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Topological Phases of Matter

Do not have a local order parameters, cannot be described by symmetry breaking. 

Have topological order (Wen) 

Are all bulk insulators - gapped ground-states; characterized by “topological” numbers 

Several remarkable things occur:

Interacting topological states of matter feel the topology (genus) of the manifold:

Interacting topological states have degeneracies. 

Non-interacting states of matter (band insulators and BdG superconductors) have unique 
ground states:  topologically nontrivial insulator occurs when it cannot be adiabatically 
continued to (any/an) atomic limit 



What is a topological insulator/superconductor?

• Bulk of material is completely gapped
• On the boundaries there are gapless, protected 

fermionic modes (chiral, Dirac, Majorana, chiral-
Majorana) which are holographic

• Bulk state characterized by a non-zero topological 
invariant

• May require an auxiliary symmetry to be a stable phase 
(T,C,…)

• Examples: IQHE, QAHE, QSH, 3d strong topological 
insulator,p+ip superconductor, d+id superconductor
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Topological Band Insulators Have Gapless Edge States 
(Mostly)

• Pick lattice. On each site - atomic orbitals

• Atomic limit = on-site energies of the s and p 
orbitals, but no hopping (or overlap) between 
orbitals on different sites

Atomic LimitNon-trivial Insulator
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Atomic limit - if the lattice constant is very large (for ex the size of a galaxy)

Thought experiment: shrink the lattice constant to the normal Angstrom - size. Question: can 
we do that without closing the bulk gap (adiabatically)?

NO? Material is a topological insulator with gapless edge modes at the boundary with a trivial 
insulator.  



States of Matter: Topological Properties
•Exceptions: Integer Quantum Hall: 

• n related to number of edge states 

• The quantum Hall effect in the presence 
of a magnetic field also subtly breaks 
another symmetry- translational 
invariance.

• With applied magnetic field (explicit 
Time-Reversal breaking).

•Topological insulators and 
superconductors dont break symmetries 
of the lattice. They can have time reversal, 
charge conjugation, or not. 
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Can We Obtain a Quantum Hall State Without Applied Field?

YES (Haldane) (still need time-reversal breaking). 
Simplest model is a 2 by 2 Dirac Hamiltonian.
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For the full system, we have:
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For a single Dirac Fermion, we 
hence have:



Almost everything in these lectures will be at the level of 
single-particle BdG formalism

“Topological” gapped bulk, for most purposes (but not 
generically true), possesses gapless edge or surface states

We will try to understand the different topological 
superconductors that can appear in 1,2, and 3 Dimensions

A BdG gapped superconductor can be thought of as an 
insulator with a C “symmetry”

The atomic “limit” of our superconductors is always the 
strong pairing limit  



Example of BdG Formalism For S-wave Sc
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Topological Superconductors in
One and Two Dimensions

by Taylor Hughes

With the explosion of interest in unconventional superconductivity in the past two decades,
there have been two primary research foci: (1) the microscopic mechanism that produces the
unconventional superconducting pairing potential and (2) new quasiparticle phenomena.
In the context of topological superconductors, our presentation will deal only with the
quasiparticle physics, and we do not consider any microscopic origin of the unconventional
superconductivity. In our discussion we assume that there exists some finite pairing strength,
induced by interactions or occasionally through the proximity effect, and that the quasi-
particle physics is well described using a mean-field formulation. Thus, we are interested in
noninteracting quasiparticles that are coupled to awell-defined background pairing potential,
and we ignore the (possibly important) effects that would result from considering a fully self-
consistent solution.

16.1 Introducing the Bogoliubov-de-Gennes (BdG) Formalism for s-Wave
Superconductors

For comparison to more-interesting cases that are discussed later, we begin by introducing
the mean-field formulation of the quasiparticle physics for a conventional s-wave Bardeen-
Cooper-Schrieffer (BCS) superconductor [3, 73]. We start with a simple metal with spin-
degeneracy given by the single-particle Hamiltonian

H =
(

p2

2m
− l

)
I2×2, (16.1)

where l is the chemical potential defining the Fermi surface, m is the mass, I2×2 is the
identity matrix in the spin variables, and, assuming isotropy, p2 =

∑d
i=1 p2i for whatever

spatial dimension d we are considering. For the many-body system, the second-quantized
Hamiltonian is

H =
∑

p,r

c†pr

(
p2

2m
− l

)
cpr ≡

∑

p,r

c†prε(p)cpr, (16.2)

where c†pr creates a quasiparticle with momentum p and spin r. The many-body ground state
of this Hamiltonian is obtained simply by filling in all the levels below the Fermy energy:

|X〉 =
∏

p : ε(p)<0

∏

r

c†pr|0〉, (16.3)

where the vacuum |0〉 is defined by cpr|0〉 ≡ 0 for all p, r.
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Formally, we can always write this Hamiltonian as

H = 1
2

∑

pr

[
c†prε(p)cpr − cprε(p)c

†
pr

]
+ 1

2

∑

p

ε(p)

= 1
2

∑

pr

[
c†prε(p)cpr − c−prε(−p)c†−pr

]
+ 1

2

∑

p

ε(p), (16.4)

where in the first equality we have used {c†pr, cp′r′} = drr′dpp′ and in the second equality
we have relabeled the sum index p in the second term to −p. If we introduce the spinor
Wp ≡ (cp↑ cp↓ c†−p↑ c†−p↓)T , we can write our Hamiltonian in amore compact form:

H =
∑

p

W†pHBdG(p)Wp + constant, (16.5)

HBdG(p) = 1
2





ε(p) 0 0 0
0 ε(p) 0 0
0 0 −ε(−p) 0
0 0 0 −ε(−p)




. (16.6)

We have introduced the subscript BdG (Bogoliubov-de-Gennes) to label the Hamiltonian
written in this redundant formalism; additionally, we will drop the constant from now on.
Although the statement is a bit trivial here, we note that the Bloch Hamiltonian HBdG(p) is
invariant under HBdG(p) = −CHT

BdG(−p)C−1, where C = sx ⊗ I2×2 and

sx =
(
0 1

1 0

)

.

The full, second-quantized Hamiltonian obeys

H = −CHTC−1 = −CH∗C−1, (16.7)

where in the second equation we have used the hermiticity of H. This invariance, which will
become more important when we consider superconducting pairing, is known as a particle-
hole or charge-conjugation “symmetry.” We are reserved about calling this a symmetry
because what we have really done is to introduce a redundancy into our description of this
noninteracting metal. Note that instead of having two degrees of freedom (one band and
two spins), the BdG Hamiltonian has four. We now have four energy eigenvalues of HBdG,
namely, two copies of ε(p) and two copies of −ε(−p). The important point to note is that
only two out of the four bands give independent quasiparticle states. Thus, we have created an
artificial redundancy by effectively doubling the degrees of freedom. This is complicating our
description of what was a simple free-fermion problem.

The point of this formalism is to show that the easiest way to solve for the quasiparticle
bands of a mean-field superconductor is to write the Hamiltonian in this BdG form. The
pairing potential, which we will now introduce, simply couples the upper and lower blocks of
the HBdG we gave for themetal. We begin by studying the conventional s-wave, singlet pairing
potential of the form

HD = Dc†p↑c
†
−p↓ + D∗c−p↓cp↑

= 1
2

[
D
(
c†p↑c

†
−p↓ − c†−p↓c

†
p↑

)
+ D∗

(
c−p↓cp↑ − cp↑c−p↓

)]
, (16.8)
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Take a simple free metal: 

Artificially double the number of degrees of freedom:

The Hamiltonian in this basis:

Has a “symmetry” (redundancy):

Only two out of the four bands give us independent quasiparticle energies - we created 
an artificial redundancy, masked as a symmetry

For the non-interacting metal above, this redundancy can be back-tracked to the original 
two-band free metal. This is not possible once pairing is introduced: the basis in which 
we diagonalize the Hamiltonian cannot be made non-redundant (the Bogoliubov 
operators have the text-book relations: 
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quasi-particle creation operators that create fermions in the eigenstates of HBdG(p, D):

c†+,p↑ = eih/2 sin ap c†p↑ + e−ih/2 cos ap c−p↓, (16.13)

c†+,p↓ = −eih/2 sin ap c†p↓ + e−ih/2 cos ap c−p↑, (16.14)

c†−,p↑ = eih/2 sin bp c†p↑ + e−ih/2 cos bp c−p↓, (16.15)

c†−,p↓ = −eih/2 sin bp c†p↓ + e−ih/2 cos bp c−p↑, (16.16)

where c†±pr creates a quasi-particle in energy band E± withmomentump and spin r,D = |D|eih,
and

tan ap = ε(p) +
√

ε(p)2 + |D|2
|D|

, (16.17)

tan bp = ε(p) −
√

ε(p)2 + |D|2
|D|

. (16.18)

Thus, the quasi-particles that are excited in a superconductor are mixtures of creation and
annihilationoperators of the original quasi-particles in themetal. At low energy (ε(p) ∼ 0), the
quasi-particles are nearly equal-weight superpositions of creation and annihilation operators,
whereas at high energy (ε(p) % |D|), the particles are not influenced by the pairing potential
and revert to the metallic quasi-particle form. These operators satisfy c†+,p↑ = c−,−p↓ and
c†+,p↓ = c−,−p↑. Thus, it is clear that out of the four creation operators, only two of them create
independent excitations. This is due to the artificial redundancy of the BdG formalism.

16.2 p-Wave Superconductors in One Dimension

The simplest models of topological superconductors are mean-field BdG Hamiltonians of
spinless fermions in one and two dimensions. Spinless fermions can either be viewed as a toy
model for themore complicated spinful case or simply as fermions that are fully spin-polarized
due to a source of TR breaking such as a magnetic field. We will first consider a 1-D wire with
p-wave superconductivity and then move on to a 2-D chiral p-wave superconductor, both of
which exhibit topological superconducting phases.

16.2.1 1-D p-Wave Wire
In this section we discuss an illustrative topological superconductor model first introduced in
this context by Kitaev [34]. We begin with a nonsuperconducting 1-D metal of spinless (or
spin-polarized) fermions

H =
∑

p

c†p

(
p2

2m
− l

)
cp. (16.19)

Instead of introducing a momentum-independent s-wave pairing potential, which is not
possible for spinless fermions, we will use a momentum-dependent p-wave potential

HD = 1
2

(
Dpc†pc

†
−p + D∗ pc−pcp

)
. (16.20)

October 19, 2012 Time: 04:35pm chapter16.tex

204 16 Topological Superconductors

quasi-particle creation operators that create fermions in the eigenstates of HBdG(p, D):
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tan ap = ε(p) +
√

ε(p)2 + |D|2
|D|

, (16.17)

tan bp = ε(p) −
√

ε(p)2 + |D|2
|D|

. (16.18)
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Formally, we can always write this Hamiltonian as

H = 1
2

∑

pr

[
c†prε(p)cpr − cprε(p)c

†
pr

]
+ 1

2

∑

p

ε(p)

= 1
2

∑

pr

[
c†prε(p)cpr − c−prε(−p)c†−pr

]
+ 1

2

∑

p

ε(p), (16.4)

where in the first equality we have used {c†pr, cp′r′} = drr′dpp′ and in the second equality
we have relabeled the sum index p in the second term to −p. If we introduce the spinor
Wp ≡ (cp↑ cp↓ c†−p↑ c†−p↓)T , we can write our Hamiltonian in amore compact form:

H =
∑

p

W†pHBdG(p)Wp + constant, (16.5)

HBdG(p) = 1
2





ε(p) 0 0 0
0 ε(p) 0 0
0 0 −ε(−p) 0
0 0 0 −ε(−p)




. (16.6)

We have introduced the subscript BdG (Bogoliubov-de-Gennes) to label the Hamiltonian
written in this redundant formalism; additionally, we will drop the constant from now on.
Although the statement is a bit trivial here, we note that the Bloch Hamiltonian HBdG(p) is
invariant under HBdG(p) = −CHT

BdG(−p)C−1, where C = sx ⊗ I2×2 and

sx =
(
0 1

1 0

)

.

The full, second-quantized Hamiltonian obeys

H = −CHTC−1 = −CH∗C−1, (16.7)

where in the second equation we have used the hermiticity of H. This invariance, which will
become more important when we consider superconducting pairing, is known as a particle-
hole or charge-conjugation “symmetry.” We are reserved about calling this a symmetry
because what we have really done is to introduce a redundancy into our description of this
noninteracting metal. Note that instead of having two degrees of freedom (one band and
two spins), the BdG Hamiltonian has four. We now have four energy eigenvalues of HBdG,
namely, two copies of ε(p) and two copies of −ε(−p). The important point to note is that
only two out of the four bands give independent quasiparticle states. Thus, we have created an
artificial redundancy by effectively doubling the degrees of freedom. This is complicating our
description of what was a simple free-fermion problem.

