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Background and motivation

Many systems in nature have complex or “rough”
free energy landscapes in which there are many
maxima and minima that may have widely spaced
values of relevant thermodynamic parameters.

=) At “low” temperature, transitions between
minima become infrequent

Almost all models for such systems are impossible
to treat analytically!
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Reminder from Statistical Mechanics

The Partition function contains all thermodynamic

7 _ Ee—ﬁ/kBT

information:

all states

Metropolis Monte Carlo approach: sample states via a
random walk in probability space

The “fruit fly” of statistical
physics: The Ising model

For a system of N spins have 2N states!



Single spin-flip sampling for the Ising model

Produce the nt" state from the mt" state ... relative
probability is P,/P,, — need only the energy difference,

i.e. AE=(E -E, ) between the states

Any transition rate that satisfies detailed balance is
acceptable, usually the Metropolis form (Metropolis et al,
1953).

Wm—n) = t,1exp (-AE/kT), AE >0
=7 ! , AE<0

(0]

where T , is the time required to attempt a spin-flip.



MC Problems and Challenges

Statics: Monte Carlo methods are valuable, but near T,
= critical slowing down for 2" order transitions

= metastability for 15 order transitions and for
systems with complex energy landscapes

. Try to reduce characteristic time scales or circumvent
them
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The “Random Walk in Energy Space
with a Flat Histogram™ method

or
“Wang-Landau sampling”

Wang and Landau, PRL (2001)



Wang-Landau sampling

Random Walk in Energy Space with a Flat Histogram
_'Zf/kBT

kT

Z=;e E;g(E)e

states energies

Estimate the density of states g(E) directly by performing
a random walk in energy space:

1. Set g(E)=1; choose a modification factor (e.g. fy=e')

2. Randomly flip a spin with probability: Jl{IEENE min( 8 ,1)
3. Set g(E,) —g(E)*f, HE) = H(E)+1

4. Continue until the histogram is “flat” decrease f, e.g. fi.,=f?
5. Repeat steps 2 - 4 until f=f, .~ exp(10-%)

6. Calculate properties using final density of states g(E)

g(E2)




Density of States for the 2-dim Ising model

Ising model on a 16x16 square lattice

Iteration 1 (f=2.718)
100




Density of States for the 2-dim Ising model

Compare exact results with data from random walks in
energy space: LxL lattices with periodic boundaries

¢ = relative error ( exact solution is known for L=< 64 )



Free Energy of the 2-dim Ising Model

256x256 Ising model
simulation

€ = relative error



Applications to “Complex” Systems

LSpin glasses
 “Lattice proteins”

d “Real” proteins



A Magnetic System with Complex “Order”
The EA (Edwards-Anderson) spin glass model in 3 dim:

At T (if it exists) a spin glass state forms = get a
“rough” energy landscape where multiple minima
are separated by high energy barriers



A Magnetic System with Complex “Order”
The EA (Edwards-Anderson) spin glass model in 3 dim:

At T, (|f it eX|sts) a sf glass state forms = get a
rough en ' T iNima
are separat

This is just an Ising model with
random interactions



A Magnetic System with Complex “Order”
The EA (Edwards-Anderson) spin glass model in 3 dim:

At T (if it exists) a spin glass state forms = get a
“rough” energy landscape where multiple minima
are separated by high energy barriers

Define an Order Parameter ‘q’

m) Overlap of a configuration with a groundstate . . . but
must also take the configurational average over
different bond distributions

Extend random walk = two-dimensional parameter space



Distribution of States: LxLxL EA Spin Glass
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... Forlarger L, P(q,T) becomes even more complex!



Distribution of States: LxLxL EA Spin Glass

... Forlarger L, P(q,T) becomes even more complex!




Distribution of States: LxLxL EA Spin Glass

Warning ! Dayal et al. (PRL, 2004) showed
that for local updates, the tunneling time
has exponential scaling -> very long
tunneling times between some states for
some big systems

... Forlarger L, P(q,T) becomes even more complex!
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Groundstate Properties of the 3-d EA
Spin Glass

Entopy and energy for the LxLxL simple cubic lattice

Wang-Landau sampling

SO
0.075+0.027
0.061+0.025
0.049+0.007
0.053+0.001

0.058+0.004
0.056+0.003

EO
-1.734+0.006
-1.767+0.024
-1.779+0.016
-1.780+0.012

-1.776+0.004
-1.774+0.004

Multicanonical sampling”*
SO EO
0.0724+0.0047 -1.7403+0.0114
0.0489+0.0049 -1.7741+0.0074

0.0459+0.0030 -1.7822+0.0081
0.0491+0.0023 -1.7843+0.0030

* Berg, Celik, and Hansmann (1993)



Applications to “Complex” Systems

A Spin glasses
O “[attice proteins

3 “Real” proteins



A Biological “Grand Challenge™:
Protein Folding

Real proteins are long polymers with side
chains of different types and complicated
interactions = simplify . . . but how much?



A “Biologically inspired” problem

The HP model of protein folding

ﬁ“‘_f
tJ‘4

Amino acid = “bead”
Hydrophobic (H)
® Polar (P)

Protein sequence = “HPHPPHHPHPP...”

