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Twisted Bilayer Graphene (TBG) superconductivity since 2018
Reviews: Balents, Dean, Efetov, Young, Nat Phys 2020

Andrei, Efetov, Jarillo-Herrero, MacDonald, Mak, Senthil, Tutuc, Yazdani,
Young, Nat Rev Mater 2021

Figure credits see Fig.1 in PT, Peotta, Bernevig, Nat Rev Phys 2022



Geometric contribution in TBG superconductivity

Julku, Peltonen, Liang, Heikkilä, PT, PRB(R) (2020); Editors’ Suggestion

Aleksi Julku Teemu Peltonen Long Liang Tero Heikkilä



MA-TBG: Magic Angle-Twisted Bilayer Graphene
Twisting graphene layers produces flat bands
(unconventional) superconductivity

Y Cao et al. Nature 556, 43–50 (2018)

Also
Nature 556, 80 (2018)
Science 363, 1059 (2019)
Nature 574, 653-657 (2019))





Non-interacting bands



Non-interacting bands



At magic angle θ ~1 deg, the number of lattice sites per unit cell (LS)
around 13 000: numerically still a problem even at the mean-field level

We reduce LS to around 700 by applying a rescaling trick which
modifies the twist angle but keeps the Moire periodicity and the Dirac
velocity invariant



Fermi-Hubbard lattice model with TBG geometry (600 bands)

Two pairing schemes

Local pairing:

Non-local nearest neighbour
(singlet) pairing:

annihilates a fermion in the ith lattice site with spin σ = {↑, ↓}

J< 0 is attractive interaction strength

Non-local (RVB) interaction Local (s-wave) interaction



For flat band regime local
interaction has
considerably larger TBKT

Here RVB (resonance valence
bond) is the non-local pairing
scheme

BKT temperature

Small interaction Large interaction



Local pairing preserves
the lattice symmetries and
yields isotropic Ds

Non-local pairing breaks
the rotational symmetry
and yields non-isotropic
response

Local pairing has s wave
symmetry, non-local yields
mixed s+p+d symmetry
(d dominant)

Nematic order parameter for non-local pairing



Geometric contribution in TBG

Non-local (RVB) interaction Local (s-wave) interaction

Confirmed by (only s-wave): Hu, Hyart, Pikulin, Rossi, PRL (2019)
Euler class bound of TBG superconductivity: Xie, Song, Lian, Bernevig, PRL (2020)

Julku, Peltonen, Liang, Heikkilä, PT, PRB(R) (2020); Editors’ Suggestion

TBG theory has advanced since 2020 (e.g. Kang, Vafek, PRB 2023; Vafek, Kang, PRB 2023);
quantitative predictions to be revisited



First experiments exploring quantum
geometric superconductivity in TBG
Tian, Gao, Che, Xu, Cheung, Watanabe, Taniguchi, Randeria,
Zhang, Lau, Bockrath, Nature 2023

Critical field and current measured
as well as Fermi velocity

Superfluid weight from

Isolated flat band
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Insulator – pseudogap crossover in the Lieb lattice normal state,
Huhtinen, PT, PRB(L) (2021)

New phenomena also in the flat band normal state

Aharonov-Bohm effect in a ring
geometry

Non-Fermi liquid features in double occupancy and entropy
(Lieb lattice), Kumar, Peotta, Takasu, Takahashi, PT, PRB(L) 2021

In certain lattice models, only pairs move at any temperature,
Tovmasyan, Peotta, Liang, PT, Huber, PRB 2018



Preformed pairs in a flat band
Tovmasyan, Peotta, Liang, PT, Huber, PRB 2018

What are the charge carriers in the normal state of a flat band superconductor?
We find: only pairs move (Pi-periodic ground state); non Landau-Fermi liquid.

Aharonov-Bohm effect in a ring
geometry

Ground state energy vs. magnetic flux

Flat  band

Non Flat band

Related to local conserved quantities.



Flat band interacting normal state; Lieb lattice
- Non-Fermi liquid features in double occupancy

and entropy
- SU(N) scaling relation

P Kumar, S Peotta, Y Takasu, Y Takahashi, PT, PRB(L) 2021
Pramod Kumar Sebastiano Peotta Yosuke Takasu Yoshiro Takahashi



Normal state properties

Non-Fermi liquid behavior
for small interactions
at the flat band

average double occupancy
(DMFT)

Lieb lattice: repulsive Hubbard model

half-filling: flat band significant

lowest band filled



Insulator – pseudogap crossover in the Lieb lattice
normal state

KE Huhtinen, PT, PRB(L) (2021)

Kukka-Emilia Huhtinen





Hubbard model on the Lieb lattice

Attractive Hubbard model

Flat band states reside at       and       sites

DMFT cluster: A, B and C

FOCUS ON THE NORMAL STATE ABOVE SUPERCONDUCTIVITY

DMFT
Georges, Kotliar, Krauth, Rozenberg, Rev. Mod. Phys. 1996
Kotliar, Savrasov, Haule, Oudovenko, Parcollet, Marianetti, Rev. Mod. Phys. 2006



Dynamical Mean Field Theory (DMFT) to capture quantum effects
beyond mean-field

Single site DMFT

Cellular/cluster DMFT; Non-local correlations



Large (U>t) interactions: pseudogap
Generalized spin susceptibility:

Local contribution to spin susceptibility
decreases sharply with temperature at
sites.

