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Background and motivation 

    

Many systems in nature have complex or “rough” 
free energy landscapes in which there are many 
maxima and minima that may have widely spaced 
values of relevant thermodynamic parameters. 
 

 At “low” temperature, transitions between 
 minima become very infrequent 

 

Almost all models for such systems are impossible 
to treat analytically ! 
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Reminder from Statistical Mechanics 

 The Partition function contains all thermodynamic 
information:  
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Metropolis Monte Carlo approach:  sample states via a 
random walk in probability space 

The “fruit fly” of statistical 
physics:   The Ising model 

For a system of N spins have 2N states! 



Produce the nth state from the mth state … relative 
probability is Pn / Pm → need only the energy difference, 
i.e. Δ E = (En-Em   ) between the states  
 
Any transition rate that satisfies  detailed balance  is 
acceptable, usually the Metropolis form (Metropolis et al, 
1953). 
 

  W(m→ n) =   τ o-1 exp (-ΔE/kBT),   ΔE > 0 
         =  τ o-1                  ,   ΔE < 0 
 

                    where τ o  is the time required to attempt a spin-flip. 

Single spin-flip sampling for the Ising model 
 
 



MC Problems and Challenges 

Statics:  Monte Carlo methods are valuable, but near Tc  

 ⇒ critical slowing down for 2nd order transitions 
 ⇒ metastability for 1st order transitions and for 
     systems with complex energy landscapes 

 ∴  Try to reduce characteristic time scales or circumvent       
  them 
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The “Random Walk in Energy Space 
with a Flat Histogram” method  

    

 or 
“Wang-Landau sampling” 

Wang and Landau, PRL (2001) 



Wang-Landau sampling 
 Random Walk in Energy Space with a Flat Histogram 
 
        
   
  

Estimate the density of states g(E) directly by performing 
a random walk in energy space: 
 

 

      1. Set g(E)=1;  choose a modification factor  (e.g. f0=e 
1 )   

 

  

      2. Randomly flip a spin with probability:   
  

    3. Set  g(Ei) → g(Ei)* f , H(E) →  H(E)+1 

      4. Continue until the histogram is “flat”  decrease f , e.g. f i+1= f 1/2
 

  

      5. Repeat steps 2 - 4 until  f = fmin~ exp(10 
-8) 

 

      6. Calculate properties using final density of states g(E) 

p(E1→ E2 ) =min
g(E1)

g(E2 )
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Density of States for the 2-dim Ising model 



Density of States for the 2-dim Ising model 
Compare exact results with data from random walks in 
energy space:  L× L lattices with periodic boundaries 
 

ε = relative error  ( exact solution is known for L≤ 64 ) 



Free Energy of the 2-dim Ising Model 
 

 ε = relative error 



    

  Applications to “Complex” Systems 
  

q Spin glasses 

q  “Lattice proteins” 

q  “Real” proteins 



A Magnetic System with Complex “Order” 
The EA (Edwards-Anderson) spin glass model in 3 dim:
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σσH , 1±=iσ     and JJij ±= . 

At Tc (if it exists) a spin glass state forms ⇒ get a 
“rough” energy landscape where multiple minima 
are separated by high energy barriers 
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This is just an Ising model with 
random interactions 



A Magnetic System with Complex “Order” 
The EA (Edwards-Anderson) spin glass model in 3 dim:
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σσH , 1±=iσ     and JJij ±= . 

At Tc (if it exists) a spin glass state forms ⇒ get a 
“rough” energy landscape where multiple minima 
are separated by high energy barriers 
 
Define an Order Parameter  ‘q’ 

Extend  random walk ⇒ two-dimensional parameter space 
 

Overlap of a configuration with a groundstate . . . but 
must also take the configurational average over 
different bond distributions 



Distribution of States:  L x L x L EA Spin Glass 
 

 . . . For larger L, P(q,T) becomes even more complex!  

L=6 



Distribution of States:  L x L x L EA Spin Glass 
 

 . . . For larger L, P(q,T) becomes even more complex!  