Protein conformation = “self-avoiding walk”
on a lattice, e.g. square (2D), cubic (3D)



A “Biologically inspired” problem
The HP model of protein folding

Amino acid = “bead”

‘ ‘ Hydrophobic (H)
‘ *_? ® Polar (P)

Protein sequence = “HPHPPHHPHPP...”

Protein conformation = “self-avoiding walk”

_‘ on a lattice, e.g. square (2D), cubic (3D)
I: 4 Nearest-neighbor interactions
between non-covalently bound neighbors

E..=-1 E..=0 E..=0 = Compacthydrophobic core/
A AR RR polar (hydrophilic) shell

(Dill, Biochemistry 1985, Lau, Dill, Macromolecules 1989)



A “Biologically inspired” problem
The HP model of protein folding
" - Amino acid = “bead”
ﬁ Hydrophobic (H)
4* . *_T ® Polar (P)
‘_ Protein sequence = “HPHPPHHPHPP...”

Sequences are chosen to H)
mimic real proteins

Nearest-neighbor interactions
between non-covalently bound neighbors

E..=-1 E..=0 E..=0 = Compacthydrophobic core/
A AR RR polar (hydrophilic) shell

(Dill, Biochemistry 1985, Lau, Dill, Macromolecules 1989)



Wang-Landau sampling with pull moves

The importance of move sets

Local moves: Non-local moves:
End flip (1 bond) Pivot move

= ergédic
: ‘+ """" ... but inefficient for dense
conformations = high

— non-ergodic rejection probability



Pull moves

multi-bead move
(Completes internally)

Wang-Landau sampling with pull moves

N\

-t

multi-bead move
(Pulls until the end of the sequence)

(Lesh et al., 2003)



Pull moves

Wang-Landau sampling with pull moves

Extensible to any dimension
Ergodic (complete)

Reversible
= n(A — B) = n(B — A) (detailed balance!)

No time-consuming self-
avoidance test required

Good balance: local <= non-local
“Close-fitting”
= High acceptance ratio

= |deal for Wang-Landau sampling






“Cut and join” moves
——o—o—
—O—0—0—

—o—o—0—9

Initial HP configuration

(Deutsch, J. Chem. Phys. 1997)



“Cut and join” moves
*——9-9—
h--@—0-—

R S |

(Deutsch, J. Chem. Phys. 1997)



“Cut and join” moves

| U

e

—0—

—o—o—0—9

Note: For the HP model, the sequence of H’s and
P’s must be maintained

(Deutsch, J. Chem. Phys. 1997)






Wang-Landau sampling of the HP Model

64mer in 2 dimensions (square lattice)

Seq2D64

Ground state search

 Core directed chain-growth
(Beutler, Dill 1996)

« PERM
(Bastolla et al. 1998)

Density of states

» Multi-self-overlap ensemble (MSOE)
(Chikenji et al. 1999)

» Equi-energy sampling (EES)
(Kou et al. 2006)

Ground state (E =-42)

r T TDW
9 99 99



Wang-Landau sampling of the HP Model

64mer in 2 dimensions (square lattice)
Seq2D64

Ground state search

 Core directed chain-growth Ground state (E = -42)
(Beutler, Dill 1996)

« PERM
(Bastolla et al. 1998)

‘.—.
I

%

Density of states

» Multi-self-overlap ensemble (MSOE)
(Chikenji et al. 1999)

%

|
-9 % % 5 5

» Equi-energy sampling (EES)
(Kou et al. 2006)

Hydrophobic core



Wang-Landau sampling of the HP Model

64mer in 2 dimensions (square lattice)

Seq2D64
Ground state search
 Core directed chain-growth Ground state (E = -42)
(Beutler, Dill 1996)
. PERM -2 22 - »
L L L L L |
(Bastolla et al. 1998) s UL L |'
'_|0 P—2 2—2 2 29
| |1 L 1 | |
Density of states - LU u U
e e —®
 Multi-self-overlap ensemble (MSOE) . |' N T |'
(Chikenji et al. 1999) s L U
P2 22— 2—» »—®
* Equi-energy sampling (EES) L 444 2 0
(Kou et al. 2006) /

Hydrophilic surface



A “Biologically inspired” problem

The HP Model of Protein Folding Seq2D64

— Wang-Landau sampling
— Equi-energy sampling

—
(@)

_—y

o
2
N

"y

(@]
L
@

—_—

o
N
+~

=
==
C
-
O
i
wn
o
e
O]
+—
w
—
®)
>
=
2]
c
[}
©
°©
[}
N
‘©
=
p—
o
Z

—

(=
w
o

-36 -32 28 -24 -20 -16
Energy




64er in 2 dimensions (square lattice)

Seq2D64
Ground state (E = -42) 1st excited state (E = -41)**
Lt R R S 6 64664
P_b bbb b_w 4 64 464 -8

|
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" highly degenerate



Wang-Landau Sampling of the HP model

103mer in 3 dimensions (simple cubic lattice)

Seq3D103

Ground state search

* Fragment regrowth MC
(Zhang, Kou et al. 2007)