The point of this formalism is to show that the easiest way to solve for the quasiparticle
bands of a mean-field superconductor is to write the Hamiltonian in this BdG form. The
pairing potential, which we will now introduce, simply couples the upper and lower blocks of
the HBdG we gave for themetal. We begin by studying the conventional s-wave, singlet pairing
potential of the form

HD = Dc†p↑c
†
−p↓ + D∗c−p↓cp↑

= 1
2

[
D
(
c†p↑c

†
−p↓ − c†−p↓c

†
p↑

)
+ D∗

(
c−p↓cp↑ − cp↑c−p↓

)]
, (16.8)

Introduce a simple pairing term:
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Figure 16.1. Plot of the dispersion relation for
an s-wave superconductor. The curves in the
figures are plots of the energies
E±(p) =

√
ε(p)2 + |D|2 for (dotted line)

m = 1.0, l = 0, and |D| = 0.0 and (solid line)
m = 1.0, l = |D| = 0.1.

where D is a complex number representing the superconducting order parameter. This term,
at the mean-field level, leads to a nonconservation of charge, i.e., charge is conserved only
modulo 2e. This term captures the physics of two electrons or holes combining to form
a Cooper pair or a Cooper pair breaking apart into its constituents. The nonconservation
of charge is further manifest in the fact that HD is not invariant under arbitrary gauge
transformations (cp → eiφ(p)cp) if we consider D to be a conventional, gauge-invariant order
parameter.

Now let us consider the total Hamiltonian of the metal with a homogeneous pairing
potential

H + HD =
∑

p

W†pHBdG(p, D)Wp (16.9)

HBdG(p, D) = 1
2





ε(p) 0 0 D
0 ε(p) −D 0
0 −D∗ −ε(−p) 0
D∗ 0 0 −ε(−p)




. (16.10)

The BdG Bloch Hamiltonian can be decomposed as

HBdG(p, D) = ε(p)sz ⊗ I2×2 − (ReD)sy ⊗ ry − (ImD)sx ⊗ ry, (16.11)

where sa are Pauli matrices in the particle-hole degrees of freedom and ra are spin. Because
the three matrices making up HBdG(p, D) are mutually anticommuting, we can easily find the
energy spectrum because H2

BdG(p, D) = (ε(p)2 + |D|2)I4×4. Thus, the energy spectrum is made
up of two doubly degenerate bands with energies

E± = ±
√

ε(p)2 + |D|2. (16.12)

This spectrum has an energy gap whenever |D| &= 0 and is shown in figure 16.1. In fact,
the spectrum has similar features to that of a band insulator with a fine-tuned particle-hole
symmetry. However, there is an important difference between the fermionic excitations of
the gapped insulator state and the gapped superconductor state, namely, the superconductor
quasi-particles are combinations of particle and hole states. This can be seen by looking at the

This splits the electron and hole-bands of the redundant metal in the previous slide:
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the gapped insulator state and the gapped superconductor state, namely, the superconductor
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at the mean-field level, leads to a nonconservation of charge, i.e., charge is conserved only
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a Cooper pair or a Cooper pair breaking apart into its constituents. The nonconservation
of charge is further manifest in the fact that HD is not invariant under arbitrary gauge
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The BdG Bloch Hamiltonian can be decomposed as

HBdG(p, D) = ε(p)sz ⊗ I2×2 − (ReD)sy ⊗ ry − (ImD)sx ⊗ ry, (16.11)

where sa are Pauli matrices in the particle-hole degrees of freedom and ra are spin. Because
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energy spectrum because H2
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the spectrum has similar features to that of a band insulator with a fine-tuned particle-hole
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the gapped insulator state and the gapped superconductor state, namely, the superconductor
quasi-particles are combinations of particle and hole states. This can be seen by looking at the

October 19, 2012 Time: 04:35pm chapter16.tex

16.1 BdG Formalism 203

E
–0.4

0.2

0.4

–0.2

0

–1.0

2 2∆

0–0.5 0.5 1
p

Figure 16.1. Plot of the dispersion relation for
an s-wave superconductor. The curves in the
figures are plots of the energies
E±(p) =

√
ε(p)2 + |D|2 for (dotted line)

m = 1.0, l = 0, and |D| = 0.0 and (solid line)
m = 1.0, l = |D| = 0.1.

where D is a complex number representing the superconducting order parameter. This term,
at the mean-field level, leads to a nonconservation of charge, i.e., charge is conserved only
modulo 2e. This term captures the physics of two electrons or holes combining to form
a Cooper pair or a Cooper pair breaking apart into its constituents. The nonconservation
of charge is further manifest in the fact that HD is not invariant under arbitrary gauge
transformations (cp → eiφ(p)cp) if we consider D to be a conventional, gauge-invariant order
parameter.

Now let us consider the total Hamiltonian of the metal with a homogeneous pairing
potential

H + HD =
∑
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W†pHBdG(p, D)Wp (16.9)

HBdG(p, D) = 1
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0 ε(p) −D 0
0 −D∗ −ε(−p) 0
D∗ 0 0 −ε(−p)
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The BdG Bloch Hamiltonian can be decomposed as

HBdG(p, D) = ε(p)sz ⊗ I2×2 − (ReD)sy ⊗ ry − (ImD)sx ⊗ ry, (16.11)

where sa are Pauli matrices in the particle-hole degrees of freedom and ra are spin. Because
the three matrices making up HBdG(p, D) are mutually anticommuting, we can easily find the
energy spectrum because H2

BdG(p, D) = (ε(p)2 + |D|2)I4×4. Thus, the energy spectrum is made
up of two doubly degenerate bands with energies

E± = ±
√

ε(p)2 + |D|2. (16.12)

This spectrum has an energy gap whenever |D| &= 0 and is shown in figure 16.1. In fact,
the spectrum has similar features to that of a band insulator with a fine-tuned particle-hole
symmetry. However, there is an important difference between the fermionic excitations of
the gapped insulator state and the gapped superconductor state, namely, the superconductor
quasi-particles are combinations of particle and hole states. This can be seen by looking at the

There is an important difference between a superconductor and an insulator, even at 
BdG level: the excitations of the former are combinations of particle and hole states
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Formally, we can always write this Hamiltonian as

H = 1
2

∑

pr

[
c†prε(p)cpr − cprε(p)c

†
pr

]
+ 1

2

∑

p

ε(p)

= 1
2

∑

pr

[
c†prε(p)cpr − c−prε(−p)c†−pr

]
+ 1

2

∑

p

ε(p), (16.4)

where in the first equality we have used {c†pr, cp′r′} = drr′dpp′ and in the second equality
we have relabeled the sum index p in the second term to −p. If we introduce the spinor
Wp ≡ (cp↑ cp↓ c†−p↑ c†−p↓)T , we can write our Hamiltonian in amore compact form:

H =
∑

p

W†pHBdG(p)Wp + constant, (16.5)

HBdG(p) = 1
2





ε(p) 0 0 0
0 ε(p) 0 0
0 0 −ε(−p) 0
0 0 0 −ε(−p)




. (16.6)

We have introduced the subscript BdG (Bogoliubov-de-Gennes) to label the Hamiltonian
written in this redundant formalism; additionally, we will drop the constant from now on.
Although the statement is a bit trivial here, we note that the Bloch Hamiltonian HBdG(p) is
invariant under HBdG(p) = −CHT

BdG(−p)C−1, where C = sx ⊗ I2×2 and

sx =
(
0 1

1 0

)

.

The full, second-quantized Hamiltonian obeys

H = −CHTC−1 = −CH∗C−1, (16.7)

where in the second equation we have used the hermiticity of H. This invariance, which will
become more important when we consider superconducting pairing, is known as a particle-
hole or charge-conjugation “symmetry.” We are reserved about calling this a symmetry
because what we have really done is to introduce a redundancy into our description of this
noninteracting metal. Note that instead of having two degrees of freedom (one band and
two spins), the BdG Hamiltonian has four. We now have four energy eigenvalues of HBdG,
namely, two copies of ε(p) and two copies of −ε(−p). The important point to note is that
only two out of the four bands give independent quasiparticle states. Thus, we have created an
artificial redundancy by effectively doubling the degrees of freedom. This is complicating our
description of what was a simple free-fermion problem.

The point of this formalism is to show that the easiest way to solve for the quasiparticle
bands of a mean-field superconductor is to write the Hamiltonian in this BdG form. The
pairing potential, which we will now introduce, simply couples the upper and lower blocks of
the HBdG we gave for themetal. We begin by studying the conventional s-wave, singlet pairing
potential of the form

HD = Dc†p↑c
†
−p↓ + D∗c−p↓cp↑

= 1
2

[
D
(
c†p↑c

†
−p↓ − c†−p↓c

†
p↑

)
+ D∗

(
c−p↓cp↑ − cp↑c−p↓

)]
, (16.8)

October 19, 2012 Time: 04:35pm chapter16.tex

202 16 Topological Superconductors

Formally, we can always write this Hamiltonian as

H = 1
2

∑

pr

[
c†prε(p)cpr − cprε(p)c

†
pr

]
+ 1

2

∑

p

ε(p)

= 1
2

∑

pr

[
c†prε(p)cpr − c−prε(−p)c†−pr

]
+ 1

2

∑

p

ε(p), (16.4)

where in the first equality we have used {c†pr, cp′r′} = drr′dpp′ and in the second equality
we have relabeled the sum index p in the second term to −p. If we introduce the spinor
Wp ≡ (cp↑ cp↓ c†−p↑ c†−p↓)T , we can write our Hamiltonian in amore compact form:

H =
∑

p

W†pHBdG(p)Wp + constant, (16.5)

HBdG(p) = 1
2





ε(p) 0 0 0
0 ε(p) 0 0
0 0 −ε(−p) 0
0 0 0 −ε(−p)




. (16.6)

We have introduced the subscript BdG (Bogoliubov-de-Gennes) to label the Hamiltonian
written in this redundant formalism; additionally, we will drop the constant from now on.
Although the statement is a bit trivial here, we note that the Bloch Hamiltonian HBdG(p) is
invariant under HBdG(p) = −CHT

BdG(−p)C−1, where C = sx ⊗ I2×2 and

sx =
(
0 1

1 0

)
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where in the second equation we have used the hermiticity of H. This invariance, which will
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namely, two copies of ε(p) and two copies of −ε(−p). The important point to note is that
only two out of the four bands give independent quasiparticle states. Thus, we have created an
artificial redundancy by effectively doubling the degrees of freedom. This is complicating our
description of what was a simple free-fermion problem.

The point of this formalism is to show that the easiest way to solve for the quasiparticle
bands of a mean-field superconductor is to write the Hamiltonian in this BdG form. The
pairing potential, which we will now introduce, simply couples the upper and lower blocks of
the HBdG we gave for themetal. We begin by studying the conventional s-wave, singlet pairing
potential of the form

HD = Dc†p↑c
†
−p↓ + D∗c−p↓cp↑

= 1
2

[
D
(
c†p↑c

†
−p↓ − c†−p↓c

†
p↑

)
+ D∗

(
c−p↓cp↑ − cp↑c−p↓

)]
, (16.8)

Charge Conjugation “symmetry” still holds:

(easy trick to see the symmetry: in a tensor product look at what commutes and anticommutes in each space: tau_x anticommutes with tau_z and tau_y giving the - sign for 
the kinetic term and the Re(Delta) - the tau_y sigma_y transpose is itself. tau_x commutes with Im(Delta) term, but the - sign there comes from the transpose of sigma_y.)



Possible Charge Conjugation and Time-Reversal 
Symmetries

CONTENTS 7

(Similarly, a superconducting system is described by a BdG Hamiltonian for which we

use the Nambu-spinor instead of complex fermion operators ψA,ψ
†
A and whose first

quantized form is again a matrix H when discretized on a lattice.)

Now, time reversal symmetry can be expressed in terms ofH: the system is invariant

under time reversal symmetry if and only if the complex conjugate of the first quantized

Hamiltonian H∗ is equal to H up to a unitary rotation UT , i.e.

T : U †
T H∗ UT = +H. (3)

Moreover, the system is invariant under charge-conjugation (or: particle-hole) symmetry

if and only if the complex conjugate of the Hamiltonian H∗ = HT is equal to minus H
up to a unitary rotation UC , i.e.