Distribution of States:  L x L x L EA Spin Glass 
 

 . . . For larger L, P(q,T) becomes even more complex!  

Warning !  Dayal et al. (PRL, 2004) showed 
that for local updates, the tunneling time 
has exponential scaling -> very long 
tunneling times between some states for 
some big systems   



  Wang-Landau sampling      Multicanonical sampling*
  

  L           S0              E0   S0       E0 
 

     4  0.075+0.027     -1.734+0.006       0.0724+0.0047     -1.7403+0.0114 
   6  0.061+0.025     -1.767+0.024       0.0489+0.0049     -1.7741+0.0074 
   8        0.049+0.007     -1.779+0.016       0.0459+0.0030     -1.7822+0.0081 
  12       0.053+0.001     -1.780+0.012       0.0491+0.0023     -1.7843+0.0030 
  16       0.058+0.004     -1.776+0.004 
  20       0.056+0.003     -1.774+0.004 
 

Groundstate Properties of the 3-d EA 
Spin Glass 

Entopy and energy for the L×L×L simple cubic lattice 

* Berg, Celik, and Hansmann (1993) 



    

  Applications to “Complex” Systems 
  

q  Spin glasses 

q  “Lattice proteins” 

q  “Real” proteins  



A Biological “Grand Challenge”:  
Protein Folding 

Real proteins are long polymers with side 
chains of different types and complicated 
interactions ⇒ simplify . . . but how much? 



A “Biologically inspired” problem 
 

The HP model of protein folding 

Introduction 

Amino acid = “bead” 
Hydrophobic (H) 
Polar (P) 

Protein sequence = “HPHPPHHPHPP…” 

Protein conformation = “self-avoiding walk” 
on a lattice, e.g. square (2D), cubic (3D) 



The HP model of protein folding 

Compact hydrophobic core / 
polar (hydrophilic) shell 

Amino acid = “bead” 
Hydrophobic (H) 
Polar (P) 

Protein sequence = “HPHPPHHPHPP…” 

Nearest-neighbor interactions 
between non-covalently bound neighbors 

EHH = -1, EHP = 0, EPP = 0   ⇒ 

Protein conformation = “self-avoiding walk” 
on a lattice, e.g. square (2D), cubic (3D) 

(Dill, Biochemistry 1985; Lau, Dill, Macromolecules 1989) 

A “Biologically inspired” problem 
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The HP model of protein folding 

Compact hydrophobic core / 
polar (hydrophilic) shell 

Amino acid = “bead” 
Hydrophobic (H) 
Polar (P) 

Protein sequence = “HPHPPHHPHPP…” 

Nearest-neighbor interactions 
between non-covalently bound neighbors 

EHH = -1, EHP = 0, EPP = 0   ⇒ 

Protein conformation = “self-avoiding walk” 
on a lattice, e.g. square (2D), cubic (3D) 

(Dill, Biochemistry 1985; Lau, Dill, Macromolecules 1989) 

A “Biologically inspired” problem 
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Sequences are chosen to 
mimic real proteins 



The importance of move sets 

Wang-Landau sampling with pull moves 

Local moves: Non-local moves: 
End flip (1 bond) 

Kink flip (2 bonds) 

Crankshaft (3 bonds) 

Pivot move 

⇒ non-ergodic 

⇒ ergodic 
 

… but inefficient for dense 
conformations ⇒ high 
rejection probability 
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multi-bead move 
(Completes internally) 

Wang-Landau sampling with pull moves 

Pull moves 

multi-bead move 
(Pulls until the end of the sequence) 

(Lesh et al., 2003) 



4 

5 

3 

2 

6 7 

8 

9 1 

Wang-Landau sampling with pull moves 

Pull moves 

Ergodic (complete) 

Reversible 
⇒  n(A → B) = n(B → A)  (detailed balance!) 

