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The Quantum Hall Effects

Large set of peculiar phenomena in two-dimensional
electron systems, at low temperatures in strong magnetic 
fields.

Usually: electrons in semiconductor structures: e.g. 
electrons trapped in a thin layer of GaAs, surrounded by 
AlGaAs, “quantum well structure”.   

More recently: QHE seen in monolayer and bilayer 
graphene.  

Samples can differ widely in electron densities and  
freedom from defects. Magnetic fields range from 0.1 to 
45 Tesla.



Variety of Quantum Hall States

• Integer and Fractional Quantized Hall States
• Wigner Crystals and Striped Phases
• Unquantized Quantum Hall States (Fermi liquid of 

composite fermions)

• Note: Quantized Hall Effects can also occur in zero 
magnetic field in certain systems with spontaneously 
broken time-reversal symmetry. 



Outline

• Current lecture will focus on general properties of 
Quantized Hall systems (Integer and Fractional)

• See how they arise in the simplest case: Integer QHE 
for non-interacting electrons.

• Excitations with fractional charge in Fractional QHE 
systems. 



Hall Geometry

Hall resistance:   RH=Vy / Ix
Longitudinal Resistance:   Rxx= Vx / Ix



Quantized Hall Effects
Under appropriate conditions, it is observed that the Hall 
resistance exhibits a series of plateaus, where it remain 
constant over a range of magnetic fields and carrier 
densities.

On the plateaus:  Rxx=0,  and  1/RH = ν e2/h ,  

where ν is a nonzero integer or simple rational fraction, 
and h/e2 = 25, 812.02 ohms.

Independent of precise shape of sample, same in 
different materials, robust to small concentrations of 
impurities, etc. 





Bulk Conductivity of a Quantized Hall State

For an infinite sample, uniform electric field:

Ji = σij Ej

=> In quantized Hall state: Electrical conductivity tensor 
obeys

σ xx= σ yy=  0 ,        σ yx=  - σ xy=  ν e2/h . 

Results are exact in limit of T -> 0,  large sample. 



Material requirements for the Quantized 
Hall Effect

(Integer or Fractional)
In the ideal 2D bulk, far from the edges, no impurities, system should 
have an energy gap for creation of mobile charges. 

In the presence of impurities, there can be localized states in the gap, 
but carriers must freeze out into localized states at low temperatures. 

So the bulk is essentially an insulator: current cannot flow in the direction 
parallel to an applied electric field.  σxx= σyy=  0 

Current can flow in a direction perpendicular to the electric field, carried 
by electrons well below the Fermi level, giving rise to a Hall conductivity.
σxy= - σyx=  ν e 2/h . 



Edge states

Theorem: If ν is nonzero, the energy gap must vanish along the sample  
edges.  (Laughlin 1981, Halperin 1982).  Edges are a peculiar type of 
one-dimensional metal: “Chiral metal”: Over a large length scale, charge 
carriers travel in only one direction along the edge.  

For a ribbon-shaped sample, if there is a chemical potential difference 
between the two edges, there will be a net edge  current proportional to 
the chemical potential difference . 
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Total current

The voltage difference V, measured by a voltmeter connected to 
the two edges, will be the sum of the electrostatic potential 
difference and the chemical potential difference. Bulk current is 
produced by gradients in the electrostatic potential. The total 
current I along the ribbon will be the sum of the edge current and 
the current in the bulk. 

Measured  Hall conductance  GH =  Ix/ Vy = ν e 2/h

regardless of how the current is divided between edge and bulk. 
Cannot change, as long as  σ xx= σ yy=  0 in the bulk.  
(Consequence of charge conservation.)



Exactness and robustness of 

the quantized Hall conductance

(and neccessity of edge states)

and where does it break down.



Gedanken experiment: Annular (Corbino) geometry

Assume: Clean region is an ideal QHE state

I = ν (e2/h) (V1-V2)

Assume: No extended states at Fermi level in dirty region 
or interface between clean and dirty regions. => No flow 
from inner to outer edge of sample (at T=0). 
Can reach steady state with V1’=V1 ≠ V2’=V2 .  
By current conservation: I’ = I = ν (e2/h) (V1-V2)



Integer QHE for non-interacting 
spinless electrons.

1.  Ideal infinite system.

2.  Effects of edges.



Landau Levels in 2-Dimensional Systems

Consider non-interacting electrons in uniform magnetic 
field B in 2D.  

In quantum mechanics, energy levels are quantized into 
“Landau levels”, with 

En = (h /2π) ωC (n+1/2) ,    n = 0, 1, 2, 3, ....  

The number of independent orbits, in each Landau level is 
equal to the number of flux quanta: NB ≡ B e Area / h

Define Landau level filling factor  f = Ne / NB = (ne/B)(h/e) .

If the Fermi level is in an energy gap, between two 
Landau levels, then  f will be an integer.



Relation of Hall conductance to
Landau-Level Filling Factor  f=(ne/B)(h/e)

For electrons in a uniform positive background (no impurities) 
Hall conductivity is given by 

σxy = e ne/B = f (e2/h)     (exact result)



System with Boundaries: An Infinite Strip

Confining potential V (y )   

Use Landau Gauge:   Ax= B y,  Ay = Az=0 

Eigenstates have form:   𝜓𝜓(𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖𝑘𝑘(y)
where n is a Landau level index and 𝜑𝜑𝑖𝑖𝑘𝑘 𝑦𝑦 is
localized near y = yk = k 𝑙𝑙𝐵𝐵2 ,      𝑙𝑙𝐵𝐵2 = ℏ

𝑒𝑒𝐵𝐵
.
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Landau levels in a strip of finite width

EF

Position  y   --->

Energy levels Ekn are pushed up at edges of the strip.