C : U †
C H∗ UC = −H. (4)

(This property may be less familiar, but it is easy to check [26] that it is a

characterization of charge-conjugation (particle-hole) symmetry for non-interacting

systems of fermions). A look at equations (3,4) reveals that T and C, when acting
on the single particle Hilbert space, are not unitary symmetries, but rather reality

conditions on the Hamiltonian H modulo unitary rotations + ∗.
+ In second-quantized language, time-reversal and particle-hole operations can be written in terms of
their action on the canonical fermion creation and annihilation operators,

T ψAT −1 =
∑

B

(UT )A,B ψB, CψAC−1 =
∑

B

(U∗
C)A,B ψ†

B . (5)

While the particle-hole transformation is unitary, the time-reversal operation is anti-unitary, T iT −1 =
−i. The system is time-reversal invariant (particle-hole symmetric), if and only if T HT −1 = H
(CHC−1 = H). This leads directly to the conditions (3) and (4) for the first quantized Hamiltonian.
Note that T HT −1 = H implies T ψA(t)T −1 = T e+iHtψAe−iHtT −1 =

∑

B (UT )A,B ψB(−t).
Iterating T and C twice, one obtains T 2ψAT −2 =

∑

B (U∗
TUT )A,B ψB, and C2ψAC−2 =

∑

B (U∗
CUC)A,B ψB. When acting on the first quantized Hamiltonian this reads (U∗

TUT )†H(U∗
TUT )= H

and (U∗
CUC)†H(U∗

CUC)= H, respectively. The first quantized Hamiltonians H are seen (below) to run
over an irreducible representation space, and thus (U∗

TUT ) and (U∗
CUC) are both multiples of the

identity matrix IN (by Schur’s lemma). Since UT and UC are unitary matrices, there are only two
possibilities for each, i.e., U∗

TUT = ±IN and U∗
CUC = ±IN . The time-reversal operation T and the

particle-hole transformation C can then each square to plus or to minus the identity, T 2 = ±1, and
C2 = ±1.
∗ It may also be worth noting that we may assume without loss of generality that there is only a
single time-reversal operator T and a single charge-conjugation operator C. If the (first quantized)
Hamiltonian H was invariant under, say, two charge-conjugation operations C1 and C2, then the
composition C1 · C2 of these two symmetry operations would be a unitary symmetry when acting on
the first quantized Hamiltonian H, i.e., the product UC1
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Hamiltonian H was invariant under, say, two charge-conjugation operations C1 and C2, then the
composition C1 · C2 of these two symmetry operations would be a unitary symmetry when acting on
the first quantized Hamiltonian H, i.e., the product UC1

·U∗
C2

would commute with H. By bringing the
Hamiltonian H in block form, UC1

·U∗
C2

would then be constant on each block. Thus, on each block UC1

and UC2
would then be trivially related to each other, and it would suffice to consider one of the two

charge conjugation operations. – On the other hand, note that the product T ·C corresponds to a unitary
symmetry operation when acting on the first quantized Hamiltonian H. But in this case the unitary
matrix UT ·U∗

C does not commute but anti-commutes with H. Therefore, T · C does not correspond to
an an “ordinary” symmetry of H. It is for this reason that we need to consider the product T ·C (called
“chiral”, or “sublattice” symmetry S below) as an additional essential ingredient for the classification
of the blocks, besides time-reversal T and charge-conjugation (particle-hole) symmetries C.
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This implies that the spin flips its direction under time reversal. We can represent this action
by a rotation by p around some arbitrary axis. Since ancient times, the convention has been to
rotate the spin around the y-axis by p. The TR operator must implement this rotation; at the
same time, it must be proportional to the complex conjugation operator because its action on
the position-momentum commutator remains unchanged regardless of whether the particle
has spin or not. With the choice of the rotation axis as y, the form of the TR operator is fixed:

T = e−ipSy K . (4.19)

Wenowwant to find its square.We assume a standard spin representation inwhich Sy is purely
imaginary. We have

T · T = exp (−ipSy)(K exp (−ipSy)K )

= exp (−ipSy)(exp (ipS∗
y )) = exp (−i2pSy) (4.20)

This result is of fundamental importance: acting with time reversal twice hence rotates the
spin by 2p, which for particles with integer spin is equivalent to the identity operator, whereas
for particles with half-integer spin, it gives a factor of −1. We remember this is identical to
what was obtained in the Berry phase calculation. For spin- 12 particles, thematrix exponential
can be easily performed.We pick as spin- 12 the usual S = (!/2)(rx, ry, rz) and obtain

e−ipry/2 =
∞∑

k=0

1
k!

(
−ipry

2

)k

= cos
(p
2

) (1 0
0 1

)

+ sin
(p
2

) (0 −1
1 0

)

= −iry (4.21)

Here we can check explicitly that T2 = −1:

T2 = −iryir∗
yKK = −ryry = −1. (4.22)

From T2 = −1, we have that, for half-integer spin particles, T−1 = −T; hence, for spin- 12 ,

TST−1 = −iryS∗KiryK = −iryS∗(−i)r∗
yKK = ryS∗ry = −S. (4.23)

For the last equality, if the components of S are x, z, the complex conjugation does nothing,
but the matrix ry anticommutes with rx,z (Pauli matrices form both a Clifford {ra, rb} = 2dab
and an SU (2) [ra, rb] = iεabcrc algebra). If the component of S is ry, then taking the complex
conjugate changes its sign.

4.3 Kramers’ Theorem

We are now in position to prove the most important theorem for a TR-invariant system. For
half-integer spin, the T2 = −1 property gives an important theorem called Kramers’ theorem:
for each energy in a system with an odd number of particles with half-integer spin, there
are at least two degenerate states. We will then apply this theorem to systems with an added
translational symmetry (Bloch Hamiltonians).
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use the Nambu-spinor instead of complex fermion operators ψA,ψ
†
A and whose first

quantized form is again a matrix H when discretized on a lattice.)

Now, time reversal symmetry can be expressed in terms ofH: the system is invariant

under time reversal symmetry if and only if the complex conjugate of the first quantized

Hamiltonian H∗ is equal to H up to a unitary rotation UT , i.e.

T : U †
T H∗ UT = +H. (3)

Moreover, the system is invariant under charge-conjugation (or: particle-hole) symmetry

if and only if the complex conjugate of the Hamiltonian H∗ = HT is equal to minus H
up to a unitary rotation UC , i.e.

C : U †
C H∗ UC = −H. (4)

(This property may be less familiar, but it is easy to check [26] that it is a

characterization of charge-conjugation (particle-hole) symmetry for non-interacting

systems of fermions). A look at equations (3,4) reveals that T and C, when acting
on the single particle Hilbert space, are not unitary symmetries, but rather reality

conditions on the Hamiltonian H modulo unitary rotations + ∗.
+ In second-quantized language, time-reversal and particle-hole operations can be written in terms of
their action on the canonical fermion creation and annihilation operators,

T ψAT −1 =
∑

B

(UT )A,B ψB, CψAC−1 =
∑

B

(U∗
C)A,B ψ†

B . (5)

While the particle-hole transformation is unitary, the time-reversal operation is anti-unitary, T iT −1 =
−i. The system is time-reversal invariant (particle-hole symmetric), if and only if T HT −1 = H
(CHC−1 = H). This leads directly to the conditions (3) and (4) for the first quantized Hamiltonian.
Note that T HT −1 = H implies T ψA(t)T −1 = T e+iHtψAe−iHtT −1 =

∑

B (UT )A,B ψB(−t).
Iterating T and C twice, one obtains T 2ψAT −2 =

∑

B (U∗
TUT )A,B ψB, and C2ψAC−2 =

∑

B (U∗
CUC)A,B ψB. When acting on the first quantized Hamiltonian this reads (U∗

TUT )†H(U∗
TUT )= H

and (U∗
CUC)†H(U∗

CUC)= H, respectively. The first quantized Hamiltonians H are seen (below) to run
over an irreducible representation space, and thus (U∗

TUT ) and (U∗
CUC) are both multiples of the

identity matrix IN (by Schur’s lemma). Since UT and UC are unitary matrices, there are only two
possibilities for each, i.e., U∗

TUT = ±IN and U∗
CUC = ±IN . The time-reversal operation T and the

particle-hole transformation C can then each square to plus or to minus the identity, T 2 = ±1, and
C2 = ±1.
∗ It may also be worth noting that we may assume without loss of generality that there is only a
single time-reversal operator T and a single charge-conjugation operator C. If the (first quantized)
Hamiltonian H was invariant under, say, two charge-conjugation operations C1 and C2, then the
composition C1 · C2 of these two symmetry operations would be a unitary symmetry when acting on
the first quantized Hamiltonian H, i.e., the product UC1

·U∗
C2

would commute with H. By bringing the
Hamiltonian H in block form, UC1

·U∗
C2

would then be constant on each block. Thus, on each block UC1

and UC2
would then be trivially related to each other, and it would suffice to consider one of the two

charge conjugation operations. – On the other hand, note that the product T ·C corresponds to a unitary
symmetry operation when acting on the first quantized Hamiltonian H. But in this case the unitary
matrix UT ·U∗

C does not commute but anti-commutes with H. Therefore, T · C does not correspond to
an an “ordinary” symmetry of H. It is for this reason that we need to consider the product T ·C (called
“chiral”, or “sublattice” symmetry S below) as an additional essential ingredient for the classification
of the blocks, besides time-reversal T and charge-conjugation (particle-hole) symmetries C.
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Transformations of the field operators (time reversal also acts as complex conjugation):

The square of the time-reversal of charge conjugation commutes with Hamiltonian:

The square of TR and CC are proportional to identity matrix, and because unitary:

So the two possibilities are spinless and spinful TR and CC:



The 10-fold way

In terms of TR and CC there are 10 possibilities (in any dimension):
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Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N) U(2n)/U(n) ×U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 1 U(N +M)/U(N) ×U(M) U(n)
BDI (ch. orth.) +1 +1 1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)
CII (ch. sympl.) −1 −1 1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 1 Sp(2N)/U(N) Sp(2n)

Table 1. Listed are the ten generic symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-
conjugation (or: particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”)
symmetry (S). The labels T, C and S, represent the presence/absence of time-
reversal, particle-hole, and chiral symmetries, respectively, as well as the types of these
symmetries. The column entitled “Hamiltonian” lists, for each of the ten symmetry
classes, the symmetric space of which the quantum mechanical time-evolution operator
exp(itH) is an element. The column “Cartan label” is the name given to the
corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.

Why are there (some of) different classes in different dimensions 1,2,3? (we could go to 
higher dimensions but...)
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classification scheme (dating back to the year 1926). The last column entitled “G/H
(ferm. NLσM)” lists the (compact sectors of the) target space of the NLσM describing
Anderson localization physics at long wavelength in this given symmetry class.

be obtained from analogous considerations ††. What is interesting about this column

is that its entries run precisely over what is known as the complete set of ten (“large”)
symmetric spaces †, classified in 1926 in fundamental work by the mathematician Élie

Cartan. Thus, as the first quantized Hamiltonian runs over all ten possible symmetry

classes, the corresponding quantum mechanical time-evolution operator runs over all ten

symmetric spaces. Thus, the appearance of the Cartan symmetric spaces is a reflection

of fundamental aspects of (single-particle) quantum mechanics. We will discuss the last

column entitled “G/H (ferm. NLσM)” in the following subsection.

†† Possible realizations of the chiral symmetry classes AIII, BDI, CII possessing time-evolution
operators in table 1 with N #= M are tight-binding models on bipartite graphs whose two (disjoint)
subgraphs contain N and M lattice sites.
† A symmetric space is a finite-dimensional Riemannian manifold of constant curvature (its Riemann
curvature tensor is covariantly constant) which has only one parameter, its radius of curvature. There
are also so-called exceptional symmetric spaces which, however, are not relevant for the problem at
hand, because for them the number N would be a fixed finite number, which would prevent us from
being able to take the thermodynamic (infinite-volume) limit of interest for all the physical systems
under consideration.

2

TRS PHS SLS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wigner-Dyson) AI (orthogonal) +1 0 0 - - -

AII (symplectic) −1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) +1 +1 1 Z - -
CII (chiral symplectic) −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z

CI +1 −1 1 - - Z

TABLE I: Ten symmetry classes of single particle Hamiltonians classified in terms of the presence or absence of time-reversal
symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.



