Eliashberg theory of superconductivity

Andrey Chubukov

University of Minnesota

School on Superconductivity, Tallahassee, FL, January 8, 2024

Superconductivity:

Zero-resistance state of interacting electrons

Nobel Prize 1913

What we need for superconductivity?

Drude theory for metals predicts that resistance should remain finite at T=0

AMP

VOLT

If the system is a static field of the system is a static static

A nonzero current at E = 0 means that resi

The condensate $\Xi = |\Xi| e^{i\varphi}$ breaks U(1). By Anderson- Higgs mechanism, a vector potential field becomes massive, and this leads to an expulsion of a magnetic field from a superconductor

Meissner effect

Once we have a macroscopic condensate, we have superconductivity

For bosons, the appearance of a condensate is natural, because bosons tend to cluster at zero momentum (Bose-Einstein condensation)

But electrons are fermions, and two fermions simply cannot exist in the same quantum state.

However, if two fermions form a bound state, a bound pair becomes a boson, and bosons do condense.

We need to pair fermions into a bound state.

For pair formation, there must be an attraction between fermions!

Two issues

How to get an attraction?

How strong attraction should be for SC?

How strong attraction should be for SC?

Leon Cooper

An <u>arbitrary small</u> attraction between fermions is already capable to produce bound pairs with zero total momentum in any spatial dimension, <u>because</u> <u>the pairing susceptibility is logarithmically singular</u> <u>at vanishing temperature (Cooper logarithm)</u>

kγ

Reason: low-energy fermions live not near k=0, but Zero energy near a Fermi surface at a finite k= $k_{F,}$ d³k = $4\pi(k_F)^2 d(k-k_F)$

> Let's look into this argument from Fermi liquid perspective

Fermi liquid analysis

*) poles of the vertex function (an antisymmetrized interaction) determine bosonic excitations.

**) for stability, poles must be a the lower 1/2 plane

An example: zero-sound pole at $W = \pm V_0 q - iS \equiv$

Let's assume for simplicity that the interaction is momentum-independent U (Hubbard)

To first order in U P= U[SapSjs-SasSpj] singlet

Renormalization $\frac{1}{1} = \frac{1}{1} + \frac{1}$ *) At zero acoming total frequency and zero incoming total momentum, Mpp logerithmically diverges at T=0.

Cooper logarithm

Zero total momentum and finite total frequency & H4 $\Pi pp (q=0, \mathcal{R}) = \frac{im p_F}{4\pi^2} \left[\log \frac{\omega_0}{\mathcal{L} + i\delta} + \log \frac{\omega_0}{-(\mathcal{L} + i\delta)} \right]$

 ω_0 is put by hand, I just assumed

$$U = \begin{cases} U, \text{ at energies below (0)} \\ 0, \text{ at energies above (0)} \end{cases}$$

 Π_{pp} is a complex function – don't expect a pole infinitesimally close to real frequency

Once we sum up ladder diagrams keeping only Mpp at each order, we get $\Gamma(\mathcal{R}) = \frac{\omega}{1 - \lambda \left[\log \frac{\omega_0}{\mathcal{R} + i\delta} + \log \frac{\omega_0}{-\mathcal{R} - i\delta} \right]}$ $\lambda = -\frac{m U \rho_F}{2\pi^2}$

To check where the poles of T(x) is a the complex plane of frequency, replace D2+is by Z= Q+ib

Neor the pole, Γ(R) cs / J2-ib

Instability only for excitations with near-zero total momentum of a pair.

BCS theory of superconductivity

Nobel Prize 1972

BSC-I: what the instability of the normal state means

Suppose U=0. Which state is stable?

 $\mathcal{J} = \sum_{\substack{k,d \\ n \neq k,d}} \mathcal{E}_{k} \mathcal{E}_{kd} + \frac{\mathcal{U}_{kd}}{\mathcal{N}} \sum_{\substack{l \geq y \\ l \geq y \neq l}} \mathcal{E}_{kl} \mathcal$

Idea of BCS: assure and verify that $-\frac{U}{N}\sum_{k}cb_{k,p}^{+}b_{-k,p}^{+} > = \Delta \neq 0$ Simultaneously, $-\frac{U}{N}\sum_{k}cb_{k,p}^{+}b_{-k,p}^{+} = -\Delta$ Simultaneously, $-\frac{U}{N}\sum_{k}cb_{k,p}^{+}b_{-k,p}^{+} = -\Delta$ This physically implies that fermions form bound pairs $\Delta = |\Delta| e^{i\varphi}$ assure 4=0 for simplicity

 $\frac{4}{N} \sum b^{+}b^{+}bb \rightarrow -\frac{5}{U} - \Delta \sum_{k} (b_{k} + b_{k} + b_{k} + b_{k} + b_{k}) + \dots$

Re-diagonalize the quadratic form and find A from self-consistency condition

Most relevant: conductivity

G A S(w) The presence of a S-function implies that resistivity = 0.

