Quantum Monte Carlo

Premise: need to use simulation techniques to “solve” many-
body quantum problems just as you need them classically.

Both the wavefunction and expectation values are determined
by the simulations. Correlation built in from the start.

QMC gives most accurate method for general quantum many-
body systems, and a standard for approximate DFT
calculations.

Provides a new understanding of quantum phenomena

QMC methods in the continuum

— Variational Monte Carlo (VMC) (single state)
— Projector Monte Carlo methods for T=0:
e Diffusion Monte Carlo (DMC)
e Reptation MC (RQMQ)
e Auxiliary field QMC (AFQMC)
— Path Integral Monte Carlo for T>0 (PIMC)
— Coupled Electron-Ion Monte Carlo T>0 (CEIMC)




Notation

Individual coordinate of a particle = r;
All 3N coordinates R= (ry,r,, .... Iy)

Total potential energy = V(R)

N
—12 Vf where A = %
=1

Kinetic energy

T =
Hamiltonian [:] — f + [}



Variational Monte Carlo (VMC)

Variational Principle. Given an A
appropriate trial function: JdR<l// H l//>

— Continuous E, = > EO

- Proper symmetry JdR<W>

— Normalizable A s

~ Finite variance , JdR<l// H l//> ,
Quantum chemistry uses a 0 = -E
product of single particle functions JdR <l//1//>

With MC we can use any
“computable” function.

— Sample R from |yw|2 using MCMC. R

- Take average of local energy: E (R)= m[w_l(R)HW(R)]
— Optimize to get the best upper

bcl)jund Yo " L, = <EL(R)>1/,2 2k,

Better wavefunction, lower
variance! “Zero variance”
principle. (non-classical)



Problems with Variational MC

e Powerful method since you

. : e Optimization is time consuming
can use any trial function

e Energy is insensitive to order

e Scaling (computational parameter
effort vs. size) is almost e Non-energetic properties are
classical less accurate. O(1) vs. O(2) for
e Learn directly about what energy.
works in wavefunctions e Difficult to find out how

accurate results are.

e Favors simple states over more
complicated states, e.g.

- Solid over liquid
— Polarized over unpolarized

e No sign problem

What goes into the trial wave function comes out! “GIGO”

We need a more automatic method! Projector Monte Carlo



Projector Monte Carlo

*Originally suggested by Fermi and implemented in 1950 by
Donsker and Kac for H atom.

Practical methods and application developed by Kalos:
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Helium at zero temperature with hard-sphere and other forces

M. H. Kalos*
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

D. Levesque and L. Verlet ;
Laboratoire de Physigue Théorique et Hautes Energies, Orsay, France
(Received 22 August 1973)

Various theoretical and numerical problems relating to heliumlike systems in thelr ground
states are treated, New developments in the numerical solution of the Schrodinger equation
permit the solution of 256-body systems with hard-sphere forces. Using periodic boundary
conditions, fluid and crystal states can be described; results for the energy and radial-dis-
tribution functions are given. A new method of correcting for low=lying phonon excitations



Projector Monte Carlo
(variants: Green’s function MC, Diffusion MC, Reptation MC)

Project single state using the Hamiltonian

p(t)=e"""(0)
We show that this is a diffusion + branching operator if
we can interpret as a probability. But is it?

Yes! for bosons since ground state can be made real
and non-negative.

But all excited states must have sign changes. This is
the “sign problem.”

For efficiency we do “importance sampling.”
Avoid sign problem with the fixed-node method.



Diffusion Monte Carlo

How do we analyze _(A-E. )t
this operator? — L Y(R,)=¢ "W (R,0)

. Hp =E ¢

Expand into exact

eigenstates of H. W(Rao) — 2¢Q(R)<¢a ‘1//(0)>

Then the evolution is "

simple in this basis. W(R»t) — Z(pa(R)e_t(Ea_ET) <¢a ‘1//(0)>
Long time limit is . —t(Ey—E;)

lowest energy state Im,__y(R,1)=¢,(R)e t <¢0‘1//(0)>
that overlaps with the .

initial state, usually E, = E_= normalization fixed

the ground state.

How to carry out on
the computer?



Monte Carlo process

e Now consider the variable “t” as a
continuous time (it is really
imaginary time).
e Take derivative with respect to time _BW(R,t) =(H - E, )W (R,?)

to get evolution. ot
e This is a diffusion + branching 5
process. _ 5
e Justify in terms of Trotter’s H= Z i Vz’ +V(R)
theorem. i i
[ OY(RY) 2
Requires interpretation of the A = —Z—Vfl//(RJ)
wavefunction as a probability J ot T 2m,
density.
WD () E R

But is it? Only in the boson ground N ot
state. Otherwise there are nodes.

Come back to later.