At low temperatures,                                               ,
where         is the orbital-resolved spectral function.

As interaction is increased, the spectral
function becomes depleted around half-filling.



Low interaction (U<t): insulator

In DMFT,                      , where
is the bare mass and          is the
effective mass.

The self-energy diverges at low
frequencies when the interaction
strength is decreased.

The temperature dependence is
rather than           found for

Mott insulator.
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Pyykkönen, Peotta, PT, PRL 2023
Editors’ Suggestion

Ville Pyykkönen Sebastiano Peotta



Flat, edge and dispersive states in the sawtooth ladder

Select a state by
gate potential



Flat band transport in Keldysh formalism

Fermi-Hubbard Hamiltonian

Mean-field
approximation

Hartree potential

Superconducting order parameter

Dyson equation

Keldysh formalism, non-equilibrium Green's functions

Kadanoff-Baym kinetic equation



Transport
Constant bias bias

Current

Vary gate potential

Superconducting junction: at finite interaction flat
band AC Josephson current is finite but DC
current (multiple Andreev reflections) quenched

Normal-normal and normal-superconducting
junction: flat band current is quenched

Quasiparticle transport quenched at flat band! Pure supercurrent!

S/NS/N



Quasiparticle poisoning

D. Rainis and D. Loss, Majorana qubit decoherence by
quasiparticle poisoning, Phys. Rev. B 85, 174533 (2012)

G. Catelani and J. P. Pekola, Using materials for quasiparticle
engineering, Materials for Quantum Technology 2, 013001 (2022)

Four transmons. FJ.M. Gambetta,
J.M. Chow, and M. Steffen (npj
QuantumInformation 3:2, 2017) by
CC BY 4.0 license

Majorana nanowire. H. Zhang, D.E. Liu, M. Wimmer,
L.P. Kouwenhoven (Nat Commun 10, 5128, 2019)
by CC BY 4.0 license

Quasiparticle transport quenched at flat band! Pure supercurrent!
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Conductivity in a flat band

KE Huhtinen, PT, PRB (2023)

Kukka-Emilia Huhtinen



Conductivity in a flat band
Semiclassical Boltzmann theory of transport:

Full Kubo-Greenwood formula:

At low temperatures and finite scattering rate     , the interband geometric
part is dominant on a flat band.

Insprired by
G. Bouzerar and D. Mayou, Phys. Rev. B 103, 075415 (2021)
J. Mitscherling and T. Holder, Phys. Rev. B 105, 08515 (2022)
B. Mera and J. Mitscherling, Phys. Rev. B 106, 165133 (2022)
G. Bouzerar, Phys. Rev. B 106, 125125 (2022)



Streda formula:

This gives a result proportional to the integrated quantum metric in the limit
when              is taken first.

This occurs only in perfectly (partially) flat bands due to ill-defined terms for states at
the Fermi energy. The Kubo-Greenwood and Streda formulas do not give the
same conductivity when a flat band is in the vicinity of the Fermi energy.

Lack of Fermi surface requires extra care in transport calculations.

Conductivity in a flat band
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Drude weight and the many-body quantum metric

Salerno, Ozawa, PT, PRB Letter (2023)

Grazia Salerno Tomoki Ozawa



The many-body quantum metric (MBQM)

Defined on many-body states with respect to the twisted boundary condition phase

Many-body generalization of the quantum metric

determines the ‘‘quantum distance’’ along a given path in  space.



The many-body quantum metric (MBQM)

Defined on many-body states with respect to the twisted boundary condition phase

Many-body generalization of the quantum metric

determines the ‘‘quantum distance’’ along a given path in  space.



Drude weight and twisted boundary conditions

Superfluid response of the system to a small external flux  introduced by the twisted
boundary conditions:



Drude weight within perturbation theory

with

Current operator

Can be bounded by the many-body quantum metric
if the system has a gap 

Independent of particle statistics and spatial dimensions!



Summary
Quantum geometry is relevant for any transport or interaction
phenomena where overlaps and localization properties of Wannier
functions are important – a new viewpoint to condensed matter physics:
not only the band structure, but the structure of the Bloch functions

Outlook
Superconductivity at elevated temperatures



Meanwhile in Finland