Good balance: local ↔ non-local 
“Close-fitting” 
⇒ High acceptance ratio 

⇒ Ideal for Wang-Landau sampling 

No time-consuming self-
avoidance test required 

Extensible to any dimension 



Wang-Landau sampling of the HP model 

•  With pull moves 



 “Cut and join” moves 

(Deutsch, J. Chem. Phys. 1997)  

Initial HP configuration 



 “Cut and join” moves 

(Deutsch, J. Chem. Phys. 1997)  



 “Cut and join” moves 

(Deutsch, J. Chem. Phys. 1997)  

Note:  For the HP model, the sequence of H’s and 
P’s must be maintained 



“Cut and join” 



Wang-Landau sampling of the HP Model 
64mer in 2 dimensions (square lattice) 

Ground state search 
• Core directed chain-growth               

 (Beutler, Dill 1996) 

• PERM                                       
 (Bastolla et al. 1998) 

Density of states 
• Multi-self-overlap ensemble (MSOE)            

 (Chikenji et al. 1999) 

• Equi-energy sampling (EES)                      
 (Kou et al. 2006) 

Ground state (E = - 42) 

Seq2D64 
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Seq2D64 

Hydrophobic core 



Wang-Landau sampling of the HP Model 
64mer in 2 dimensions (square lattice) 

Ground state search 
• Core directed chain-growth               

 (Beutler, Dill 1996) 

• PERM                                       
 (Bastolla et al. 1998) 

Density of states 
• Multi-self-overlap ensemble (MSOE)            

 (Chikenji et al. 1999) 

• Equi-energy sampling (EES)                      
 (Kou et al. 2006) 

Ground state (E = - 42) 

Seq2D64 

Hydrophilic surface 



A “Biologically inspired” problem 
 

The HP Model of Protein Folding 

Benchmark sequences: A performance analysis 

Seq2D64 



The HP model of protein folding 

Ground state (E = -42) 

64er in 2 dimensions (square lattice) 

Seq2D64 
1st excited state (E = -41)** 

** highly degenerate 



Ground state search 
•  Fragment regrowth MC 

(Zhang, Kou et al. 2007) 

Density of states 
•  Multicanonical chain-growth (MCCG) 

(Bachmann, Janke 2003 / 2004) 

Ground state (E = -58) 

Wang-Landau Sampling of the HP model 
103mer in 3 dimensions (simple cubic lattice) 
Seq3D103 



The HP model of protein folding Seq3D103: Thermodynamic properties 

Density of states Specific heat 

5 runs 
≈ 80hCPU / run 

Two-step folding process 



The HP model of protein folding 

Ground state (E = -58) 

103mer in 3 dimensions (cubic lattice) 

1st excited state (E = -57) 



The HP model of protein folding Now introduce an attractive surface: 

EHH = H – H bond interaction energy 
ΕSH = H – surface interaction energy  
ESP = P – surface interaction energy 
 
We have studied ESH = ESP, but other surfaces can be 
easily simulated ! 



The HP model of protein folding 36mer in 3 dimensions (cubic lattice) with a surface 
ESH  = ESP= EHH/ 12 
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The HP model of protein folding 36mer in 3 dimensions (cubic lattice) with a surface 
ESH  = ESP= EHH/ 12 
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Metropolis (108 trials each run)
Wang-Landau



The HP model of protein folding 36mer in 3 dimensions (cubic lattice) with a surface 

ESH  = ESP = EHH / 12  



The HP model of protein folding 36mer in 3 dimensions (cubic lattice) with a surface 

2 × 4 × 2 hydrophobic core 
ESH  = ESP = EHH / 12  
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ESH  = ESP = EHH / 12  



The HP model of protein folding 
36mer in 3 dimensions (cubic lattice) with a surface 

ESH  = ESP = EHH / 12  



The HP model of protein folding 
36mer in 3 dimensions (cubic lattice) with a surface 

ESH  = ESP = EHH / 12  



The HP model of protein folding 
36mer in 3 dimensions (cubic lattice) with a surface 