Trotter’ s formula

How do we find the solution of: dp .
9P _(4+B)p
o dt
The operator solution is: A B
= el

Trotter’ s formula (1959): SRR
p=lm___ [e; e’ }

Assumes that A,B and A+B are reasonable operators.
: Rn>

<RO [eﬁ‘ae?é} Rn>:<R0 R'l><R'1 LARI>....<RH_1 R'n><R'n e’

B
o
This means we just have to figure out what each operator
does independently and then alternate their effect. This is
rigorous in the limit as n=» oo,

In the DMC case A is diffusion operator, B is a branching
operator.

Just like “molecular dynamics” At small time we evaluate each
operator separately.

£}
e}’l

£
ell




Basic DMC algorithm

Construct an ensemble (population P(0)) sampled from
the trial wavefunction. {R;,R, ,Rp}

Go through ensemble and diffuse each one (timestep 1)

R'k :Rk +\/2ZT§(ZL)'— ndrn

._— uprn
floor function

_ —-7(V(R)-Ey) 4
number of copies= € *

Trial energy E; adjusted to keep population fixed.
[dRH@(R,1)
o j dRH(R,1)

E,=lm

= <V(R)>¢(oo>

Problems:

— Branching is uncontrolled

— Population unstable

— What do we do about fermi statistics?
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Population Bias

e Having the right trial energy guarantees that population
will on the average be stable, but fluctuations will
always cause the population to either grow too large or
too small.

e Various ways to control the population

e Suppose P, is the desired population and P(t) is the
current population. How much do we have to adjust E;
to make P(t+T)=P0? P(f+T)=€_T(_6ET)P(t)= B)

In(P(t)/ P)

OF =

T

e Feedback procedure: E, = ETO_KIH(P/PO)

e There will be a (small) bias in the energy caused by a
limited population.




Importance Sampling

Kalos 1970, Ceperley 1979

e Why should we sample the wavefunction? The physically
correct pdf is |g,|?.

e Importance sample (multiply) by trial wave function.

J(RO) =y (R)G(R, 1) lim,_, f(R,1) =y, (R)§,(R)

_ af(a]:’t) =y, (RH|f(R,0)/y,(R)]  Commute ¥ through H
o D AV AV (2 Vi (R) + (v H ) £ (R

Evolution = diffusion + drift + branching
e Use accept/reject step for more accurate evolution.
make acceptance ratio>99% . Determines time step.

e We have three terms in the evolution equation.
Trotter’ s theorem still applies.



To the pure diffusion algorithm we have added a drift step
that pushes the random walk in directions of increasing trial

function: R'=R+2A%VIny,(R)

Branching is now controlled by the local energy
-1 -
E(R)-E. =y '(RHy (R)-E,

Because of zero variance principle, fluctuations are controlled.

Cusp condition can limit infinities coming from singular
potentials.

We still determine E; by keeping asymptotic population stable.
[dRo(R.0) Hy, (R)
[arf (R.1)

Must have accurate “time” evolution. Adding accept/reject
step is a major improvement.

E, =lim,

—>00

= <EW(R)>

f (o)



Fermions?

e How can we do fermion simulations? The initial condition can
be made real but not positive (for more than 1 electron in the
same spin state)

e In transient estimate or released-node methods one carries
along the sign as a weight and samples the modulus.

#(1) =& " sign(g(R, 0)) | 4(R,0) |

e Do not forbid crossing of the nodes, but carry along sign when
walks cross.

e What's wrong with node release:

— Because walks don’t die at the nodes, the computational
effort increases (bosonic noise)

— The signal is in the cancellation which dominates

Monte Carlo can add but not subtract



Transient Estimate Approach

Py

Y(B)=e? ¥

Z(B)=(¥(B)¥(B))=(We W)= [dR,..dR,¥ (R,)(Rye ™ R,)...(R, e "R, )¥(R,)
(¥(BHY(B)) B

PO ) TR T

e W(B) converges to the exact ground state

e E(B) is an upper bound converging to the exact answer
monotonically ‘P(R)

e Define the sign of a walker: o(R)=

v(R)
Z(B)=[dR,..dR |P(R,|(Re™R)...(R &R )¥(R,)

ifermi — <()'(RO)G(RP)>

bose

o(R,)o(R,)




Model fermion problem: Particle in a box

Symmetric potential: V(r) =V(-r)
Antisymmetric state: o(r)=-¢(-r)

Initial (trial) state Fositive walkers g a1 (exact) state

Negative walkers

Sign of walkers fixed by initial position. They are allowed to diffuse freely.
f(r)= number of positive-negative walkers. Node is dynamically established by
diffusion process. (cancellation of positive and negative walkers.)

Y GO)GOED)
EO) =55 0000




Scaling in Released-Node

Initial distribution Later distribution

so the signal is drown out by the fluctuations.

