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Topological Phases of Matter

Do not have a local order parameters, cannot be described by symmetry breaking.
Have topological order (Wen)

Are all bulk insulators - gapped ground-states; characterized by “topological” numbers
Several remarkable things occur:

Interacting topological states of matter feel the topology (genus) of the manifold:

Punctured Disk: Disk:

Interacting topological states have degeneracies.

Non-interacting states of matter (band insulators and BdG superconductors) have unique
ground states: topologically nontrivial insulator occurs when it cannot be adiabatically
continued to (any/an) atomic limit



What is a topological insulator/superconductor?

e Bulk of material is completely gapped

e On the boundaries there are gapless, protected
fermionic modes (chiral, Dirac, Majorana, chiral-
Majorana) which are holographic

e Bulk state characterized by a non-zero topological
iInvariant

e May require an auxiliary symmetry to be a stable phase
(T.G,...)

e Examples: IQHE, QAHE, QSH, 3d strong topological
insulator,p+ip superconductor, d+id superconductor



Topological Band Insulators Have Gapless Edge States
(Mostly)

OO
 Pick lattice. On each site - atomic orbitals e e o i
ot e S 8
» Atomic limit = on-site energies of the s and p B> @G> PS> S=3s s
orbitals, but no hopping (or overlap) between
orbitals on different sites S>3 - X R o
W S SR T S X

Atomic limit - if the lattice constant is very large (for ex the size of a galaxy)

Thought experiment: shrink the lattice constant to the normal Angstrom - size. Question: can
we do that without closing the bulk gap (adiabatically)?

NO? Material is a topological insulator with gapless edge modes at the boundary with a trivial
iInsulator.

Bc o Atomic Limit

o o®

ST 8 X
o OO 9

(DL_\-/E




States of Matter: Topological Properties

*Exceptions: Integer Quantum Hall:

2
e

O-\.T =n 7

* n related to number of edge states

« With applied magnetic field (explicit
Time-Reversal breaking).

* The quantum Hall effect in the presence
of a magnetic field also subtly breaks
another symmetry- translational
Invariance.

*Topological insulators and
superconductors dont break symmetries

of the lattice. They can have time reversal,

charge conjugation, or not.
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Can We Obtain a Quantum Hall State Without Applied Field?

YES (Haldane) (still need time-reversal breaking).
Simplest model is a 2 by 2 Dirac Hamiltonian.

For the full system, we have:
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For a single Dirac Fermion, we
hence have:
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Almost everything in these lectures will be at the level of
single-particle BdG formalism

“Topological” gapped bulk, for most purposes (but not
generically true), possesses gapless edge or surface states

We will try to understand the different topological
superconductors that can appear in |,2,and 3 Dimensions

A BdG gapped superconductor can be thought of as an
insulator with a C “symmetry”

The atomic “limit” of our superconductors is always the
strong pairing limit



Example of BAG Formalism For S-wave Sc

2
Take a simple free metal: H = Z CI,U (5_711 —,Lt> Cpo = Z CI,JE(P)CPG,
p.o p.o
. _ _ f F o \T
Artificially double the number of degrees of freedom: Y, = (cm Cp, Copt C_m) |
e(p) 0 O 0
. . . . . 1 0O ep) O 0
The Hamiltonian in this basis: H = ) | ¥} Hsc(P)'¥}, + constant, Hue®@=5| |~
P 0 0 0 —e(—p)
Has a “symmetry” (redundancy). Hyc(p) = ~CHJ o (—p)C! C=1"Q Ly

Only two out of the four bands give us independent quasiparticle energies - we created
an artificial redundancy, masked as a symmetry

For the non-interacting metal above, this redundancy can be back-tracked to the original
two-band free metal. This is not possible once pairing is introduced: the basis in which
we diagonalize the Hamiltonian cannot be made non-redundant (the Bogoliubov

operators have the text-book relations: 7\ pr = 7__p,  7ipi =7 pt



Example of BAG Formalism For S-wave Sc

Introduce a simple pairing term: Hp = ACI,TCT_N + A%c_p  Cpy

This splits the electron and hole-bands of the redundant metal in the previous slide:

Z ‘PLHBCIG (p’ A)LPP
P

e(p) O 0 A
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A* 0 0 —e(—p)

Hpag(p, A) = €(p)t" ® L2 — (ReA)” @ 67 — (ImA)T* ® o’

Charge Conjugation “symmetry” still holds: Hpac(P) = —CHgy(—p)C~! C=1"Q I

(easy trick to see the symmetry:in a tensor product look at what commutes and anticommutes in each space: tau_x anticommutes with tau_z and tau_y giving the - sign for
the kinetic term and the Re(Delta) - the tau_y sigma_y transpose is itself. tau_x commutes with Im(Delta) term, but the - sign there comes from the transpose of sigma_y.)