ESH  = ESP = EHH / 12  



The HP model of protein folding 
36mer in 3 dimensions (cubic lattice) with a surface 

Groundstate 

ESH  = ESP = EHH / 12  



The HP model of protein folding 
36mer in 3 dimensions (cubic lattice) with a surface 

ESH  =ESP = EHH / 12  
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Specific heat of 36mer, 3D with a surface attractive to both H & P monomers (ε/εS = 12)
p = 0.8, fmin = 10-8, 20% pull moves, 80% bond-rebridging
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The HP model of protein folding 
36mer in 3 dimensions (cubic lattice) with a surface 

ESH  =ESP = EHH / 12  
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Specific heat of 36mer, 3D with a surface attractive to both H & P monomers (ε/εS = 12)
p = 0.8, fmin = 10-8, 20% pull moves, 80% bond-rebridging
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Same hydrophobic core, different 
number of surface contacts 



    

  Applications to “Complex” Systems 
  

q  Spin glasses 

q  “Lattice proteins” 

q  “Real” proteins  



What is a protein? 

 Primary structure:  Sequence of amino acid residues 

EITLIIFGVMAGVIGTILLISY 



What is a protein? 

 Secondary structure: H-bonds of backbone atoms 

Alpha-helix Beta-sheet Loop 



What is a protein? 

helices & arrows  balls & sticks 

 Tertiary structure: 3-dim arrangement of atoms 



What is a membrane protein? 

q  Roles in biological process: 
•  Receptors; 
•  Channels, gates and pumps; 
•  Electric/chemical potential; 
•  Energy transduction 

q  > 50% new drug targets are 
membrane proteins (MP). 

Beta structure Helical structure 



Folding process of GPA 

l  Single helix stable in the membrane 
l  Association of helices 

(Popot, Engelman, Biochemistry, 1990) 



Wang-Landau sampling of a GPA model* 

z 

~15Å 

l  Energy :  
–  CHARMM19  
–  Lipid potential 

l  Starting structure: parallel 
helices 

l  7 Monte Carlo Moves: protein, 
helix, side-chain 

Ø Unified-atom model  
Ø Total: 368 atoms 
Ø 2 helices (22 amino-acids) 

*with Claire Gervais, IOB 



The HP model of protein folding 
Observables for GPA 

z l  helix-helix nonbond 
energy (Einter) 

l  helix-helix distance (dhelix) 

l RMSD of Cα atoms 

dhelix 

Einter 



The HP model of protein folding 
Specific heat 

~740K ~300K 



Results for GPA 

300K 740K 

Convergence towards native contacts dependent on position 
in structure 



GPA Results 

Study residue energies, heat capacities, etc.: 
l  First native contacts appear at ~740K 
l  Final native contacts at ~300K 

l  Appearance of native contacts: Leucine → Glycine 
→ Threonine 

→ Gradual convergence to the native state 

→ Hierarchical acquisition of the native state 



Docking of Bacteriorhodopsin  
              (Zhong Chen, IOB, UGA) 

7 helices, 174 residues, 1619 atoms 
•  Rigid side-chains 
•  VDW + lipid-helix potential 
•  One month CPU time at f=2.781 

A B 

B 

A GEM structure with rmsd=3.0 Å was 
obtained  in the self-assembly simulation of a 7-helix bundle 



Summary 
Systems with complex free energy landscapes 
are particularly challenging for computer 
simulations.  Inventive Monte Carlo algorithms 
are beginning to make them accessible.  

Characteristic examples include:  

l  Spin glasses  (no connectivity constraints) 
l  “Lattice proteins”  (rich, minimalistic model) 
l  Real proteins  (force fields remain a problem) 



Summary/Outlook 
Systems with complex free energy landscapes 
are particularly challenging for computer 
simulations.  Inventive Monte Carlo algorithms 
are beginning to make them accessible.   

Parting thought: Research in coming decades 
will focus on complex systems.  Inventive 
algorithms, together with petaflop/exaflop 
computers, offer great promise for the future. 
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