Signal/noise ratio is : e Er—Esl t=projection time

E- and E; are Fermion, Bose energy (proportional to N)

Converges but at a slower rate. Higher accuracy, larger t.

For general excited states: _oa+EEy _ONEE
- = s Eg Eg

Exponential complexity! CPUtimec< ¢ = £

Not a fermion problem but an excited state problem.

Cancellation is difficult in high dimensions.



Exact fermion calculations

e Possible for the electron
gas for up to 60
electrons.

e 2DEG at rs=1 N=26

-0.365 ——r—r————————————
e Transient estimate -0.370% ]
calculation with SJ and z -0.375[ i
BF-3B trial functions. S 03800 =& )
Fo0385ha 0 A.
_tH -0.390
<LPT ‘8 LPT> -0.395(;




General statement of the
“fermion problem”

e Given a system with N fermions and a known
Hamiltonian and a property O. (usually the energy).

e How much time T will it take to estimate O to an
accuracy €?How does T scale with N and €?

e If you can map the quantum system onto an equivalent
problem in classical statistical mechanics then:

T o« N%£72 With 0 <o < 4
This would be a “solved” quantum problem!

*All approximations must be controlled!
*Algebraic scaling in N!

e.g. properties of Boltzmann or Bose systems in equilibrium.



“Solved Problems”

1-D problem. (simply forbid exchanges)
Bosons and Boltzmanons at any temperature

Some lattice models: Heisenberg model, 1/2 filled Hubbard
model on bipartite lattice (Hirsch)

Spin symmetric systems with purely attractive interactions:
u<0 Hubbard model, nuclear Gaussian model.

Harmonic oscillators or systems with many symmetries.
Any problem with <i|H|j> < 0

Fermions in special boxes

Other lattice models



The sign problem

The fermion problem is intellectually and technologically
very important.

Progress is possible but danger-the problem maybe
more subtle than you first might think. New ideas are
needed.

No fermion methods are perfect but QMC is competitive
with other methods and more general.

The fermion problem is one of a group of related
problems in quantum mechanics (e.g dynamics).

Feynman argues that general many-body quantum
simulation is exponentially slow on a classical computer.



Fixed-node method

e Initial distribution is a pdf. )
It comes from a VMC simulation.f(RaO) = |WT(R)|

e Drift term pushes walks away
from the nodes.

e Impose the condition: ¢(R)=0 when y,(R)=0.
e This is the fixed-node BC

E..2FE
e Will give an upper bound to the ~*N — 70

exact energy, the best upper  E, =FE, if ¢, (R)w(R)=0 allR
bound consistent with the FNBC. ’ ’

of(R,t) has a discontinuous gradient at the nodal location.
eAccurate method because Bose correlations are done exactly.
eScales well, like the VMC method, as N3. Classical complexity.

eCan be generalized from the continuum to lattice finite
temperature, magnetic fields, ...

eOne needs trial functions with accurate nodes.




Nodal Properties

If we know the sign of the exact wavefunction (the nodes), we
can solve the fermion problem with the fixed-node method.

o If o(R) is real, nodes are ¢(R)=0 where R is the 3N
dimensional vector.

e Nodes are a 3N-1 dimensional surface. (Do not confuse with
single particle orbital nodes!)

e Coincidence points r; = r; are 3N-3 dimensional hyper-planes

e In 1 spatial dimension these “points” exhaust the nodes:

fermion problem is easy to solve in 1D with the “no crossing
rule.”

e Coincidence points (and other symmetries) only constrain
nodes in higher dimensions, they do not determine them.

e The nodal surfaces define nodal volumes. How many nodal
volumes are there? Conjecture: there are typically only 2
different volumes (+ and -) except in 1D. (but only
demonstrated for free particles.)




Fixed-Phase method
Ortiz, Martin, DMC 1993

Generalize the FN method to complex trial functions: W (R) =e

Since the Hamiltonian is Hermitian, the variational energy is
real:

j dR V™ [V(R) + AWV U(R)-A[RVUR)| +A[IVU (R)ﬂ
— J‘dR o 2IUR)

We see only one place where the energy depends on the
phase of the wavefunction.

We fix the phase, then we add this term to the potential
energy. In a magnetic field we get also the vector potential.

effective potential=V (R)+ > 4, [ A(r)+SVU(R)]

We can now do VMC or DMC and giet upper bounds as before.

The imaginary part of the local energy will not be zero unless
the right phase is used.

Used for twisted boundary conditions, magnetic fields,
vortices, phonons, spin states, ...

~U(R)

Ly




Fermions: antisymmetric trial
function

At mean field level the
wavefunction is a Slater
determinant. Orbitals for
homogenous systems are a
filled set of plane waves.

We can compute this
energy analytically (HF).