Density of states

« Multicanonical chain-growth (MCCG)
(Bachmann, Janke 2003 / 2004)

Ground state (E =-58)



Seq3D103: Thermodynamic properties

Two-step folding process

Density of states Specific heat

o o -
o - N

Specific heat c,, /N

Normalized density of states
o

10

10* Iil

60 -55 -50 45 -40 -35 -30 25 -20 -15 -10 5 0
Energy

o1 02 03 04 05 06 07 08 09
Temperature

5 runs



103mer in 3 dimensions (cubic lattice)

Ground state (E = -58)
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Now introduce an attractive surface:

E., = H-H bond interaction energy
Esy = H—surface interaction energy
Esp = P—surface interaction energy

We have studied Eg,=Egp, but other surfaces can be
easily simulated!



36mer in 3 dimensions (cubic lattice) with a surface
Esh = Esp= Epi/ 12

=—& Metropolis (1()8 trials each run)




36mer in 3 dimensions (cubic lattice) with a surface
Esh = Esp= Epi/ 12

=—& Metropolis (108 trials each run)
o—o Wang-Landau




36mer in 3 dimensions (cubic lattice) with a surface

Esh =Esp=Epn/12




36mer in 3 dimensions (cubic lattice) with a surface

2 x4 x 2 hydrophobic core
Esh =Esp=Enn/12




36mer in 3 dimensions (cubic lattice) with a surface
Esh =Esp=Enn/12
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36mer in 3 dimensions (cubic lattice) with a surface
Esh =Esp=Enn/12
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36mer in 3 dimensions (cubic lattice) with a surface

Esh =Esp=Enn/12
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36mer in 3 dimensions (cubic lattice) with a surface
Esh =Esp=Enn/12
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36mer in 3 dimensions (cubic lattice) with a surface
Esh =Esp=Enn/12

~
~ .
F 3
10 . . . o e
. [ «I p'\'I
.“‘ ". L
> o o
® .. .., o
0 ° us
- Trp > 2% ® e —
o" "o » 0'
o T T . e
> - '. ® ’-. » »

» : |
N ; ;
»r— {
% ® |
% » R

o’.l % P

| I | |
2.0 4.0 6.0 8.0 10.0
T

Groundstate



36mer in 3 dimensions (cubic lattice) with a surface
Esy =Esp = Epy /12

Specific heat of 36mer, 3D with a surface attractive to both H & P monomers (e/e = 12)
= 10-8, 20% pull moves, 80% bond-rebridging

p=038,f

min




36mer in 3 dimensions (cubic lattice) with a surface
Esy =Esp = Epy /12

Specific heat of 36mer, 3D with a surface attractive to both H & P monomers (e/e = 12)
p=038f . = 10-8, 20% pull moves, 80% bond-rebridging
1.0

Same hydrophobic core, different
number of surface contacts




Applications to “Complex” Systems

A Spin glasses
A “Lattice proteins”

d “Real” proteins



/What IS a protein?

Primary structure:

EITLITFGVMAGVIGTILLISY










What is a membrane protein?

2 Roles in biological process:
- Receptors;

- Channels, gates and pumps;
Electric/chemical potential;

- Energy transduction

2 > 50% new drug targets are
membrane proteins (MP).

EXTRACELLULAR
FLUID

Glycogvoleln

Glyeo)IpId

Filaments of ) \
cytoskeleton SXTORLASM

Helical structure Beta structure

Protein




Folding process of GPA

e Single helix stable in the membrane
e Association of helices

=~
y
v
>
3

(Popot, Engelman, Biochemistry, 1990)



Wang-Landau sampling of a GPA model™

> uUnitied-atom model
» lotal: 360 atoms

> 2 helices (22 aminoe-acids)







Specific heat
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Results for GPA

— Leucine
—— Glycine
—— Threonine

200 400 600 800 1000 1200 1400
Temperature (K)

Convergence towards native contacts dependent on position
In structure



GPA Results

Study residue energies, heat capacities, etc.:
e First native contacts appear at ~740K
e Final native contacts at ~300K

— Gradual convergence to the native state

e Appearance of native contacts: Leucine — Glycine
— Threonine

— Hierarchical acquisition of the native state



Docking of Bacteriorhodopsin
(Zhong Chen, 105, UGA)

/ helices, 174 residues, 1619 atoms
RIgid side-chains
VW + lipid-helix potential
One month CPU time at f=2.781

A GEM structure with rmsd=3.0 A was
obtained in the self-assembly simulation of a 7-helix bundle



Summary

Systems with complex free energy landscapes
are particularly challenging for computer
simulations. Inventive Monte Carlo algorithms
are beginning to make them accessible.

Characteristic examples include:

e Spin glasses (no connectivity constraints)
e “Lattice proteins” (rich, minimalistic model)
e Real proteins (force fields remain a problem)



Summary/Outlook

Systems with complex free energy landscapes
are particularly challenging for computer
simulations. Inventive Monte Carlo algorithms
are beginning to make them accessible.

Parting thought: Research in coming decades
will focus on complex systems. Inventive

algorithms, together with petafiop/exafiop
computers, offer great promise for the future.
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