Avenues Towards Topological Insulator

How to get topological superconductivity:

Method I: Take a system with a simple bandstructure and add 
momentum dependent pairing. 
Examples: spinless and spinful p+ip superconductors, He-3B, 
chiral d-wave in 2d 

Method II: Take a system with a rich bandstructure and add 
s-wave, or extended s-wave pairing
Examples: surface of 3d topological insulator with typical s-wave,
QAHE with s-wave, non-centrosymmetric superconductors with
extended s-wave (more about this later…), possibly many more.



Zero-Dimensional Topological Classification

Although historically the p+ip superconductor 
(class  D or C) in 2-d came as the first example 
of a topological superconductor, a simpler class 
exists: class D in 1-d
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symmetry (TRS) and particle-hole symmetry (PHS), as well as sublattice (or “chiral”) symmetry (SLS).36,37 In the table, the
absence of symmetries is denoted by “0”. The presence of these symmetries is denoted either by “+1” or “−1”, depending
on whether the (antiunitary) operator implementing the symmetry at the level of the single-particle Hamiltonian squares to
“+1”or “−1” (see text). [The index ±1 equals ηc in Eq. (1b); here εc = +1,−1 for TRS and PHS, respectively.] For the first
six entries of the TABLE (which can be realized in non-superconducting systems) TRS = +1 when the SU(2) spin is integer
[called TRS (even) in the text] and TRS = −1 when it is a half-integer [called TRS (odd) in the text]. For the last four
entries, the superconductor “Bogoliubov-de Gennes” (BdG) symmetry classes D, C, DIII, and CI, the Hamiltonian preserves
SU(2) spin-1/2 rotation symmetry when PHS=−1 [called PHS (singlet) in the text], while it does not preserve SU(2) when
PHS=+1 [called PHS (triplet) in the text]. The last three columns list all topologically non-trivial quantum ground states as
a function of symmetry class and spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground
states is partitioned into topological sectors labeled by an integer or a Z2 quantity, respectively.

degenerate band crossings (Dirac points) in the spectrum
on the surface of the 3D bulk, thereby distinguishing
the conventional insulator, the topologically trivial phase
from the topologically non-trivial phase. Although the
effects of disorder and interactions on the Z2 topological
insulator have been less well studied in 3D than in the 2D
case, there are known to exist gapless surface modes in
the topologically non-trivial 3D phase which are robust
against arbitrary strong disorder as long as the latter
does not alter the bulk topological properties, in analogy
to the QSH effect (QSHE) in 2D.12,21,24,25,26,27 These de-
localized surface states, whose Fermi surface encloses an
odd number of Dirac points, form a two-dimensional “Z2

topological metal”.12,27,28

Recently, a series of experiments have been per-
formed on certain candidate materials for Z2 topologi-
cal insulators. For example, the QSH effect has been
observed in HgTe/(Hg,Cd)Te semiconductor quantum
wells.29,30,31,32,33 Moreover, a 3D Z2 topological phase
has been predicted for strained HgTe and for Bismuth-
Antimony alloys.12,33,34 Indeed, photoemission experi-
ments on the latter system have revealed an odd number
of Dirac points inside the Fermi surface on the (111)-
surface, thereby providing (indirect) evidence for the ex-
istence of a non-trivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifi-
cation is for non-interacting systems of fermions. How-
ever, since there is a gap, our results also apply to in-
teracting systems as long as the strength of the interac-
tions is sufficiently small as compared to the gap. As
the majority of previous works studied two-dimensional

topological phases, we shall be mostly concerned with
the classification of 3D systems, and only briefly com-
ment on one- and two-dimensional topological insulators
in the discussion section (Sec. VIII). In the same spirit
as in the treatments of Z2 topological insulators, we im-
pose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states
can be transmuted into each other, without crossing a
quantum phase transition, by a continuous deformation
respecting the discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from
the presence of random impurity potentials, the natural
discrete symmetries we should think of would be those
considered in the context of disordered systems.39 It is
at this stage that we realize that the existence of the
classification of random Hamiltonians, familiar from the
theory of random matrices, will become very useful for
this purpose.

Specifically, following Zirnbauer, and Altland and Zirn-
bauer (AZ),36,37 all possible symmetry classes of random
matrices, which can be interpreted as a Hamiltonian of
some non-interacting fermionic system, can be system-
atically enumerated: there are ten symmetry classes in
total. (For a summary, see Table I.) The basic idea as
to why there are precisely ten is easy to understand.
Roughly, the only generic symmetries relevant for any
system are time-reversal symmetry (TRS), and charge
conjugation or particle-hole symmetry (PHS). Both can
be represented by antiunitary operators on the Hilbert
space on which the single-particle Hamiltonian (a ma-
trix) acts, and can be written38 on this space in the form
KU , with K = complex conjugation, and U = unitary.

Simplest Example: class D in 0-d, charge conjugation squares to +1 (as before) 

A Single Site problem (positive chemical potential), in a magnetic field (no TR), with an on-
site superconducting gap. 
 

For very small pairing gap (almost negligible), ask what happens to the MANY-BODY 
ground-state as we keep chemical potential fixed and vary magnetic field from zero to large.
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thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
1

4
(−B +

�
µ2 + ∆2

0), E4 =
1

4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion
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2
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σ
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†
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spin occupied at energy −µ−B (which, for B > µ is lower than the 2µ energy that would arise by filling both spins).

This physical reasoning can be substantiated by calculation. For ∆0 << µ,B, and µ, B > 0 (the parameter regime

for our physical argument above), the creation operators for the normal modes of energy E1,2,3,4 are

γ†
1 =

1√
2
(ia1↓ + a2↓), γ†

2 =
1√
2
(ia1↑ + a2↑), γ†

3 =
1√
2
(−ia1↑ + a2↑), γ†

4 =
1√
2
(−ia1↓ + a2↓) (24)

The Bogoliubov ground-states, for B < µ and B > µ (∆0 << B, µ and negligible) are:

B < µ : |GSA� = γ†
1γ

†
2 |0� ; B > µ : |GSB� = γ†

1γ
†
3 |0� (25)

By direct calculation (using a2
nσ = 1 and the anticommutation of two Majoranas of different sites or spins), we find

that the parity operator defined above and re-written as P = −a1↑a1↓a2↑a2↓ has the eigenvalues:

P |GSA� = |GSA� , P |GSB� = − |GSB� (26)

which means the two ground-states have opposite fermion parity, as deduced from our physical argument.

D. Two Impurities Exact Solution

We now move to the N = 2 two-impurity solution and try to analyze the phases of the problem. We will assume

real hoppings (Im(tn) = 0), and we align the spin on site 1 to be parallel to the z axis �B1 = Bẑ. The spin on site

2 is at an arbitrary direction �B2 = (B2z, B2x, B2y) = B(cos(θ)ẑ + sin(θ) cos(φ)x̂ + sin(θ) sin(φ)ŷ). The Hamiltonian

matrix, in the basis (a1↑, a1↓, a2↑, a2↓, a3↑, a3↓, a4↑, a4↓)

i

4





0 0 B − µ −∆0 0 0 t1 + t2 0

0 0 ∆0 −B − µ 0 0 0 t1 + t2
−B + µ −∆0 0 0 −t1 − t2 0 0 0

∆0 B + µ 0 0 0 −t1 − t2 0 0

0 0 t1 + t2 0 0 −B2y B2z − µ B2x −∆0

0 0 0 t1 + t2 B2y 0 B2x + ∆0 −B2z − µ
−t1 − t2 0 0 0 −B2z + µ −B2x −∆0 0 −B2y

0 −t1 − t2 0 0 −B2x + ∆0 B2z + µ B2y 0





(27)

The pfaffian of this matrix (at t1 = t2) is:

1

256
((B2 −∆2

0 − µ2
)(B2

2 −∆2
0 − µ2

)− 8(BB2z −∆2
0 + µ2

)t22 + 16t42) (28)

Several comments are in order about this pfaffian. First, obviously when t1 = t2 = 0 we have two decoupled spins

and the pfaffian index is just a product of the two pfaffian indices for the two spins obtained in the previous section,

irrespective of the spin direction of the two sites:
1

256 ((B2
1 −∆2

0 − µ2
)(B2

2 −∆2
0 − µ2

) - as it should be, given that that

index measures the fermion parity in the ground-state. B1, B2 are the magnitudes of the two spins on sites 1, 2. If

impurities are of the same type, then the classical spin on each site has the same magnitude and |B2| = |B1| = B. If

t1 = t2 = 0 and |B2| = |B1| = B, notice that the system cannot have a nontrivial topological phase (as the pfaffian

index is then
�

1
16 (−B2

+ µ2
+ ∆2

0)
�2

and can only take positive values), even though it is made out of two independent

spin impurities. This is easy to understand because when t1 = t2 = 0 and |B2| = |B1| = B, whenever we have an odd

number of electrons on one spin (i.e.
1
16 (−B2

+ µ2
+ ∆2

0) < 0, the same will be true on the other spin, so that the

total number of electrons in the system is still even.

However, the interesting cases are the cases where t1 = t2 �= 0, |B2| = |B1| = B, for which we have that the Pfaffian

index is:

1

256
((B2−∆2

0−µ2
)
2−2(B2

cos(θ)−∆2
0+µ2

)(2t2)
2
+(2t2)

4
) =

1

256
((B2−∆2

0−µ2
+(2t2)

2
)
2−4(2t2)

2
(B2

(cos(θ/2))
2−∆2

0)

(29)

Notice that the expression, as it should, depends only on the angle θ between the spins on sites 1, 2 and not on the

asymuthal angle φ. The different phases of the two-spin problem can be understood by looking at the sign of the

pfaffian above, which we now do
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spin occupied at energy −µ−B (which, for B > µ is lower than the 2µ energy that would arise by filling both spins).

This physical reasoning can be substantiated by calculation. For ∆0 << µ,B, and µ, B > 0 (the parameter regime

for our physical argument above), the creation operators for the normal modes of energy E1,2,3,4 are

γ†
1 =

1√
2
(ia1↓ + a2↓), γ†

2 =
1√
2
(ia1↑ + a2↑), γ†

3 =
1√
2
(−ia1↑ + a2↑), γ†

4 =
1√
2
(−ia1↓ + a2↓) (24)

The Bogoliubov ground-states, for B < µ and B > µ (∆0 << B, µ and negligible) are:

B < µ : |GSA� = γ†
1γ

†
2 |0� ; B > µ : |GSB� = γ†

1γ
†
3 |0� (25)

By direct calculation (using a2
nσ = 1 and the anticommutation of two Majoranas of different sites or spins), we find

that the parity operator defined above and re-written as P = −a1↑a1↓a2↑a2↓ has the eigenvalues:

P |GSA� = |GSA� , P |GSB� = − |GSB� (26)

which means the two ground-states have opposite fermion parity, as deduced from our physical argument.

D. Two Impurities Exact Solution

We now move to the N = 2 two-impurity solution and try to analyze the phases of the problem. We will assume

real hoppings (Im(tn) = 0), and we align the spin on site 1 to be parallel to the z axis �B1 = Bẑ. The spin on site

2 is at an arbitrary direction �B2 = (B2z, B2x, B2y) = B(cos(θ)ẑ + sin(θ) cos(φ)x̂ + sin(θ) sin(φ)ŷ). The Hamiltonian

matrix, in the basis (a1↑, a1↓, a2↑, a2↓, a3↑, a3↓, a4↑, a4↓)

i

4





0 0 B − µ −∆0 0 0 t1 + t2 0

0 0 ∆0 −B − µ 0 0 0 t1 + t2
−B + µ −∆0 0 0 −t1 − t2 0 0 0

∆0 B + µ 0 0 0 −t1 − t2 0 0

0 0 t1 + t2 0 0 −B2y B2z − µ B2x −∆0

0 0 0 t1 + t2 B2y 0 B2x + ∆0 −B2z − µ
−t1 − t2 0 0 0 −B2z + µ −B2x −∆0 0 −B2y

0 −t1 − t2 0 0 −B2x + ∆0 B2z + µ B2y 0





(27)

The pfaffian of this matrix (at t1 = t2) is:

1

256
((B2 −∆2

0 − µ2
)(B2

2 −∆2
0 − µ2

)− 8(BB2z −∆2
0 + µ2

)t22 + 16t42) (28)

Several comments are in order about this pfaffian. First, obviously when t1 = t2 = 0 we have two decoupled spins

and the pfaffian index is just a product of the two pfaffian indices for the two spins obtained in the previous section,

irrespective of the spin direction of the two sites:
1

256 ((B2
1 −∆2

0 − µ2
)(B2

2 −∆2
0 − µ2

) - as it should be, given that that

index measures the fermion parity in the ground-state. B1, B2 are the magnitudes of the two spins on sites 1, 2. If

impurities are of the same type, then the classical spin on each site has the same magnitude and |B2| = |B1| = B. If

t1 = t2 = 0 and |B2| = |B1| = B, notice that the system cannot have a nontrivial topological phase (as the pfaffian

index is then
�

1
16 (−B2

+ µ2
+ ∆2

0)
�2

and can only take positive values), even though it is made out of two independent

spin impurities. This is easy to understand because when t1 = t2 = 0 and |B2| = |B1| = B, whenever we have an odd

number of electrons on one spin (i.e.
1
16 (−B2

+ µ2
+ ∆2

0) < 0, the same will be true on the other spin, so that the

total number of electrons in the system is still even.