BCS: actual computations A cs wo e fot depend on Te s wo e ft the upper cutoff wo $\frac{2\Delta}{T_c} = 3.53 \qquad \left(\frac{\Delta}{T_c} = 1.76\right)$ However,

 $\frac{C_{s}-C_{h}}{C_{h}} = 1.43 \left(=\frac{12}{7\%(3)}\right)$

One can improve the analysis already within BCS-I

the Fermi energy

Garbou
melik-Barkhudonov

$$melik-Barkhudonov$$

 $multik-Barkhudonov$
 $multik-Barkhudonov
 $multik-Barkhudonov$
 $multik-Barkhudonov
 $multik-B$$$

BCS theory of superconductivity. Bes I What causes an attaction? BCS: il is electron-phonon interaction 0 0 (1 => je phonon propagator

BCS pr electron - phonon interaction: keep lieff = - g'/w at w, w' < wo Set Veff = 0 at w, w'> wp (a herd cutoff). All previous BCS results hold, as long as WD « ÊF We still don't know Te and A separately. Only their ratio, in known

Eliashberg theory of SC

*) week coupling limit

Dor't appoxinete Veft by a step function, keep its frequency dependence

Once $U_{eff} = U_{eff} (\omega - \omega')$, the gap Δ becomes $\Delta(\omega)$

self-consistent equation on $\Delta(v)$ is Graphically,

For Te and $\Delta(T < Te)$, we can set $\Delta_0 = O$

Superconductivity in easier to analyze on the Metsuberg axis $(\omega \rightarrow i\omega_m)$ $lleff = \Theta$ $\frac{g}{2}$ $(\omega_{m} - \omega_{m}')^{2} + \omega_{D}^{2}$

Eliashberg gap equation on Matsubara axis

$$\Delta(\omega) = \pi \overline{1} \sum_{\omega'} \frac{\Delta(\omega')}{(\omega')^2 + \Delta'(\omega')} \frac{g^2}{(\omega - \omega')^2 + \omega \overline{D}}$$

 $T_c = 0.69 \text{ WD } P$ Solution: $\left(\overline{T}_{c}^{BCS} = 1.13 \omega_{D} \tilde{e}^{K}\right)$ if cutoff uzight at WD Q: Is this the correct result at week coupling?

It turns out, we have to include fermionie self-energy w $\vec{G} = i(\omega + \Sigma) - \Sigma_p$ $\Sigma = \Sigma(\omega) = \lambda \omega$ at $\omega < \omega_D$ $\vec{G} = i\omega(1+\lambda) - \varepsilon_P$ A simple colculation of TS Type it $\lambda \rightarrow \lambda/\mu_{\lambda}$ $e^{\frac{1}{\lambda}} = e^{\frac{\pi}{\lambda}} = e^{\frac{\pi}{\lambda}} e^{\frac{\pi}{\lambda}}$

$$\frac{\text{correct}}{T_{c}} = 0.25 \text{ W}_{D} \text{ C}^{-1}$$

For an Einstein phonon

This calculation has been extended to other forms of a phonon propagator, and became the "standard" computational procedure for superconducting Tc and the gap function

Eliashberg theory of SC **) extension to stronger coupling Add higher order self-energy diograms $\overline{}$ + vertex self-co-sistert corrections ore - bop

These diagrams form seriesin the dimensionless coupling λ.When the coupling is large, they are all relevant

Let's look at vertex correction *) At 9=0, Il finite, vertex correction is of the 9, R Serve order as $\frac{\partial S}{\partial w} = \lambda$ by Ward id. $\mathcal{A} \leftarrow \Gamma = 1 + \frac{\partial \mathcal{E}}{\partial \omega} = 1 + \lambda$ **) A 9- PF (VE9-EF) and RawberEF, $\Gamma = 1 + \lambda_E$ $\lambda_F = \lambda \times \frac{\omega_D}{E_F} \ll \lambda$

Concept: fost électrons & slow borons In the process leading to a vertex correction, fost électrons vibrete at slow phononie frequencies, for away from their own resonance

There is another effect of electron-phonon interaction: Landau damping of a phonon