There is an important difference between a superconductor and an insulator, even at
BdG level: the excitations of the former are combinations of particle and hole states



Possible Charge Conjugation and Time-Reversal
Symmetries

Transformations of the field operators (time reversal also acts as complex conjugation):

TaT = Z (Ur)a,B VB CipaC™t = Z (U&) a8 ¥

B B

Anti-unitary “symmetries” (conditions on first quantized Hamiltonians):

T UlH Ur=+H C: ULH Us=-H

The square of the time-reversal of charge conjugation commutes with Hamiltonian:
(UzUr)"H(UzUT)=H (UEUc)H(UEUe)=H
The square of TR and CC are proportional to identity matrix, and because unitary:
UrUr = iy UtUc = 1N
So the two possibilities are spinless and spinful TR and CC.:

T2 — +1 T=e ™K C? =+1



The 10-fold way

In terms of TR and CC there are 10 possibilities (in any dimension):

exp(itH)

Cartan label T | C |S Hamiltonian d=1|{d=2|d=3
A (unitary) 0] 0|0 U(N) _ 7 _
AT (orthogonal) || +1| 0 |0 U(N)/O(N) - - -
AII (symplectic) || =1 | 0 | O U(2N)/Sp(2N) E Lo Lo
Al (ch. unit) || 0 | 0 [ 1| UNLTM/UN)xUM) T Z T - | Z
BDI (ch. orth.) | +1 | +1 |1 | O(N+M)/ON)xOM) [ Z | - | -
CII (ch. sympl.) || =1 | =1 | 1 || Sp(N + M)/Sp(N) x Sp(M) Z E L2
D (BdG) 0 | +1]0 SO(2N) . Z 1 -
C (BAG) 0 | —1]0 Sp(2N) — 7 T
DIII (BAG) || -1 | +1] 1 SO2N)/U(N) 7o T 7. | Z
CI (BdG) +1 | —-1]1 Sp(2N)/U(N) - - 7

Why are there (some of) different classes in different dimensions 1,2,3? (we could go to

higher dimensions but...)




Avenues Towards Topological Insulator

How to get topological superconductivity:

Method I: Take a system with a simple bandstructure and add
momentum dependent pairing.

Examples: spinless and spinful p+ip superconductors, He-3B,
chiral d-wave 1n 2d

Method II: Take a system with a rich bandstructure and add
s-wave, or extended s-wave pairing

Examples: surface of 3d topological insulator with typical s-wave,
QAHE with s-wave, non-centrosymmetric superconductors with
extended s-wave (more about this later...), possibly many more.



Zero-Dimensional Topological Classification

Although historically the p+ip superconductor A;{“ﬁﬁtfﬁll) o
(class D or C) in 2-d came as the first example T ) T
of a topological superconductor, a simpler class Co o
exists: class D in 1-d
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Simplest Example: class D in 0-d, charge conjugation squares to +1 (as before)

A Single Site problem (positive chemical potential), in a magnetic field (no TR), with an on-
site superconducting gap.

B

H = —pucle, + Belo?

o} O'O'

/Col - AO(CTCl + c|cq)

For very small pairing gap (almost negligible), ask what happens to the MANY-BODY
ground-state as we keep chemical potential fixed and vary magnetic field from zero to large.

For ZERO gap,

particle number is

still a good

gquantum number:

b<p B>p For finite (small) superconducting gap, particle
both spins one spin number is not a good quantum number BUT
occupied occupied mod 2 it is! Fermion parity is still different

between these two states, and gives a Z2
)o@

index of superconductors in zero dimensions



Majorana Formalism

There is a proper way of implementing the charge conjugation redundancy (and
obtaining indices) through the use of Majorana fermions. We now analyze the problem
In the previous slide through this prism.