Energy

Energy levels are filled up to Fermi Level EF. Here f=2, with an energy gap in bulk.
At each edge, there are two conducting states at the Fermi level.  Hall conductance  
G = 2 e2/h .  (Spin is ignored, here).



Eigenstates can carry current in the 
x-direction

• Specifically, for a filled eigenstate:

< 𝐼𝐼 >𝑖𝑖𝑘𝑘= 𝑒𝑒
ℏ𝐿𝐿

𝜕𝜕
𝜕𝜕𝑖𝑖

Ekn

• Current has opposite sign at two edges
• Also get nonzero current in the bulk, given by the 

same formula,  if there is an electric field in the y-
direction. 

• Total current carried by given Landau level is 
determined by the difference in Fermi levels at the 
two edges.





A chiral edge state cannot be localized by 
disorder at the edge

Edge state can simply go around disordered 
region. 



Effect of electron spin
• For non-interacting electrons, in the absence of 

Zeeman interaction, states are doubly degenerate, 
only even integer ν would be observed.

• In presence of Zeeman coupling, odd integers seen, 
but energy gap may be small.

• Electron-electron interaction enhances energy gap at 
odd integer fillings. (“Exchange energy”.) Gives finite 
energy gap and  spontaneous spin polarization (at 
T=0) even in absence of Zeeman field. 



Fractional quantized Hall states
Need some way to produce an energy gap in a system with Hall 
conductivity different from an integer times e2/h.

Electron-electron interactions are essential.

Models to explain the existence of fractional quantized Hall states 
will be discussed by Ady Stern and Bernd Rosenow in  
subsequent lectures.

Regardless of specific models, FQH states have some peculiar 
features, including quasiparticles with fractional charge and 
fractional statistics.

I will address fractional statistics in my lecture on Wednesday

Here  I address the necessity for fractional charge. 





Fractional Charge (Continued)
• For FQH state with  ν = p/q, Laughlin’s argument says 

there must be quasiparticles with charge  ep/q. But these 
are not generally the smallest charges. If p and q have 
no common divisor, you can find integers n, n’ with nq-
n’p=1.  Then combination of n electrons and n’ positive 
quasiparticles has charge Q=e/q. 

• These are the smallest charges in the most prominent 
odd-denominator fractions (Jain states).  

• For quantum Hall states with even denominator q, it has 
been shown that there must exist quasiparticles with 
charge  e/2q. [Levin and Stern, 2009]



How to see fractional charge
• Shot noise experiments: measure current noise when 

quasiparticles tunnel across a narrow constriction
between opposite edges of an  FQH device.  

Using a statistical analysis, back out charge of 
quasiparticles tunneling from one edge to 
another. (Not necessarily the smallest charge.)
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Shot noise results
• Glattli group 1997:    Heiblum group, 1997-2010:

• Charges e/3 reported for ν = 1/3, 2/3, 4/3, 5/3, 8/3

• Charges e/5 reported for ν = 2/5;           e/7 at ν =3/7;                       
e/4 at ν = 5/2.

• But at ν =2/5, charge increased at  lowest temperatures  
from e/5 to 2e/5. Similarly at ν =3/7, 2/3.

• Possible Explanation (Ferraro et al, 2008): Relative 
tunneling rates depend on T.  Renormalization group 
suggests 2e/5  should dominate tunneling in limit of low 
T. 



Charge Sensing Experiments

• Charge senser (single-electron transistor) on a scanning 
tip is place just above the 2DEG.

• Voltage applied to tip can establish a potential well 
beneath the tip. 

• Senser can measure jumps in charge when individual 
quasiparticles enter or leave  the well. 

• Can be measured  far from boundary.

• Should measure unambiguously the smallest quasiparticle 
charge that is thermodynamically allowed.



Results of charge sensing experiments

• J. Martin et al (Yacoby group, 2004) measured e/3 at ν
=1/3 and ν =2/3.

• V. Venkatachalam et al (Yacobi group, 2011) 
measured e/4 at ν = 5/2 .



Necessary condition for nonzero Hall 
conductance

By Onsager theorem:  In order to get non-zero 
value of Hall conductance, system must have 
broken time-reversal symmetry.

Usually, provided by applied magnetic field

But quantized Hall states can also occur at 
B=0 for certain systems where symmetry is 
spontaneously broken by magnetic order.
“Chern Insulators”. 



Topological Aspects
Recall:  Hall conductance cannot change unless 
mobility gap vanishes in the bulk, or there is a 
first order transition.

Hamiltonians depend on parameters that can 
vary continuously.  But Hamiltonians with an 
energy gap at the Fermi level can be divided 
into discrete classes, indexed by quantized Hall 
conductance.  

By definition: Topological Classification. 



Chern Invariants

For non-interacting electrons in a 2D periodic 
potential with broken time reversal symmetry, with 
or without an applied magnetic field:

The variation over the Brillouin zone  of the Bloch 
wave functions for a given  electron band can be 
characterized by a topological invariant known as 
a Chern number.

If EF is in an energy gap, there will be a quantized 
Hall conductance with ν = to the sum of the Chern
numbers for all bands below EF.



System on a Torus
For a two-dimensional electron system on a torus with a 
non-degenerate ground state and an energy gap to all 
excited states, with or without interactions, one can 
define a Chern number from the behavior of the many-
body ground-state wave function as one alternately 
inserts and removes one quantum of magnetic flux 
through the two holes in the torus.  

The Hall conductance (averaged over the values of the 
fluxes) is determined by this Chern number.

For fractional QH states, the ground state on a torus 
must have a degeneracy ( = integer multiple of the 
denominator of ν). 
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