 $\mathbb{R}, 9 \longrightarrow \mathbb{C} \frac{|\mathcal{P}|}{|\mathcal{V}_F q|} \left(999 \text{ pr}\right)$

The gap equation involves fully renormalized Green's function but no vertex corrections to ladder series

Fermionic self-energy is obtained in self-consistent one-loop approximation, without vertex corrections

Diagrammaticaly ⇒ full Green's function ∑₌ (matrix ma SØstate) , ' Y

The actual Eliashberg equations (written by him)

$$\sum(\omega) = \pi T \sum_{\omega'} \frac{\omega' + \Sigma(\omega')}{(\omega' + \Sigma(\omega'))^2 + |\Psi(\omega')|^2} \frac{g^2}{|\omega - \omega'|^2 + \omega_p^2}$$

$$\begin{aligned}
\Phi(\omega) &= \pi T \sum_{\omega'} \frac{\Phi(\omega')}{\left(\omega' + \Sigma(\omega')\right)^2 + \left(\frac{\Psi(\omega')}{\varphi'}\right)^2} \frac{g^2}{\left|\omega - \omega'\right|^2 + \omega_D^2}
\end{aligned}$$

$$T_{c} = \omega_{D} * f(\lambda) \qquad \lambda = \frac{9}{\omega_{D}}^{2}$$

A trick :

$$\Delta(\omega) = \frac{\varphi(\omega) \cdot \omega}{\omega + \overline{z}(\omega)} = \frac{\varphi(\omega)}{\overline{z}(\omega)} \text{ gap function}$$

$$\overline{z}(\omega) = \underline{1} + \frac{\overline{z}(\omega)}{\omega} \text{ quasiparticle renormalization factor}$$

$$\frac{\overline{\varphi}(\omega)}{\sqrt{|\overline{\varphi}/\omega|^{2} + (\omega \cdot \overline{z}(\omega))^{2}}} = \underline{\Delta}(\omega) + \frac{\overline{\omega}}{\sqrt{(\omega^{2} + \Delta^{2}/\omega)}} + \frac{\overline{\omega} + \overline{z}(\omega)}{\sqrt{(\omega^{2} + \overline{z}(\omega))^{2} + |\overline{\varphi}/\omega|^{2}}} = \frac{\omega}{(\omega^{2} + \Delta^{2}/\omega)}$$

$$\Delta(\omega) = \overline{\pi} = \sum_{\omega'} \frac{\Delta(\omega') - \frac{\Delta(\omega')}{\omega} \omega'}{\sqrt{\Delta^{2}/\omega' + (\omega')^{2}}} \frac{\underline{g}^{2}}{(\omega - \omega')^{2} + \omega_{D}^{2}}$$

$$Z(\omega) = 1 + \frac{\pi}{\omega} \sum_{\omega'} \frac{\omega'}{(\omega')^2 + \Delta^2(\omega')} \frac{g^2}{|\omega - \omega'|^2 + \omega_{\Delta}^2}$$

The same equations can be obtained Le Hinger - Word - Eliashberg free energy pon F = Fee + Firt $Fel = -2T \sum_{p} \log \left(-\det \hat{G}_{p}\right) - i T_{2}\left(\hat{S}_{p} \hat{G}_{p}\right)$ Fint = g T Z Gp Dpe (p-p') Gp' - Fp Dpe (p-p') Ffp' $\hat{G} = \begin{pmatrix} G & F \\ F^* & -G \end{pmatrix} \qquad \hat{\Sigma} = \begin{pmatrix} 2 & \varphi \\ -\varphi^* & \Xi \end{pmatrix}$ $G = \bigoplus \frac{\varepsilon_p - i \tilde{\varepsilon}_p}{(\varepsilon_p - i \tilde{\varepsilon}_p) + |P_p|^2}$ and S=w=E $\overline{F_{p}} = i \qquad \frac{\varphi_{p}}{(\varepsilon_{p} - i \overline{\varepsilon_{p}}) (\varepsilon_{p} - i \overline{\varepsilon_{p}}) + |P_{p}|^{2}}$

Stationery sulations: $\frac{SF}{SZ_{r}} = \frac{SF}{SP_{r}} = 0$ $\begin{aligned} P_{p}^{\star} &= i T \sum_{p'} g^{2} P(p-p') F_{p'} \\ p &= i T \sum_{p'} g^{2} D(p-p') G_{p'} \\ form of \\ Sp &= i T \sum_{p'} g^{2} D(p-p') G_{p'} \\ Slichhorg egs. \end{aligned}$ Integrate over momenter "Conventional" Eliashberg egg: only u frequency domain.