However, the interesting cases are the cases where t1 = t2 �= 0, |B2| = |B1| = B, for which we have that the Pfaffian

index is:

1
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((B2−∆2

0−µ2
)
2−2(B2

cos(θ)−∆2
0+µ2

)(2t2)
2
+(2t2)

4
) =

1

256
((B2−∆2

0−µ2
+(2t2)

2
)
2−4(2t2)

2
(B2

(cos(θ/2))
2−∆2

0)

(29)

Notice that the expression, as it should, depends only on the angle θ between the spins on sites 1, 2 and not on the

asymuthal angle φ. The different phases of the two-spin problem can be understood by looking at the sign of the

pfaffian above, which we now do
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2

of Kitaev’s: for each complex fermion fnσ, n = 1 . . . N on site (no matter which spin), we break it into two real

majorana’s by anσ, n = 1 . . . 2N effectively doubling the number of sites:

a2n−1,σ = fnσ + f
†
nσ, a2n,σ = −i(fnσ − f

†
nσ). a

†
nσ = anσ, {anσ, amσ�} = 2δnmδσ,σ� (7)

is the mapping between complex fermions and real majorana’s. The inverse map is:

fnσ =
1

2
(a2n−1,σ + ia2nσ), f

†
nσ =

1

2
(a2n−1,σ − ia2nσ) (8)

Note that the site index of the complex fermion f goes from 1 to N while the index of the real majorana fermions

goes from 1 to 2N . We now aim to write the Hamiltonian in Majorana representation. As the square of a majorana

operator is unity, the Hamiltonian cannot have any diagonal terms and has to be a hermitian, antisymmetric matrix,

as we will shortly see. We will need the following combinations:

f
†
nσfnσ =

1

2
(1 + ia2n−1σa2nσ), σ =↑, ↓ (9)

f
†
n↑f

†
n↓ =

1

4
(a2n−1↑a2n−1↓ − a2n↑a2n↓ − ia2n−1↑a2n↓ − ia2n↑a2n−1↓) (10)

fn↓fn↑ =
1

4
(a2n−1↓a2n−1↑ − a2n↓a2n↑ − ia2n−1↓a2n↑ − ia2n↓a2n−1↑) (11)

f
†
nσfn+1σ =

1

4
(a2n−1σa2n+1σ + a2nσa2n+2σ + ia2n−1σa2n+2σ − ia2nσa2n+1σ) (12)

f
†
n+1σfnσ =

1

4
(a2n+1σa2n−1σ + a2n+2σa2nσ − ia2n+2σa2n−1σ + ia2n+1σa2nσ) (13)

f
†
n↑fn↓ =

1

4
(a2n−1↑a2n−1↓ + a2n↑a2n↓ + ia2n−1↑a2n↓ − ia2n↑a2n−1↓) (14)

f
†
n↓fn↑ =

1

4
(a2n−1↓a2n−1↑ + a2n↓a2n↑ − ia2n↓a2n−1↑ + ia2n−1↓a2n↑) (15)

By subsituting these expressions in Eq[1] we find the expression of the Hamiltonian in Majorana representation ( I

allow for the possibilities of the hoppings tn to be imaginary, so Re(tn), Im(tn) represent its real and imaginary parts,

double index means summation, and i neglect am overall constant in the energy):

H =
�N

n=1
iRe(tn)

2 (a2n−1σa2n+2σ − a2nσa2n+1σ) +
iIm(tn)

2 (a2n−1σa2n+1σ + a2nσa2n+2σ)−
− iµ

2 a2n−1σa2nσ +
iBnz

2 (a2n−1↑a2n↑ − a2n−1↓a2n↓) +
iBnx

2 (a2n−1↑a2n↓ − a2n↑a2n−1↓)

− iBny

2 (a2n−1↑a2n−1↓ + a2n↑a2n↓) +
i∆0
2 (a2n−1↓a2n↑ + a2n↓a2n−1↑) (16)

I have assumed a real order parameter ∆0 = ∆∗
0, and for real hoppings we have Im(tn) = 0. Importantly, notice that

the Hamiltonian can be written in the form:

H =
i

4

2N�

l,m=1

alσAlσ;mσ�amσ� (17)

where A
∗
lσ;mσ� = Alσ;mσ� = −Amσ�;lσ is an 4N × 4N (2N majorana’s per spin species) antisymmetric matrix (the i

in front of the Hamiltonian makes it hermitian) with elements easily readable from the above expression. The nice

4

spin occupied at energy −µ−B (which, for B > µ is lower than the 2µ energy that would arise by filling both spins).

This physical reasoning can be substantiated by calculation. For ∆0 << µ,B, and µ, B > 0 (the parameter regime

for our physical argument above), the creation operators for the normal modes of energy E1,2,3,4 are

γ†
1 =

1√
2
(ia1↓ + a2↓), γ†

2 =
1√
2
(ia1↑ + a2↑), γ†

3 =
1√
2
(−ia1↑ + a2↑), γ†

4 =
1√
2
(−ia1↓ + a2↓) (24)

The Bogoliubov ground-states, for B < µ and B > µ (∆0 << B, µ and negligible) are:

B < µ : |GSA� = γ†
1γ

†
2 |0� ; B > µ : |GSB� = γ†

1γ
†
3 |0� (25)

By direct calculation (using a2
nσ = 1 and the anticommutation of two Majoranas of different sites or spins), we find

that the parity operator defined above and re-written as P = −a1↑a1↓a2↑a2↓ has the eigenvalues:

P |GSA� = |GSA� , P |GSB� = − |GSB� (26)

which means the two ground-states have opposite fermion parity, as deduced from our physical argument.

D. Two Impurities Exact Solution

We now move to the N = 2 two-impurity solution and try to analyze the phases of the problem. We will assume

real hoppings (Im(tn) = 0), and we align the spin on site 1 to be parallel to the z axis �B1 = Bẑ. The spin on site

2 is at an arbitrary direction �B2 = (B2z, B2x, B2y) = B(cos(θ)ẑ + sin(θ) cos(φ)x̂ + sin(θ) sin(φ)ŷ). The Hamiltonian

matrix, in the basis (a1↑, a1↓, a2↑, a2↓, a3↑, a3↓, a4↑, a4↓)

i

4





0 0 B − µ −∆0 0 0 t1 + t2 0

0 0 ∆0 −B − µ 0 0 0 t1 + t2
−B + µ −∆0 0 0 −t1 − t2 0 0 0

∆0 B + µ 0 0 0 −t1 − t2 0 0

0 0 t1 + t2 0 0 −B2y B2z − µ B2x −∆0

0 0 0 t1 + t2 B2y 0 B2x + ∆0 −B2z − µ
−t1 − t2 0 0 0 −B2z + µ −B2x −∆0 0 −B2y

0 −t1 − t2 0 0 −B2x + ∆0 B2z + µ B2y 0





(27)

The pfaffian of this matrix (at t1 = t2) is:

1

256
((B2 −∆2

0 − µ2
)(B2

2 −∆2
0 − µ2

)− 8(BB2z −∆2
0 + µ2

)t22 + 16t42) (28)

Several comments are in order about this pfaffian. First, obviously when t1 = t2 = 0 we have two decoupled spins

and the pfaffian index is just a product of the two pfaffian indices for the two spins obtained in the previous section,

irrespective of the spin direction of the two sites:
1

256 ((B2
1 −∆2

0 − µ2
)(B2

2 −∆2
0 − µ2

) - as it should be, given that that

index measures the fermion parity in the ground-state. B1, B2 are the magnitudes of the two spins on sites 1, 2. If

impurities are of the same type, then the classical spin on each site has the same magnitude and |B2| = |B1| = B. If

t1 = t2 = 0 and |B2| = |B1| = B, notice that the system cannot have a nontrivial topological phase (as the pfaffian

index is then
�

1
16 (−B2

+ µ2
+ ∆2

0)
�2

and can only take positive values), even though it is made out of two independent

spin impurities. This is easy to understand because when t1 = t2 = 0 and |B2| = |B1| = B, whenever we have an odd

number of electrons on one spin (i.e.
1
16 (−B2

+ µ2
+ ∆2

0) < 0, the same will be true on the other spin, so that the

total number of electrons in the system is still even.

However, the interesting cases are the cases where t1 = t2 �= 0, |B2| = |B1| = B, for which we have that the Pfaffian

index is:

1

256
((B2−∆2

0−µ2
)
2−2(B2

cos(θ)−∆2
0+µ2

)(2t2)
2
+(2t2)

4
) =

1

256
((B2−∆2

0−µ2
+(2t2)

2
)
2−4(2t2)

2
(B2

(cos(θ/2))
2−∆2

0)

(29)

Notice that the expression, as it should, depends only on the angle θ between the spins on sites 1, 2 and not on the

asymuthal angle φ. The different phases of the two-spin problem can be understood by looking at the sign of the

pfaffian above, which we now do

cσ = 1

2
(a1σ + ia2σ) c†

σ
= 1

2
(a1σ − ia2σ)

H = −µc†
σ
cσ + Bc†

σ
σz

σ,σ′cσ′ + ∆0(c
†
↑c

†
↓ + c↓c↑)

B < µ

1

There is a proper way of implementing the charge conjugation redundancy (and 
obtaining indices) through the use of Majorana fermions. We now analyze the problem 
in the previous slide through this prism. 

cσ = 1

2
(a1σ + ia2σ) c†

σ
= 1

2
(a1σ − ia2σ)

H = −µc†
σ
cσ + Bc†

σ
σz

σ,σ′cσ′ + ∆0(c
†
↑c

†
↓ + c↓c↑)

B < µ

1

Since the Charge conjugation is a reality condition, it seems a good idea to split each 
complex fermions (irrespective of any quantum numbers like spin, orbital, etc) into two 
real (Majorana) fermions:

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
1

4
(−B +

�
µ2 + ∆2

0), E4 =
1

4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

Re-write the one-site in magnetic field Hamiltonian in this Majorana basis:

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
1

4
(−B +

�
µ2 + ∆2

0), E4 =
1

4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
1

4
(−B +

�
µ2 + ∆2

0), E4 =
1

4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

In the Majorana basis, the first 
quantized Hamiltonian is an ANTI-
SYMMETRIC REAL matrix:



Majorana Formalism and First Topological Index

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
1

4
(−B +

�
µ2 + ∆2

0), E4 =
1

4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

The energy levels are determined by the eigenvalues of the antisymmetric matrix. 

If the determinant is ever zero, we have a phase transition! Notice for small gap, the 
phase transition occurs when the B field becomes comparable to the chemical potential

Going through a phase transition two levels cross, the determinant of the matrix doesnt 
change sign (goes to zero then goes back to same sign).

However, if we could take the square root of the determinant, that would change sign, 
because it would track the energy of one level, which goes thru zero for a 
superconductor

Matrix is antisymmetric: we do have the square root: PFAFFIAN   -

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
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4
(−B +

�
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0), E4 =
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4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
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4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −
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0), E2 =
1

4
(B −
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0), E3 =
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4
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Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

3

thing about the Majorana representation is that it allows us to both obtain the eigenvalues of the Hamiltonian and
the index describing the phase in which the 1D system rests. The index is

sign(Pf(
i

4
Alσ;mσ�)) (18)

and any change of this between positive and negative signals a phase transition where the system changes its topological

phase. A realistic simulation of this chain of impurities involves simply the diagonalization of the matrix Alσ;mσ� -

which we can do after agreeing to the cases one needs to look at.