Since the Charge conjugation is a reality condition, it seems a good idea to split each
complex fermions (irrespective of any quantum numbers like spin, orbital, etc) into two
real (Majorana) fermions:

(ala — iaQa) Co = %(ala + iaQO‘)

DO |

T
CO -
aiw = Ungo, {an0‘7 ama’} — 25nm5a,a’ Ay sy — 1

Re-write the one-site in magnetic field Hamiltonian in this Majorana basis:

2

H = %((B — p)ayrazy — (B +p)aijaz) + Ag(arjaz +azjarr) = % Z alama/

l,m=1

In the Majorana basis, the first
quantized Hamiltonian is an ANTI-
SYMMETRIC REAL matrix:




Majorana Formalism and First Topological Index

The energy levels are determined by the eigenvalues of the antisymmetric matrix.

1 1 1 1
Elzz(—B—\/u2+A3), E2:Z(B—\/M2+Ag)a E3:1(—B+\/M2+A%>a E4:1(B+\/HQ+A(2))

If the determinant is ever zero, we have a phase transition! Notice for small gap, the
phase transition occurs when the B field becomes comparable to the chemical potential

Going through a phase transition two levels cross, the determinant of the matrix doesnt
change sign (goes to zero then goes back to same sign).

However, if we could take the square root of the determinant, that would change sign,

because it would track the energy of one level, which goes thru zero for a
superconductor

Matrix is antisymmetric: we do have the square root: PFAFFIAN - (=B? 4+ pu? + A?)

Change in sign of pfaffian means going through a phase transition between even
fermion parity 181 < v#?+ A3 -and odd fermion parity [B] > vu? + A3

We have now learned the Majorana formalism, the pfaffian index, its relation to phase
transitions and its capability to classify the different phases of a superconductor



Kitaev P-Wave Wire

The 0-d model good for concepts. 1-d model much more interesting!

Simple model of spinless chain of electrons. Spinless, so we must have p-wave pairing

¥, (¢, CT_p)T

eo0o 000000000 Hysc > [—t (c‘;cl. e 1c,-) —uche; A (c‘; choee; 1)]
j
1 —2tcos p—u 2i A sin p
in2 H, — ) ¥ ¥
E (p) \/(Ztcosp w? 4A2sin”p BAG ) zp: » ( _2i A sin p 2t cos p ﬂ) »
Q2F | point : : .
0 Paifi:]n;'f?i'r?pschanges P-wave in 1-d is gapped, unlike in 2-d where we
sign between the two need p+ip to get a gapped spectrum. This is related

Fermi points to Wigner von Neumann classification of crossings

by co-dimension.

0.2}

There is a transition at p=0, Piand u. 2t

e YR Vg,

Trivial state, kinetic term doesnt “wind”.

Energy ol . .
: Pre-paring insulator

-0.2

Non-trivial state, kinetic term “winds”
between p=0, Pi. Pre-paring metal



Majorana Formalism and Phases of Kitaev P-Wave Wire

The model in Majorana form is much more revealing. Split each on-site complex fermion
Into 2 real Majoranas

O @ @ @ :
~a o~ o~ = (1/2)(agi—1 + iagy)

O.O.O.C.O.O.C.O.C.OOO.,‘7

i
Hpag = 5 Z (—uazj_1az; + (t+ |ADazjazji1 + (—t + |A)dzj_1a2j12)
j
We can easily understand the phases by looking at the following limiting cases:

“Strong pairing” case, kinetic energy term doesnt wind (in the u<0Oand[Al=t=0
previous slide), trivial state because the Majoranas are bound ® © e e e e
on-site (basically each site is occupied with a complex

fermion, or an original site bound state of two real majoranas) @ @ @ @ @ @

“Weak pairing” case, kinetic energy term does wind (in the Al =t > 0and g = 0
previous slide), non-trivial state: Majoranas are dimerized off- ® © © © © o

site. If we now cut the chain in between the complex fermion

sites we see clearly the appearance of ZERO energy end 4 6 -6 -6 -6 -6 o .