Elieulberg computetiaal proceedure
*) Add eqn. for forsonic portorization

$$\Pi(q, R) \qquad [D'=D'_0-D]$$

 $F = Fel + Flow + First$
 $A set of 3 compled eqs for
 $Z = Z(p, R)$
 $\varphi = \varphi(p, R)$
 $\Pi = (T(q, R))$
 $R = (T(q, R))$$

Superconductivity at show coupling
$$\begin{pmatrix} \lambda & 1 \\ \lambda \in \ll 1 \end{pmatrix}$$

 $T_c = \omega_D * f(\lambda)$
 $* \text{ of } \lambda \ll 1$ Transform $\tilde{C}^{\prime}_{\lambda}$
 $* \text{ of } \lambda \ll 1$ Transform $\tilde{C}^{\prime}_{\lambda}$
 $* \text{ of } \lambda \gg 1$?
Allen-Dynes: Transform T_{λ}
 1975 J
Recall: $\lambda = \frac{g^2}{\omega_D^2} \implies T_c \sim g$

It looks, I can set $w_D = 0$ and shill get a finite Te $(say, w_D = 0, E_{F} \Rightarrow \infty, \lambda_E = \frac{g^2}{w_D E_F})$ zenains shall

 $\omega_{\rm D}=0$ Eliashberg $\Delta(\omega)=\overline{11}\sum_{\omega'} \frac{\Delta(\omega') - \Delta(\omega) \frac{\omega'}{\omega'}}{|\omega'|} \frac{g^2}{|\omega-\omega'|^2}$

*) divergent term at w=w' concels out by O in the numerator [analog of the Aderson theorem]

And what about Z(w): $Z(\omega) = 1 + \frac{\Sigma(\omega)}{\omega} = 1 + \frac{\overline{\mu}}{\omega} \sum_{\omega'} \frac{\operatorname{sgn}(\omega')}{|\omega - \omega'|^2}$ at ws=0 self-energy diverges.

Numerics:

I. Esterlis et al

Conclusions:

- 1. Superconductivity develops at strong coupling, even when fermionic self-energy diverges
- 2. Superconducting Tc saturates at a finite value when ω_D vanishes

THANK YOU

The last point for boday:
*) I previously said that bosonic puterization
can be neglected.
**) This is true for Landaus damping
how was there is a frequency-independent shift
from here Delye frequency we'do the
actual WD
***) For a circular Formi surfeer in 2D,
WD = WD (1-220),
$$\lambda_0 = \frac{3^2}{(WD)^2}$$

Numerics for lattice dispersion (2D t-t' model)

Superconducting To

Tc = 0.189 ~ 0.13 Wo

Eliesthes Te cannot be leyer than 0.13 Wo

Machine learning the relationship between Debye temperature 2023 and superconducting transition temperature

Adam D. Smith[®],^{1,*} Sumner B. Harris[®],² Renato P. Camata[®],¹ Da Yan[®],³ and Cheng-Chien Chen[®],[†]

A bound on the superconducting transition temperature

I. Esterlis¹, S. A. Kivelson¹ and D. J. Scalapino²

2018

Superconduction stiffness

$$\Delta = |\Delta| e^{i\psi}, \quad \text{SC when } <\Delta > \neq 0$$
Previously, owe discussion was about 1/41.
Every cost to charge phase

$$\delta F = Ps \int (D\Psi)^2 d^2 F \qquad \text{Si 2D}$$

$$Ps \text{ hes dimension of every}$$

In Sliashberg theory:

Ps ~ // >> 1 Te d

As by as Elieshberg tley in justified, phase fluctuations are weak.

However, at the boundary of the Sapplicability of Eliashbay Eleoy. Ps ~ Tc -preformed pairs $\lambda_{E} = O(1)$

JI => JIO + Z EK (CKZ CKZ) $\overline{E}_{k} = \left| \mathcal{E}_{k}^{2} + \Delta^{2} \right|$

In terms of original fermions (bed) tlere are two poles at +Ex and -Ex +Ep - Eo PF p is the same as k

The system lowers ds ground state energy when $\Delta \neq 0$ Eground = Eground + Econd $E_{cord} = -\frac{NN^2}{2}Q$

 $Q = \frac{1}{N} \sum_{p \in P} \frac{E_p - |\mathcal{E}_p|}{|\mathcal{E}_p|} > 0$ $P = \frac{1}{P} \left(\frac{E_p + |\mathcal{E}_p|}{|\mathcal{E}_p|} \right)$