To include correlation we
multiply by a “jastow”. We
need MC to evaluate
properties.

New feature: how to
compute the derivatives of
a deteminant and sample
the determinant. Use tricks
from linear algebra.

Reduces complexity to
O(N?2).

¥, (R) = Det{e""n, (o

J

PBC: k-L=2zn+{6}

)}

. _zu(rzj)
¥, (R) = Det{c" e =

Slater-Jastrow trial function.

1 ddet(M) _ Tr{M‘l aﬂ}
det(M) Oda da

det(9, (1)) =det (4, () X (]




Jastrow factor for the e-gas

* Look at local energy either in r space or k-space:
* r-space as 2 electrons get close gives cusp condition: du/dr|;=-1
» K-space, charge-sloshing or plasmon modes.

20u, = |-

OC —
Ak? k2
« Can combine 2 exact properties in the Gaskell form. Write E,, in terms structure
factor making “random phase approximation.” (RPA).

2pu, =—=++ \/ = - S, =1ideal structure factor

» Optimization can hardly improve this form for the e-gas in either 2 or 3 dimensions.
RPA works better for trial function than for the energy.

« NEED EWALD SUMS because potential trial function is long range, it also decays
as 1/r, but it is not a simple power.

fr_l 3D Long range properties important
. | T D eGive rise to dielectric properties
m, . u(r)=yr eEnergy is insensitive to u, at
log(]/-) lD small k

eThose modes converge t~1/k2




Wavetunctions beyond Jastrow | smoothing

-1
Use method of residuals construct @ ,(R) =@, ( R)e_7<¢" fg,>
a sequence of increasingly better

trial wave functions. Justify from _ i;k" "
the Importance sampled DMC. o =e
Zeroth order is Hartree-Fock E,=V(R)
wavefunction

— 4, UR)
First order is Slater-Jastrow pair G = e

wavefunction (RPA for electrons E =U(R)- [VW(R)]2 +izkj o (rj —VjY(R))
J

gives an analytic formula)
Second order 1s 3-body backflow

wavefunction .

Three-body form is like a squared 10 b
force. It 1s a bosonic term that does o8 |
not change the nodes. “os |

04

P L3 3,05 - 1)}



Why study dense Hydrogen?

e Applications:
— Astrophysics: giant planets, exoplanets
— Inertially confined fusion: NIF
- H is an ubiquitous atom!
e Fundamental physics:
— Which phases are stable?
— Superfluid/ superconducting phases?
— “Holy grail” of high pressure physics
e Benchmark for simulation:
- “Simple” electronic structure; no core states
— But strong quantum effects from its nuclei

- If we can’t simulate dense hydrogen what chance do
we have for heavier elements?



Regimes for Quantum Monte Carlo
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Coupled Electron-Ionic Monte Carlo:CEIMC

How to simulate a liquid with QMC
1. Do Path Integrals for the ions at T>0.

2. Let electrons be at zero temperature, a reasonable
approximation for T<<E..

3. Use Metropolis MC to accept/reject moves based on
QMC computation of electronic energy

electrons | ] R

ions S =S*

The “noise” coming from electronic energy can be treated
without approximation using the penalty method.



Experimental results differ by a factor 2!!
QMC is in the middle.
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Properties in transition region
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Summary of T=0 methods:

Variational(VMC), Fixed-node(FN), Released-node(RN)

1.E+01
1.E+00 -
= 1.E-01 -
K
= 1.E-02 - /'
= Better trial function
® 1.E-034 T
1LE-04 - applications
l.E'OS T I 1 I I T T
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

computer time (sec)



Summary of projector methods

Fixed-node is a super-variational method
DMC dynamics is determined by Hamiltonian

Zero-variance principle allows very accurate calculation of
ground state energy if trial function is good.

Excellent application for parallel computers.

Projector methods need a trial wavefunction for accuracy.
They are essentially methods that perturb from the trial
function to the exact function. (Note: if you don’t use a trial
function, you are perturbing from the ideal gas)

Difficulty calculating properties other than energy. We must
use “extrapolated estimators” or “forward walking”.

f(R,)=¢,(R)y;(R) not |@,(R)[

Bad for phase transitions esp. at finite temperature



Potential energy

Write potential as integral over structure function:
v=[d k—S(k) S(k)={p_,p,) =1+(N -1 (")

Error comes from 2 effects.

— Approximating integral by sum

— Finite size effects in S(k) at a given k. Spr (k) =1~ N Z 5q—q'+k
Within HF we get exact S(k) with TABC. B
Discretization errors come only from non-analytic points of S(k).

— the absence of the k=0 term in sum. We can put it in by hand since we know
the limit S(k) at small k (plasmon regime)

— Remaining size effects are smaller coming from the non-analytic behavior of
S(k) at 2k.. (k) - c]u\%)




