)
T.70) = [ (o) f (o _3/49(01)N0 o
Y(11,m2) = [f(01)f (02)] o(0o) Y:(o1,02)

where f(o) and g(o) are arbitrary functions.
By using f(o) = tan(nT'o)/(7nT) we can
now obtain the 7" > 0 solution from the T = 0 solution.

A. Kitaey, 2015
S.Sachdev, PRX 5, 041025 (2015)



The SYK model

Let us write the large N saddle point solutions of S as

Gs(rp —Tm2) ~ (11— 7’2)_1/2

28(7'1—7'2) ~ (7’1—7'2)_3/2.

The saddle point will be invariant under a reperamateri-
zation f(7) when choosing G(711,72) = Gs(11 — T2) leads
to a transformed G(o1,02) = G4(01 — 02) (and similarly
for »). It turns out this is true only for the SL(2, R)
transformations under which

atT + b
(1) ct+d “ c

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

A. Kitaev



SYK and AdS
@onnections of SYK to gravity and AdSs \

horizons

e Reparameterization and gauge
invariance are the ‘symmetries’ of
the Einstein-Maxwell theory of
cravity and electromagnetism

e SL(2,R) is the isometry group of AdS;.
ds? = (d7* + d(¢?)/(? is invariant under

a(t +1iC) +b
c(t+iC) +d

\_ with ad — be = 1. j

7'+’ =




Infinite-range (SYK) model without quasiparticles

After introducing replicas a = 1...n, and integrating out the dis-
order, the partition function can be written as

I s
7 = /DCm(T) exp —Z/ dr ¢! (% — ) Ciq
ia 70

4

U2 B
— N3 Z/ drdr’ CIQ(T)CZ'[,(T/)
ab 0

For simplicity, we neglect the replica indices, and introduce the
identity

p
1:/])2(7-1,7-2)@(1:) —N/ drdmo3 (11, T2) <G(TQ,7'1)
0

-+ % Z ci(72)03(71)>




Infinite-range (SYK) model without quasiparticles

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

7 = /DG(ﬁ,TQ)DZ(ﬁ,Tg)eXp(—NS)
S =1Indet [6(T — 72)(0r, + 1) — X(71,7T2)]
- /dTldTQZ(Tl,TQ) [G(TZ,Tl) =+ (U2/2)G2(7277_1)G2(7_177_2)}

At frequencies < U, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transtormations A. Georges and O, Parcollet
PRB 59, 5341 (1999)

T = f(O') A. Kitaev, 2015

S. Sachdev, PRX 5, 041025 (2015)

G(r1,72) = [f'(o0) ' (02)) " 9(71) G(o1,02)

(02)
—3/4 9(01)

YX(11,72) = [f'(01)f (02)]

where f(o) and g(o) are arbitrary functions.



The SYK model

Reparametrization and phase zero modes
We can write the path integral for the SYK model as

Z = /DG(Tl,Tl)DZ(Tl,TQ)e_NS[G’E]

for a known action S|G, ¥|. We find the saddle point, G, ¥4, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
gauge symmetries by writing

G(Tl,TQ) — [f/(Tl)f/(TZ)]1/4Gs(f(71) - f(72))€i¢(ﬁ)_i¢(72)

(and similarly for ). Then the path integral is approximated by

z /Df(T)D¢(T)€_NSeff[fa¢].

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;

S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; |. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



The SYK model

Symmetry arguments, and explicit computations, show that the effective action is

1T

dr {tan(nT (1 + €(7)), 7},

K 1/T
Seet| f, @] = / 7(0-¢ 4+ i(2nET)0€)* — 4;2

where f(7) = 7+ ¢(7), the couplings K, v, and £ can be related to thermodynamic
derivatives and we have used the Schwarzian:

2
B g/// 3 g//
{97 T} — g/ 2 ( g/ ’

Specifically, an argument constraining the effective at T' = 0 is

at + b

St 1) = 20, 0(r) = 0| =0,

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.1612.00849;

S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; |. Engelsoy, T.G. Mertens, and H.Verlinde, arXiv:1606.03438



The SYK model

e Low energy, many-body density of states
p(E) ~ eN%oginh(,/2(E — Ey)N~)

A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001)

D. Stanford and E.Witten, 1703.04612
A. M. Garica-Garcia, J.].M.Verbaarschot, 1701.06593
D. Bagrets,A.Altland, and A. Kameney, 1607.00694

(for Majorana model)



The SYK model

e Low energy, many-body density of states
p(E) ~ eN%oginh(,/2(E — Ey)N~)

e Low temperature entropy S = Nsg + NI+ ....

A. Kitaev, unpublished
J- Maldacena and D. Stanford, 1604.07818



The SYK model

e Low energy, many-body density of states
p(E) ~ eN%oginh(,/2(E — Ey)N~)

e Low temperature entropy S = Nsg + NI+ ....

e T = 0 fermion Green’s function is incoherent: G(7) ~

7 1/2 at large 7. (Fermi liquids with quasiparticles have

the coherent: G(7) ~ 1/7) S. Sachdev and |.Ye, PRL 70, 3339 (1993)



The SYK model

Low energy, many-body density of states

p(E) ~ eN%oginh(,/2(E — Ey)N~)

Low temperature entropy S = Nsg + NYIT + .. ..

T = 0 fermion Green’s function is incoherent: G(71) ~

_—1/2

the coherent: G(7) ~ 1/7‘)

at large 7. (Fermi liquids with quasiparticles have

T > (0 Green’s function has conformal invariance

G ~ (T/sin(nkgTT/R))"/?