Majorana states. NON-LOCAL zero mode Hilbert space!
C = a1 + 109y,

Thece fwo limitina cacece are not adeneric ac the aan nrotecte aadainet adiabatic deformationel



Kitaev P-Wave Wire and Majorana End Modes

Away from the limiting cases of the previous slide, the Majorana ' "o
modes at the two ends of the chain will start talking, but splitting
is exponentially suppressed by hopping across the chain over the k:
bulk gap.
0.5 0.5
The real majorana ZERO mode at one end and the one at the Mai
o - E jorana
other end form a non-local complex fermion hilbert space. o ] 0
zero mode
Majorana zero modes exist with open boundary conditions inthe _;5 05
nontrivial phase, and will only disappear once the BULK of the
system has gone trivial through a phase transition » »
Edges are the mirror of an otherwise featureless topological bulk s s

There is a bulk index that tells us whether the system is topological or not. This index is a Z2 quantity. The existence of a Z2
quantity can also be understood from edges. Two edges = trivial = local edge hilbert space.

0.57




Kitaev P-Wave Wire and Bulk Indices

Bulk topological indices should be computed only with periodic boundary conditions.
The index is again the pfaffian index of the real space first quantized Hamiltonian!

With translational invariance, easier job:

- TZ_ TZ_

-3 - L L

Because of the q ->-g symmetry (charge conjugation) only g=0, Pi are relevant as they
do not come in pairs. The contribution of the other points to the pfaffian of the real space
matrix is positive, as they come in pairs.




Kitaev P-Wave Wire, Bulk Index and Fermion Parity

Another equivalent classification is that for even number of sites, the topologically
nontrivial state has ODD fermion parity.

Only k=0, Pi momenta are important. Other m
parity because they come in pairs (uk + Uk

2)

/

H (uk + vke

k£0

.i.

?mTenta are contributing even fermion
k)

At k=0, Pi the p-wave gap Sin(k) vanishes.

Hence whether k=0, Pi is occupied or not
depends on the sign of:

2t cos|k| + u

For | 11| < 2t we are guaranteed that one
of k=0, Pi will be occupied, while the other
not (remember how we spoke about the
winding?)

sign(p + 2t)sign(u — 2t)

et edlo)



Realizing Majorana Zero Modes in Experiments

Unfortunately p-wave gap is not easy to realize, B
. . . "
especially in 1D. Hence we engineer it! tip No AP P PP

Add a chain of magnetic, classical high-
spin atoms on the top of an S-wave
superconductor (no spin-orbit coupling).
Can be done by STM

Key Ingredient: spiral arrangement of
magnetic moments, usual magnetic spiral -0, é«.— i ,*...y.* ¢ @
is expected X

H = Ztnfmfnﬂa + 0l e fna — MZ Flafna + > (Bu-@apflatas + Z Doff f1 4 Dofuy fui

naf

For classical large atom spin (effective spiral B), each electron spin on chain is in low
energy state antiparallel to the LOCAL B.



Realizing Majorana Zero Modes in Experiments

We go to a local basis of spin parallel and ~ P “ Q‘yi -@ <@
antiparallel to the magnetic moment on-site: g é ii ¢
By
We go to a local basis of spin parallel and For N 0 (gt \ _ [ cos(6,2)  —sin(6,/2)e %\ [ gn
()= (5n) = Cantnonee 00 ) (5)

antiparallel to the magnetic moment on-site:

H = Z thn,a,ﬁglagn—l—lﬂ + t;Q;,ﬁ,ag;+1agnﬁ + BOUzaﬁgLagnﬂ — Z g;[bagna + Z A0 (g;rﬁgll + glenT)

n,o,B w
Bn — sin —9n+12_0n :
Diagonal

Q, =UlU,q = (%ﬂ —Pn ) If magnetic spiral, hopping amplitude dependent

" on spin - effectively creating spin-orbit coupling
(remember all the proposals to create Majorana with Rashba wires, B
field and superconducting - similar Hamiltonian)

— Ao.tnﬂmgl—ugll <9£T9nT>

<QLT9nT> ~ 1/B

Cassical atom spin (effective B),
electron spin on chain has low energy 1
state antiparallel to the LOCAL B. We Bo
can integrate out the high spin band
to obtain effective p-wave pairing

Bog 91

A OTRY AN 19n1 Effective p-wave in lowest band

j (Dotn/B)1g) 11950,




E/Delta

Realizing Kitaev P-Wave Wire in Experiments

More “realistic” self-consistent calculations can be

performed

Periodic boundary conditions: 48x21

B/Delta

Open boundary conditions

|

) ‘ | 0.65nm
i, A
’ -0.03 nm
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