The other operator we will use is the parity operator, whose eigenvalues measure the evenness or oddness of the

complex fermion number in the ground-state. We know that the fermion number by itself is not a good quantum

number due to the superconducting terms. However, the quantity 1− 2f
†
nσfnσ = −ia2n−1σa2nσ has eigenvalues −1 if

there is a fermion of spin σ and 1 otherwise at site n, and hence the total product:

P =

N�

n=1

�

σ=↑,↓
(−ia2n−1σa2nσ) (19)

commutes with the Hamiltonian (easy to check) and has eigenvalues +1, −1 if the ground-state contains an even/odd

number of fermions.

C. One Impurity Exact Solution: Pfaffian Topological Index, Energy Level Crossings, and Parity of the

Ground-State

We first want to find the phases of the single impurity problem - in this case, there is no preferred or relative

direction of the magnetic moment, which we can pick on the z-axis B1z = B. The Hamiltonian is:

H =
i

2
((B − µ)a1↑a2↑ − (B + µ)a1↓a2↓ + ∆0(a1↓a2↑ + a2↓a1↑) =

i

4

2�

l,m=1

alσAlσ;mσ�amσ� (20)

The matrix Alσ;mσ� becomes ( in the basis (a1↑, a1↓, a2↑, a2↓)):





0 0 B − µ −∆0

0 0 ∆0 −B − µ

−B + µ −∆0 0 0

∆0 B + µ 0 0



 (21)

An examination of the pfaffian of the matrix
i
4Alσ;mσ� determines the phases of the Hamiltonian:

Pf(
i

4
Alσ;mσ�)) =

1

16
(−B

2
+ µ

2
+ ∆2

0) (22)

We immediately see that the Hamiltonian has two phases: |B| <

�
µ2 + ∆2

0 - adiabatically continuable to the atomic

limit, and |B| >

�
µ2 + ∆2

0- the topological phase - the sign of the pfaffian is different in these two phases. The

existence of two separate phases can also be understood by looking at the eigenvalues of the Hamiltonian:

E1 =
1

4
(−B −

�
µ2 + ∆2

0), E2 =
1

4
(B −

�
µ2 + ∆2

0), E3 =
1

4
(−B +

�
µ2 + ∆2

0), E4 =
1

4
(B +

�
µ2 + ∆2

0) (23)

Assume without loss of generality B > 0. Then we can see that there is a level crossing at the value B =

�
µ2 + ∆2

0
where E2, E3 intersect and cross, and where, at the same spot, the sign of the pfaffian changes. For ∆0 small and

negligible, this transition is simple to understand in terms of the non-superconducting electrons: when ∆ = 0, the

eigenvalues of the Hamiltonian are −(µ±B), and for B small, the ground-state contains both electron spins occupied,

at energy −2µ. However, as B is increased, the state with eigenvalue −µ + B sees its energy rise above zero and is

no longer convenient to occupy. Hence the ground-state of the non-superconducting material has only one fermion

Change in sign of pfaffian means going through a phase transition between even 
fermion parity                   and odd fermion parity

We have now learned the Majorana formalism, the pfaffian index, its relation to phase 
transitions and its capability to classify the different phases of a superconductor
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Figure 16.3. Energy spectra for the 1-D p-wave wire with open boundary conditions in
the (a) trivial phase and (b) nontrivial topological phase with a zero-energy mode on
each boundary point.

l � 0 and no end states when l � 0� We will give a third argument shortly using a Majorana
representation proposed by Kitaev [34].

16.2.2 Lattice p-Wave Wire and Majorana Fermions
We now describe the same physics of the 1-D p-wave wire using the language of Majorana
fermions. We rewrite the BdG Hamiltonian for the p-wave wire using Majorana fermion
operators, and we reinterpret the topological superconductor phase in terms of these new
variables. We continue to choose the gauge where D � � D� is real for simplicity.

We begin with a 1-D lattice with a complex fermion c j on each lattice site j � The lattice BdG
Hamiltonian for the 1-D wire with p-wave superconductivity is simply

HBdG �
∑

j

[
−t
(
c†j c j � 1 � c†j � 1c j

)
− lc†j c j � � D�

(
c†j � 1c

†
j � c j c j � 1

)]
� (16.26)

We assume that t � 0� With a homogenous � D� , we can perform a straight-forward lattice
Fourier transform to write the Hamiltonian as

HBdG � 1
2

∑

p

W†p

(
−2t cos p − l 2i � D� sin p
−2i � D� sin p 2t cos p � l

)

Wp � (16.27)

where Wp � (cp c†−p)T � The energy spectrum is E � (p) � �
√

(2t cos p � l)2 � 4� D� 2 sin2 p,
which, when expanded around p ∼ 0, recovers the continuum form derived from equation
(16.21). As before, for � D� #� 0 thismodel exhibits critical points when−2t cos p−l vanishes at
the same time as sin p � We consider only the critical point when the gap closes at p � 0, which
implies that the critical lc � −2t � This critical point separates two gapped superconducting
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We now describe the same physics of the 1-D p-wave wire using the language of Majorana
fermions. We rewrite the BdG Hamiltonian for the p-wave wire using Majorana fermion
operators, and we reinterpret the topological superconductor phase in terms of these new
variables. We continue to choose the gauge where D � � D� is real for simplicity.
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Hamiltonian for the 1-D wire with p-wave superconductivity is simply
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∑
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(
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)
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(
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j � c j c j � 1

)]
� (16.26)

We assume that t � 0� With a homogenous � D� , we can perform a straight-forward lattice
Fourier transform to write the Hamiltonian as

HBdG � 1
2

∑

p

W†p

(
−2t cos p − l 2i � D� sin p
−2i � D� sin p 2t cos p � l

)

Wp � (16.27)

where Wp � (cp c†−p)T � The energy spectrum is E � (p) � �
√

(2t cos p � l)2 � 4� D� 2 sin2 p,
which, when expanded around p ∼ 0, recovers the continuum form derived from equation
(16.21). As before, for � D� #� 0 thismodel exhibits critical points when−2t cos p−l vanishes at
the same time as sin p � We consider only the critical point when the gap closes at p � 0, which
implies that the critical lc � −2t � This critical point separates two gapped superconducting

Simple model of spinless chain of electrons. Spinless, so we must have p-wave pairing 

Energy

p

! 2 Fermi points
! Pairing            changes 

sign between the two 
Fermi points
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We assume that t � 0� With a homogenous � D� , we can perform a straight-forward lattice
Fourier transform to write the Hamiltonian as
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(2t cos p � l)2 � 4� D� 2 sin2 p,
which, when expanded around p ∼ 0, recovers the continuum form derived from equation
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P-wave in 1-d is gapped, unlike in 2-d where we 
need p+ip to get a gapped spectrum. This is related 
to Wigner von Neumann classification of crossings 
by co-dimension. 
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operators, and we reinterpret the topological superconductor phase in terms of these new
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(
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where Wp � (cp c†−p)T � The energy spectrum is E � (p) � �
√

(2t cos p � l)2 � 4� D� 2 sin2 p,
which, when expanded around p ∼ 0, recovers the continuum form derived from equation
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Trivial state, kinetic term doesnt “wind”. 
Pre-paring insulator  

Non-trivial state, kinetic term “winds” 
between p=0, Pi. Pre-paring metal  



Majorana Formalism and Phases of Kitaev P-Wave Wire 

The model in Majorana form is much more revealing. Split each on-site complex fermion 
into 2 real Majoranas

We can easily understand the phases by looking at the following limiting cases:
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phases: (1) a trivial phase when l > −2t and (2) a topological phase when l < −2t. There is
another critical point where the gap closes at p = p for lc = 2t, but we do not consider this
case.

To see the physics from a different perspective, we will split the complex fermion operators
c j , c

†
j into their Majorana fermion constituents. We replace each complex fermion c j with two

Majorana fermions, a2 j−1, a2 j , via c j = 1
2 (a2 j−1 + ia2 j ). From this splitting we immediately see

that c†j = 1
2 (a2 j−1 − ia2 j ). TheMajorana operators are fermionic and satisfy

{
a†j , aj ′

}
= 2d j j ′ , (16.28)

but since Majoranas satisfy aj = a†j , this means the operators also satisfy the simpler relation

{aj , aj ′} = 2d j j ′ . (16.29)

Given these relations, we can show that

{
c†j , c j ′

}
= 1

4
{
a2 j−1 − ia2 j , a2 j ′−1 + ia2 j ′

}

= 1
4
[
{a2 j−1, a2 j ′−1} + {a2 j , a2 j ′} + i{a2 j−1, a2 j ′} − i{a2 j , a2 j ′−1}

]

= 1
4
(
4d j j ′
)

= d j j ′ , (16.30)

which shows that the all the anticommutation relations are consistent with fermionic opera-
tors. In fact, we can always break up a complex fermion operator on a lattice site into its real
and imaginary Majorana components, although it may not always be a useful representation.
As an aside, note that the Majorana anticommutation relation in equation (16.29) is the same
as that of the generators of a Clifford algebra, where the generators all square to +1. Thus,
mathematically we can think of the operators ai as matrices forming the representation of
Clifford-algebra generators.

Using theMajorana representation, the Hamiltonian for the lattice p-wave wire becomes

HBdG = i
2

∑

j

(
−la2 j−1a2 j + (t + |D|)a2 j a2 j+1 + (−t + |D|)a2 j−1a2 j+2

)
. (16.31)

The factor of i in front of the Hamiltonian may seem out of place, but it is required for
hermiticity when using the Majorana representation. As a quick example, we can see that an
operator like

(
a2 j a2 j−1

)† = a†2 j−1a
†
2 j = a2 j−1a2 j = −a2 j a2 j−1 is anti-Hermitian and becomes

Hermitian if a factor of i is added, i.e., ia2 j a2 j−1 is Hermitian.
In this representation we can illustrate the key difference between the topological and

trivial phases by looking at two special limits.

1. The trivial phase: choose l < 0 and |D| = t = 0. In this case the Hamiltonian reduces to

H = −l
i
2

∑

j

(
a2 j−1a2 j

)
. (16.32)

In this phase theMajorana operators on each physical site are coupled, but theMajorana
operators between eachphysical site are decoupled. A representationof thisHamiltonian
is shown in figure 16.4a. TheHamiltonian in the physical-site basis is in the atomic limit;
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“Strong pairing” case, kinetic energy term doesnt wind (in the 
previous slide), trivial state because the Majoranas are bound 
on-site (basically each site is occupied with a complex 
fermion, or an original site bound state of two real majoranas)

1 2

cj

a2j-1 a2j

{

(a)

(b)

Figure 55: Schematic illustration of the lattice p-wave superconductor Hamil-

tonian in the (a) trivial limit (b) non-trivial limit. The white (empty) and

red(filled) circles represent the Majorana fermions making up each physical

site (oval). The fermion operator on each physical site (cj) is split up into two

Majorana operators (a2j−1 and a2j). In the non-trivial phase the unpaired
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To see the physics from a different perspective we will split the com-

plex fermion operators cj, c
†
j into their Majorana fermion constituents. We

replace each complex fermion cj with two Majorana fermions a2j−1, a2j via

cj = (1/2)(a2j−1 + ia2j). From this splitting we immediately see that c
†
j =

(1/2)(a2j−1 − ia2j). The Majorana operators are fermionic and satisfy

�
a
†
j, aj�

�
= 2δjj� (694)

but since Majorana’s satisfy aj = a
†
j this means the operators also satisfy the

simpler relation

{aj, aj�} = 2δjj� . (695)

Given these relations one can show that

�
c
†
j, cj�

�
=

1

4
{a2j−1 − ia2j, a2j�−1 + ia2j�}

=
1

4
[{a2j−1, a2j�−1} + {a2j, a2j�} + i{a2j−1, a2j�}− i{a2j, a2j�−1}]

=
1

4
(4δjj�) = δjj� (696)

which shows that the all the anti-commutation relations are consistent with

fermionic operators. In fact, we can always break up a complex fermion

operator on a lattice site into its real and imaginary Majorana components

though it may not always be a useful representation. As an aside, note that

the Majorana anti-commutation relation in Eq. 695 is the same as that of

the generators of a Clifford algebra where the generators all square to +1.

Thus, mathematically one can think of the operators ai as matrices forming

the representation of Clifford algebra generators.

Using the Majorana representation the Hamiltonian for the lattice p-wave

wire becomes

HBdG =
i

2

�

j

(−µa2j−1a2j + (t + |∆|)a2ja2j+1 + (−t + |∆|)a2j−1a2j+2) .(697)

The factor of i in front of the Hamiltonian may seem out of place, but it

is required for Hermiticity when using the Majorana representation. As a

quick example, one can see that an operator like (a2ja2j−1)
†

= a
†
2j−1a

†
2j =

a2j−1a2j = −a2ja2j−1 is anti-Hermitian and becomes Hermitian if a factor of

i is added i.e. ia2ja2j−1 is Hermitian.