A. Georges and O. Parcollet PRB 59, 5341 (1999)



The SYK model

Low energy, many-body density of states
p(E) ~ eN%oginh(,/2(E — Ey)N~)

Low temperature entropy S = Nsg + NYIT + .. ..

T = 0 fermion Green’s function is incoherent: G(71) ~
7 1/2 at large 7. (Fermi liquids with quasiparticles have

the coherent: G(7) ~ 1/7‘)

T > (0 Green’s function has conformal invariance

G ~ (T/sin(nkgTT/R))"/?

The last property indicates 7oq ~ h/(kgT'), and this

has been found in a recent numerical study.
A. Eberlein,V. Kasper, S. Sachdeyv, and |. Steinberg, arXiv:1706.07803



(Quantum matter without quasiparticles:)

e If there are no quasiparticles, then

E#Znas&—l—ZFwnanﬁ—l—...
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(Quantum matter without quasiparticles:)

e If there are no quasiparticles, then

E#Znas&—l—ZFwnanﬁ—l—...
« o,

e If there are no quasiparticles, then

e

Tea = 7

S. Sachdey,
Quantum Phase Transitions,
Cambridge (1999)



(Quantum matter without quasiparticles:)

e If there are no quasiparticles, then

E #£ Znasa +2Fa5nan5 + ...
« o,

e If there are no quasiparticles, then

e

Teq — #kBT

e Systems without quasiparticles are the fastest possible in reaching local
equilibrium, and all many-body quantum systems obey, as I" — 0

h S. Sachdey,
T > C . Quantum Phase Transitions,
€q kB T Cambridge (1999)

— In Fermi liquids 7eq ~ 1/7%, and so the bound is obeyed as T' — 0.

— This bound rules out quantum systems with e.g. 7oq ~ h/(JkpT)/2.

— There is no bound in classical mechanics (A — 0). By cranking up
frequencies, we can attain equilibrium as quickly as we desire.



e Black holes have an entropy
and a temperature, Ty =

hCS/(Sﬂ'GMkB).

Black

e The entropy is proportional

hOICS to their surface area.
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e The ring-down is predicted by General Relativity to happen in a

STGM
time 2 ~ 8 milliseconds. Curiously this happens to equal
C
h
so the ring down can also be viewed as the approach of a
kpTy

quantum system to thermal equilibrium at the tastest possible ratel



e Black holes have an entropy
and a temperature, Ty =

hCS/(Sﬂ'GMkB).

Black

e The entropy is proportional

hOICS to their surface area.

e They relax to thermal equi-
librium in a time ~ A/(kgT).




The SYK model

Low energy, many-body density of states
p(E) ~ eN%oginh(,/2(E — Ey)N~)

Low temperature entropy S = Nsg + NY1T + .. ..

T = 0 fermion Green’s function G(7) ~ 7712 at

large 7. (Fermi liquids with quasiparticles have G(1) ~

1/7)
T > 0 Green’s tunction has conformal invariance
G ~ (T/sin(nkgTT/h))Y/?

The last property indicates 7oq ~ h/(kgT'), and this
has been found in a recent numerical study.



The SYK model

Low energy, many-body density of states
p(E) ~ eN%oginh(,/2(E — Ey)N~)

Low temperature entropy S = Nsg + NY1T + .. ..

T = 0 fermion Green’s function G(7) ~ 7 /2 at

large 7. (Fermi liquids with quasiparticles have G(1) ~

1/7)

/" Black holes with a near-horizon AdS; geometrﬂ
1> (described by quantum gravity in |+1| spacetime
G dimensions) match these properties of

The the 0+1 dimensional SYK model:

has b Nso is the Bekenstein-Hawking entropy )

S.Sachdev, PRL 105, 151602 (2010); A. Kitaev (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857



Many-body quantum chaos

e Using holographic analogies, Shenker and Stanford
introduced the “Lyapunov time”, 77, the time over
which a generic many-body quantum system loses

EIOory of its initial state. S. Shenker and D. Stanford, arXiv:1306.0622



Many-body quantum chaos

e Using holographic analogies, Shenker and Stanford
introduced the “Lyapunov time”, 77, the time over
which a generic many-body quantum system loses

memory of its initial state. S. Shenker and D. Stanford, arXiv:1306.0622

e A shortest-possible time to reach quantum chaos was
established

TI, > J. Maldacena, S. H. Shenker and
— 2nkgT D. Stanford, arXiv:1503.01409




Many-body quantum chaos

e Using holographic analogies, Shenker and Stanford
introduced the “Lyapunov time”, 77, the time over
which a generic many-body quantum system loses

memory of its initial state. S. Shenker and D. Stanford, arXiv:1306.0622

e A shortest-possible time to reach quantum chaos was
established

TI, > J. Maldacena, S. H. Shenker and
— 2nkgT D. Stanford, arXiv:1503.01409

e The SYK model, and black holes in Einstein gravity,
saturate the bound on the Lyapunov time

7 A. Kitaev, unpublished

= J. Maldacena and D. Stanford,

L — Xiv:1604.07818
21k pT X




(Quantum matter without quasiparticles)

e No quasiparticle
decomposition of low-lying states:

E# >  Nea
+ 20 Fapnansg + ...

e Thermalization and many-body chaos in
the shortest possible time of order h/(kgT).

e These are also characteristics of black holes
In quantum gravity.



