

Jeong Min (Jane) Park 2024 Theory Winter School

parkjane@mit.edu

Unexplored regime of superconductivity

Strongly-coupled superconductors

Outline

- 2-dimensional twisted materials for correlated physics
 - Magic-angle twisted bilayer graphene
- Magic-angle twisted trilayer graphene
- The magic family
- Outlook

How to study strongly correlated physics?

<u>Cold Atoms Optical</u> <u>Lattices</u> Length scale ~ **1 micron** Temperature scale ~ **0.1-1 nanoKelvin**

Doping tunability of 2D materials

Charge density $n = CV_g/e$

Stacking tunability of 2D materials

Geim & Grigorieva, Nature (2013)

Even more: twist angle!

Designing flat bands

$$\theta_{M1} \approx 1.1^{\circ}$$

Bistritzer & MacDonald, PNAS (2011); Also: Li et al. Nature. Phys. (2010); Suarez-Morell et al. PRB (2010)

Superconductivity in the flat bands

Low-density superconductor

YC, PJH et al. Nature **556**, 80 (2018)

So many phases in a single material

Moiré is different

Moiré Quantum Matter

Moiré length ~ 10nm

Correlated Insulators (MATBG, ABC/hBN, Twisted Bi-Bi, TMD moiré heterostructures, etc)

> Robust Superconductivity (MATBG, signatures in other systems)

Topological Phases (MATBG, MATBG/hBN, ABC/hBN, Twisted Bi-Bi, Twisted Mono-Bi, etc))

Magnetism (MATBG/hBN, ABC/hBN, Twisted Mono-Bi)

Moiré Ferroelectricity (Twisted BN/BN, BLG/BN, Twisted TMD/TMD)

Moiré is different for superconductivity?

- Can we design a tunable, strongly-coupled superconductor?
 - What are the **important ingredients or recipes**?
 - Symmetry of the system?
 - Band structure requirements?

- 2-dimensional materials for strongly correlated physics
 Magic-angle twisted bilayer graphene
- Magic-angle twisted trilayer graphene
- The magic family
- Outlook

Magic-angle twisted trilayer graphene (MATTG)

<u>JMP</u> et al. *Nature* **590**, 249 (2021)

Magic-angle twisted trilayer graphene (MATTG)

<u>JMP</u> et al. *Nature* **590**, 249 (2021)

MATTG is a robust superconductor

MATTG is a robust moiré superconductor!

JMP et al. *Nature* **590**, 249 (2021)

Further tunability: band structure

v - D phase space

<u>JMP</u> et al. *Nature* **590**, 249 (2021)

Counting electrons in the new BZ

2-fold spin DOF + 2-fold valley DOF

4-fold spin × valley "Flavors"

4 electrons per moiré unit cell to fill each flat band

ν - D phase space reveals tunable SC

Blue: Superconductivity

Superconductivity exhibits a strong dependence on both ν and D

JMP et al. *Nature* **590**, 249 (2021)

Tunable superconducting strength

Hall density reveals Fermi surfaces

JMP et al. Nature 590, 249 (2021)

Striking similiarities

<u>JMP</u> et al. *Nature* **590**, 249 (2021)

Phase space map reveals unusual SC

What forms superconductivity?

JMP et al. *Nature* **590**, 249 (2021)

SC is from the half-filling broken symmetry states

Tunable strongly-coupled superconductivity

Short coherence length: Cooper pair size \lesssim Interparticle distance: Strongly coupled Large TBKT/TF ~ nSF/ne: BCS-BEC crossover regime: Strongly coupled

JMP et al. *Nature* **590**, 249 (2021)

Superconductivity is very strongly coupled!

Our T_c is *high* for such low carrier density – Design principles for future materials

Can we probe the spin structure of SC?

SC wavefunction: (Spatial: s, p, d- wave, etc.) x (Spin: singlet, triplet, etc.)

Spin-singlet Cooper Pairs $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ Binding energy
(BCS) $\Delta_{BCS} = 1.76k_BT_C$

Zeeman effect "breaks" Cooper pairs apart

Pauli limit (paramagnetic limit, Chandrasekhar-Clogston limit):

$$B_P = 1.86 \frac{T}{K} \times T_c$$
 (e.g. $B_P = 1.86T$ for $T_C = 1$ K)
for BCS spin-singlet superconductors

Can we probe the spin structure of SC?

Pauli limit is violated in MATTG

Pauli limit (paramagnetic limit, Chandrasekhar-Clogston limit): $B_P = 1.86 \frac{T}{K} \times T_c$ (e.g. $B_P = 1.86T$ for $T_C = 1K$) for BCS spin-singlet superconductors

Pauli limit is not violated in MATBG

Pauli limit (paramagnetic limit, Chandrasekhar-Clogston limit): $B_P = 1.86 \frac{T}{K} \times T_c$ (e.g. $B_P = 1.86T$ for $T_C = 1K$) for BCS spin-singlet superconductors

Reentrant superconductivity in MATTG

At a different displacement field...

Cao*, <u>JMP*</u> et al. *Nature* **595**, 526 (2021)

Tunable reentrant superconductivity

- 2-dimensional materials for strongly correlated physics
 Magic-angle twisted bilayer graphene
- Magic-angle twisted trilayer graphene
- The magic family
- Outlook

The magic extends!

Γ_s

 Γ_{s}

Ms

Ms

K's

K's

Khalaf et al. Phys. Rev. B 100, 085109 (2019)

The magic family of robust superconductors

Family of strongly-coupled superconductors!

JMP et al. Nature Materials 21, 877 (2022)

3

т (К)

See also: Nadj-Perge Group. Science **377**, 1538 (2022)

~100% magic rate

The magic family

Pauli limit violation

Only 3-5L consistently violate the Pauli limit

JMP et al. *Nature Materials* **21**, 877 (2022)

Angle-dependent magnetic field response

Spontaneous breaking of rotational symmetry

JMP et al. *Nature Materials* **21**, 877 (2022)

The magic family

In-plane orbital effect

In-plane orbital effect

Conclusion & Outlook

Can we design a tunable, strongly coupled superconductor?

Yes, much beyond! MATTG as a new platform for correlated physics

- <u>Exceptional tunability</u> for a new dimension in phase space
- Ultra-strongly coupled superconductivity
- Large Pauli limit violation and reentrant superconductivity

Can we find important ingredients or recipes?

Yes, the Magic family of robust moiré superconductors is established

- All share the same type of flat band
- Importance of C₂T symmetry

Future directions

- SC order parameter of the magic family members, microscopic structure?
- Can we increase the Tc? Or design ideas for high Tc?
- Coupling with topological phases

Acknowledgement

Pablo Jarillo-Herrero

Amir Yacoby

Yonglong Xie

hBN crystals: Kenji Watanabe Takashi Taniguchi