In this representation we can illustrate the key difference between the

topological and trivial phases by looking at two special limits
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j

2j-1 2j
1. The trivial phase: Choose µ < 0 and |∆| = t = 0. In this case the

Hamiltonian reduces to

H = −µ
i

2

�

j

(a2j−1a2j) . (698)

In this phase the Majorana operators on each physical site are coupled

but the Majorana operators between each physical site are decoupled.

A representation of this Hamiltonian is shown in Fig. 55a. The Hamil-

tonian in the physical-site basis is in the atomic limit, and thus, the

ground state is trivial. If the chain has open boundary conditions there

will be no low-energy states on the end of the chain if the boundaries

are cut between physical sites. That is, we are not allowed to pick

boundary conditions where a physical site is cut in half.

2. The topological phase: |∆| = t > 0 and µ = 0. For this case the

Hamiltonian reduces to

H = it

�

j

a2ja2j+1 (699)

A pictorial representation of this Hamiltonian is shown in Fig. 55b.

With open boundary conditions it is clear that the Majorana operators

a1 and a2L (where L is the last physical site) are not coupled to the

rest of the chain and are ‘unpaired.’ In this limit the existence of two

Majorana zero modes localized on the ends of the chain is manifest.

These two limits give the simplest representations of the trivial and non-

trivial phases. By tuning away from these limits the Hamiltonian will have

some mixture of couplings between Majorana operators on the same physical

site, and operators between physical sites. However, since the two Majorana

modes are localized at different ends of a gapped chain, the coupling between

them will be exponentially small in the length of the wire and they will remain

at zero energy. In fact, in the non-trivial phase the zero modes will not be

destroyed until the bulk gap closes at a critical point. Unfortunately, even

though this model is simple and clear, there are no confirmed candidates for

materials that would realize it.

16.3 2D Chiral P-wave Superconductor

We now continue our study of topological p-wave superconductors, but here

we move one dimension higher to 2D. The paradigmatic example is the chiral
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“Weak pairing” case, kinetic energy term does wind (in the 
previous slide), non-trivial state: Majoranas are dimerized off-
site.  If we now cut the chain in between the complex fermion 
sites we see clearly the appearance of ZERO energy end 
Majorana states. NON-LOCAL zero mode Hilbert space!

These two limiting cases are not generic, as the gap protects against adiabatic deformations!
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Figure 16.4. Schematic illustration of the lattice p-wave superconductor Hamiltonian in
the (a) trivial limit and (b) nontrivial limit. The empty and filled circles represent the
Majorana fermions making up each physical site (oval). The fermion operator on each
physical site (c j ) is split up into two Majorana operators (a2 j−1 and a2 j ). In the nontrivial
phase, the unpaired Majorana fermion states at the end of the chain are labeled with a 1
and a 2. These are the states that are continuously connected to the zero modes in the
nontrivial topological superconductor phase.

thus, the ground state is trivial. If the chain has open boundary conditions, there will be
no low-energy states on the end of the chain if the boundaries are cut between physical
sites. That is, we are not allowed to pick boundary conditions where a physical site is cut
in half.

2. The topological phase: |D| = t > 0 and l = 0. For this case the Hamiltonian reduces to

H = it
∑

j

a2 j a2 j+1. (16.33)

A pictorial representation of this Hamiltonian is shown in figure 16.4b. With open-
boundary conditions, it is clear that the Majorana operators a1 and a2L (where L is the
last physical site) are not coupled to the rest of the chain and are “unpaired.” In this
limit the existence of two Majorana zero modes localized on the ends of the chain is
manifest.

These two limits give the simplest representations of the trivial and non-trivial phases. By
tuning away from these limits, the Hamiltonian will have somemixture of couplings between
Majorana operators on the same physical site and operators between physical sites. However,
because the twoMajoranamodes are localized at different ends of a gapped chain, the coupling
between them will be exponentially small in the length of the wire, and they will remain at
zero energy. In fact, in the nontrivial phase, the zero modes will not be destroyed until the
bulk gap closes at a critical point. Unfortunately, even though this model is simple and clear,
there are no confirmed candidates for materials that would realize it.

16.3 2-D Chiral p-Wave Superconductor

We now continue our study of topological p-wave superconductors, but here we move one
dimension higher, to two dimensions. The paradigmatic example is the chiral p-wave super-
conductor whose vortices exhibit anyon excitations that have exotic non-Abelian statistics
[28, 60, 75]. For pedagogy we will use both lattice and continuum models of the chiral

October 19, 2012 Time: 04:35pm chapter16.tex

16.3 2-D Chiral p-Wave 209

(a)
a2j – 1 a2j 

cj 

1

(b)

Figure 16.4. Schematic illustration of the lattice p-wave superconductor Hamiltonian in
the (a) trivial limit and (b) nontrivial limit. The empty and filled circles represent the
Majorana fermions making up each physical site (oval). The fermion operator on each
physical site (c j ) is split up into two Majorana operators (a2 j−1 and a2 j ). In the nontrivial
phase, the unpaired Majorana fermion states at the end of the chain are labeled with a 1
and a 2. These are the states that are continuously connected to the zero modes in the
nontrivial topological superconductor phase.

thus, the ground state is trivial. If the chain has open boundary conditions, there will be
no low-energy states on the end of the chain if the boundaries are cut between physical
sites. That is, we are not allowed to pick boundary conditions where a physical site is cut
in half.

2. The topological phase: |D| = t > 0 and l = 0. For this case the Hamiltonian reduces to

H = it
∑

j

a2 j a2 j+1. (16.33)

A pictorial representation of this Hamiltonian is shown in figure 16.4b. With open-
boundary conditions, it is clear that the Majorana operators a1 and a2L (where L is the
last physical site) are not coupled to the rest of the chain and are “unpaired.” In this
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cσ = 1

2
(a1σ + ia2σ) c†σ = 1

2
(a1σ − ia2σ)

H = −µc†σcσ + Bc†σσz
σ,σ′cσ′ + ∆0(c

†
↑c

†
↓ + c↓c↑)

B < µ

|µ| < 2t |µ| > 2t
a1a2La′

1a2L′ c = a1 + ia2L ia1 + a′
1

1



Kitaev P-Wave Wire and Majorana End Modes

EE

(a) (b)

Figure 54: Energy spectra for the 1D p-wave wire with open boundary con-
ditions in the (a) trivial phase (b)non-trivial topological phase with a zero
energy mode on each boundary point.
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Away from the limiting cases of the previous slide, the Majorana 
modes at the two ends of the chain will start talking, but splitting 
is exponentially suppressed by hopping across the chain over the 
bulk gap. 

The real majorana ZERO mode at one end and the one at the 
other end form a non-local complex fermion hilbert space. 

Majorana zero modes exist with open boundary conditions in the 
nontrivial phase, and will only disappear once the BULK of the 
system has gone trivial through a phase transition

Edges are the mirror of an otherwise featureless topological bulk
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Figure 55: Schematic illustration of the lattice p-wave superconductor Hamil-

tonian in the (a) trivial limit (b) non-trivial limit. The white (empty) and

red(filled) circles represent the Majorana fermions making up each physical

site (oval). The fermion operator on each physical site (cj) is split up into two

Majorana operators (a2j−1 and a2j). In the non-trivial phase the unpaired

Majorana fermion states at the end of the chain are labelled with a 1 and a

2. These are the states which are continuously connected to the zero-modes

in the non-trivial topological superconductor phase.
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There is a bulk index that tells us whether the system is topological or not. This index is a Z2 quantity. The existence of a Z2 
quantity can also be understood from edges. Two edges = trivial = local edge hilbert space.
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Figure 54: Energy spectra for the 1D p-wave wire with open boundary con-
ditions in the (a) trivial phase (b)non-trivial topological phase with a zero
energy mode on each boundary point.
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Bulk topological indices should be computed only with periodic boundary conditions. 
The index is again the pfaffian index of the real space first quantized Hamiltonian!

With translational invariance, easier job:
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fourrier vector which takes values to be determined below (the several cases for the values
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Because of the q ->-q symmetry (charge conjugation) only q=0, Pi are relevant as they 
do not come in pairs. The contribution of the other points to the pfaffian of the real space 
matrix is positive, as they come in pairs. 
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Kitaev P-Wave Wire, Bulk Index and Fermion Parity

Another equivalent classification is that for even number of sites, the topologically 
nontrivial state has ODD fermion parity. 

Only k=0, Pi momenta are important. Other momenta are contributing even fermion 
parity because they come in pairs
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this, the fermions must obey either periodic or antiperidic
boundary conditions for each of the two primitive direc-
tions of the lattice (or fundamental cycles on the torus).
For a rectangle with x and x + Lx, y and y + Ly iden-
tified, this means the boundary conditions for the x and
y directions. These choices of boundary conditions are
well-known in the description of flux quantization in su-
perconductors (see e.g. Schrieffer [2]). We may imagine
that either zero or one-half of the flux quantum hc/e
threads either of the “holes” (fundamental cycles) in the
torus. The half-flux quanta could be represented either
by a vector potential, with peridic boundary conditions
on the fermions in both directions, or by no vector po-
tential and an antiperiodic boundary condition for each
direction that wraps around a flux, or by a combina-
tion of these. The different choices are related by gauge
transformations. We choose to use boundary conditions
and no vector potentials, so that ∆ is always position-
independent. We should be aware that if the gauge field
(fluxes) are viewed as external, they are fixed as part of
the definition of the problem, and there will be a sin-
gle ground state for each of the four possible choices of
boundary conditions, ++, +−, −+, and −−, in a nota-
tion that should be obvious. However, if the gauge field is
viewed as part of the internal dynamics of the system and
can fluctuate quantum mechanically (as in highly corre-
lated systems, including the FQHE, where it is not in-
terpreted as the ordinary electromagnetic field, and also
in the usual superconductors where it is) then the four
sectors we consider correspond to four ground states of
a single physical system, in a single Hilbert space, albeit
treated within a mean field approximation. The latter is
the view we will take.

For each of the four boundary conditions for the
fermions, the allowed k values run over the usual sets,
kx = 2πνx/Lx for +, 2π(νx + 1/2)/Lx for −, where νx is
an integer, and similarly for ky. In particular, k = (0, 0)
is a member of the set of allowed k only in the case ++.
For a large system, ξk and ∆k will be essentially the same
functions of k for all four boundary conditions, but eval-
uated only at the allowed values. In the paired ground
states, k and −k will be either both occupied or both
unoccupied, to take advantage of the pairing (∆k) term
in Keff . When k = 0 is in the set of allowed k, k = 0

and −k = 0 cannot both be occupied, because of Fermi
statistics. However, ∆k vanishes at k = 0, so k = 0 will
be occupied or not depending solely on the sign of ξk=0.
That is, it will be occupied for µ > 0 (in the weak-pairing
phase), and unoccupied for µ < 0 (in the strong pairing
phase), and this is entirely consistent with the limiting
behavior of nk = |vk|2 as k → 0 in the two phases. At
the transition, µ = 0, the occupied and unoccupied states
are degenerate.

We conclude that in either the weak- or strong-pairing
phases, there is a total of four ground states, three for
boundary conditions +−, −+, −− which are linear com-

binations of states with even values of the fermion num-
ber in both phases, but for ++ boundary conditions the
ground state has odd fermion number in the weak-pairing
phase, even fermion number in the strong-pairing phase,
because of the occupation of the k = 0 state. In most
cases, the ground state is as given in Eq. (3), but in the
weak pairing phase for ++ boundary conditions, it is

|Ω〉 =
∏

k !=0

′
(uk + vkc†kc†−k)c†0|0〉. (18)

The ground states specified, whether for N even or odd,
will have the same energy in the thermodynamic limit
(not just the same energy density). Note that if the k = 0

state is occupied in the strong-pairing phase, or unoc-
cupied in the weak-pairing phase, this costs an energy
Ek=0 which we are assuming is nonzero, and all states
where quasiparticles are created on top of our ground
states cost a nonzero energy, since we assume that Ek is
fully gapped in both phases. However, at the transition
µ = 0, the ground states for ++ with odd and even par-
ticle number are degenerate, and there is a total of five
ground states.

If we now compare with results for the MR state on
the torus [32,44], which were derived as exact zero-energy
ground states of a certain Hamiltonian, then we see that
the weak-pairing phase for even fermion number agrees
with the exact result that there are three ground states.
On the other hand, it was stated in Ref. [44] that there
are no zero-energy ground states for N odd. Unfortu-
nately, that result was in error; there is just one such state
for ++ boundary conditions, which can be constructed
by analogy with that for the 331 state in Ref. [44]. Before
turning to the wavefunctions of these states, we also men-
tion that the behavior found in the present approach in
the strong-pairing phase agrees with that expected in the
Halperin point of view [11] on the paired states, as Laugh-
lin states of charge 2 bosons. That point of view predicts
four ground states for N even, none for N odd. Note that
in comparing with FQHE states, we factor out the center
of mass degeneracy which is always the denominator q of
the filling factor ν = p/q (where p and q have no common
factors) [64]. The remaining degeneracy in a given phase
is independent of ν in the sense that it does not change
under the operation of vortex attachment, which maps
a state to another in which 1/ν is increased by 1, and
for generic Hamiltonians this degeneracy is exact only in
the thermodynamic limit. We note that Greiter et al.
[32] claimed that the special Hamiltonian for which the
MR state is exact should have four ground states on the
torus for N even, though they found only three. They did
not distinguish the weak- and strong-pairing phases, and
by assuming that the Halperin point of view is always
valid, they in effect ascribed the properties of the strong-
pairing phase to the MR state. In fact, there is a total
of four ground states in the weak-pairing phase, but the
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(a1σ − ia2σ)

H = −µc†σcσ + Bc†σσz
σ,σ′cσ′ + ∆0(c

†
↑c

†
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B < µ
|µ| < 2t |µ| > 2t
a1a2La′

1a2L′ c = a1 + ia2L ia1a
′
1

a2n−1 = 1√
N

∑
n e−iqnaq,1, a2n = 1√

N

∑
n e−iqnaq,2 where 1, 2 are the two flavors of

Majorana coming from splitting the on-site fermion on the zig-zag chain, and q is the
fourrier vector which takes values to be determined below (the several cases for the values
of q depending on the boundary conditions, which in turn depend on the value of the
rotation of the spin, have been analyzed in Section[??] ). We have b†q,1,σ = b−q,1,σ, b†q,2,σ =
b−q,2,σ. We can then write the Hamiltonian in the basis bq = (bq,1,↑, bq,1,↓, bq,2,↑, bq,2,↓):

H = i
4

∑
q a†

qB(q)aqB(q) = −BT (−q) 2t cos[k] + µ

1

At k=0, Pi the p-wave gap Sin(k) vanishes.

Hence whether k=0, Pi is occupied or not 
depends on the sign of:

cσ = 1

2
(a1σ + ia2σ) c†

σ
= 1

2
(a1σ − ia2σ)

H = −µc†
σ
cσ + Bc†

σ
σz

σ,σ′cσ′ + ∆0(c
†
↑c

†
↓ + c↓c↑)

B < µ

|µ| < 2t |µ| > 2t

1

For                we are guaranteed that one 
of k=0, Pi will be occupied, while the other 
not (remember how we spoke about the 
winding?)

this, the fermions must obey either periodic or antiperidic
boundary conditions for each of the two primitive direc-
tions of the lattice (or fundamental cycles on the torus).
For a rectangle with x and x + Lx, y and y + Ly iden-
tified, this means the boundary conditions for the x and
y directions. These choices of boundary conditions are
well-known in the description of flux quantization in su-
perconductors (see e.g. Schrieffer [2]). We may imagine
that either zero or one-half of the flux quantum hc/e
threads either of the “holes” (fundamental cycles) in the
torus. The half-flux quanta could be represented either
by a vector potential, with peridic boundary conditions
on the fermions in both directions, or by no vector po-
tential and an antiperiodic boundary condition for each
direction that wraps around a flux, or by a combina-
tion of these. The different choices are related by gauge
transformations. We choose to use boundary conditions
and no vector potentials, so that ∆ is always position-
independent. We should be aware that if the gauge field
(fluxes) are viewed as external, they are fixed as part of
the definition of the problem, and there will be a sin-
gle ground state for each of the four possible choices of
boundary conditions, ++, +−, −+, and −−, in a nota-
tion that should be obvious. However, if the gauge field is
viewed as part of the internal dynamics of the system and
can fluctuate quantum mechanically (as in highly corre-
lated systems, including the FQHE, where it is not in-
terpreted as the ordinary electromagnetic field, and also
in the usual superconductors where it is) then the four
sectors we consider correspond to four ground states of
a single physical system, in a single Hilbert space, albeit
treated within a mean field approximation. The latter is
the view we will take.

For each of the four boundary conditions for the
fermions, the allowed k values run over the usual sets,
kx = 2πνx/Lx for +, 2π(νx + 1/2)/Lx for −, where νx is
an integer, and similarly for ky. In particular, k = (0, 0)
is a member of the set of allowed k only in the case ++.
For a large system, ξk and ∆k will be essentially the same
functions of k for all four boundary conditions, but eval-
uated only at the allowed values. In the paired ground
states, k and −k will be either both occupied or both
unoccupied, to take advantage of the pairing (∆k) term
in Keff . When k = 0 is in the set of allowed k, k = 0

and −k = 0 cannot both be occupied, because of Fermi
statistics. However, ∆k vanishes at k = 0, so k = 0 will
be occupied or not depending solely on the sign of ξk=0.
That is, it will be occupied for µ > 0 (in the weak-pairing
phase), and unoccupied for µ < 0 (in the strong pairing
phase), and this is entirely consistent with the limiting
behavior of nk = |vk|2 as k → 0 in the two phases. At
the transition, µ = 0, the occupied and unoccupied states
are degenerate.

We conclude that in either the weak- or strong-pairing
phases, there is a total of four ground states, three for
boundary conditions +−, −+, −− which are linear com-

binations of states with even values of the fermion num-
ber in both phases, but for ++ boundary conditions the
ground state has odd fermion number in the weak-pairing
phase, even fermion number in the strong-pairing phase,
because of the occupation of the k = 0 state. In most
cases, the ground state is as given in Eq. (3), but in the
weak pairing phase for ++ boundary conditions, it is

|Ω〉 =
∏

k !=0

′
(uk + vkc†kc†−k)c†0|0〉. (18)

The ground states specified, whether for N even or odd,
will have the same energy in the thermodynamic limit
(not just the same energy density). Note that if the k = 0

state is occupied in the strong-pairing phase, or unoc-
cupied in the weak-pairing phase, this costs an energy
Ek=0 which we are assuming is nonzero, and all states
where quasiparticles are created on top of our ground
states cost a nonzero energy, since we assume that Ek is
fully gapped in both phases. However, at the transition
µ = 0, the ground states for ++ with odd and even par-
ticle number are degenerate, and there is a total of five
ground states.

If we now compare with results for the MR state on
the torus [32,44], which were derived as exact zero-energy
ground states of a certain Hamiltonian, then we see that
the weak-pairing phase for even fermion number agrees
with the exact result that there are three ground states.
On the other hand, it was stated in Ref. [44] that there
are no zero-energy ground states for N odd. Unfortu-
nately, that result was in error; there is just one such state
for ++ boundary conditions, which can be constructed
by analogy with that for the 331 state in Ref. [44]. Before
turning to the wavefunctions of these states, we also men-
tion that the behavior found in the present approach in
the strong-pairing phase agrees with that expected in the
Halperin point of view [11] on the paired states, as Laugh-
lin states of charge 2 bosons. That point of view predicts
four ground states for N even, none for N odd. Note that
in comparing with FQHE states, we factor out the center
of mass degeneracy which is always the denominator q of
the filling factor ν = p/q (where p and q have no common
factors) [64]. The remaining degeneracy in a given phase
is independent of ν in the sense that it does not change
under the operation of vortex attachment, which maps
a state to another in which 1/ν is increased by 1, and
for generic Hamiltonians this degeneracy is exact only in
the thermodynamic limit. We note that Greiter et al.
[32] claimed that the special Hamiltonian for which the
MR state is exact should have four ground states on the
torus for N even, though they found only three. They did
not distinguish the weak- and strong-pairing phases, and
by assuming that the Halperin point of view is always
valid, they in effect ascribed the properties of the strong-
pairing phase to the MR state. In fact, there is a total
of four ground states in the weak-pairing phase, but the
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cσ = 1

2
(a1σ + ia2σ) c†σ = 1

2
(a1σ − ia2σ)

H = −µc†σcσ + Bc†σσz
σ,σ′cσ′ + ∆0(c

†
↑c

†
↓ + c↓c↑)

B < µ
|µ| < 2t |µ| > 2t
a1a2La′

1a2L′ c = a1 + ia2L ia1a
′
1

a2n−1 = 1√
N

∑
n e−iqnaq,1, a2n = 1√

N

∑
n e−iqnaq,2 where 1, 2 are the two flavors of

Majorana coming from splitting the on-site fermion on the zig-zag chain, and q is the
fourrier vector which takes values to be determined below (the several cases for the values
of q depending on the boundary conditions, which in turn depend on the value of the
rotation of the spin, have been analyzed in Section[??] ). We have b†q,1,σ = b−q,1,σ, b†q,2,σ =
b−q,2,σ. We can then write the Hamiltonian in the basis bq = (bq,1,↑, bq,1,↓, bq,2,↑, bq,2,↓):

H = i
4

∑
q a†

qB(q)aqB(q) = −BT (−q) 2t cos[k] + µ sign(µ + 2t)sign(µ − 2t)

1



Realizing Majorana Zero Modes in Experiments

Unfortunately p-wave gap is not easy to realize, 
especially in 1D. Hence we engineer it!

Majorana fermions in a chains of magnetic atoms on a superconductor

S. Nadj-Perge, I. Drozdov, B. A. Bernevig, A. Yazdani
Joseph Henry Laboratories and Department of Physics,

Princeton University, Princeton, New Jersey 08544

(Dated: December 17, 2012)

We propose an easy to build-easy to detect scheme for realizing Majorana fermions at the ends of
a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such
chains can be relatively easily tuned between trivial and topological ground state. In the latter,
spatial resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled
Majorana bound states can form even in short magnetic chains consisting of only tens of atoms.
We propose scanning tunnelling microscopy as ideal technique to fabricate such systems and probe
their topological properties.

PACS numbers: 03.67.Lx,

The interest in topological quantum computing and in
non-abelian braiding has inspired many recent proposals
to create Majorana fermion (MF) in condensed matter
systems. Following Kitaev’s seminal proposal [? ], many
approaches have been considered including those based
on topological insulators [? ? ], semiconductors with
strong spin-orbit interaction in two and one dimension
[? ? ? ], coupled quantum dots [? ? ] and those
that combine magnetism of and superconductivity [? ?
]. The aim of these approaches is to create a topological
superconductor for which MFs emerge as the excitations
at the boundary. Since MF are its own antiparticles,
they are predicted to appear in tunnelling spectroscopy
experiments as zero bias peaks. Indeed several exper-
iments have reported evidence for zero bias tunnelling
peaks and have interpreted these as signatures of MFs [?
? ? ]. However, the most convincing of these experiments
are not spatially resolved to detect position of the MFs.
Additionally, in many instances the presence of disorder
in the non-topological ground state can result in spurious
zero bias anomalies [? ? ]. It is therefore desirable to
identify easy to fabricate clean experimental systems in
which MF can be spatially resolved and distinguishable
from spurious affects associated with disorder.

In this letter, we theoretically investigate conditions
for which chain of magnetic atoms on the surface of an
s-wave superconductors can host MF modes. We explore
the parameter space for which this system is topologi-
cal and show that even relatively short chains made of
only ∼ 20 atoms can host robust localized MF. Our pro-
posed structures (of different shapes) can be fabricated
using scanning tunneling microscopy (STM), which has
previously been used to assemble structures with tens
of atoms using lateral atomic manipulation techniques
[? ? ? ]. Spatially-resolved STM spectroscopy of such
disorder-free chains of magnetic atoms on the surfaces
of superconductors can be used to probe the presence of
MF end modes.

As shown in Figure 1, we consider an array of mag-
netic atoms (such as 3d or 4f metals with a net magnetic

moment) which are deposited on a single crystal surface
of an s-wave superconductor (such as niobium (Nb) or
lead (Pb)) and arranged into chains using the STM. The
interaction of a single magnetic impurity with the super-
conductor gives rise to in-gap Shiba states [? ] that have
been previously detected from both 3d and 4f ad-atoms
on the surface of Nb using spatial resolved STM [? ? ].
The results of these previous experiments (with Gd and
Mn deposited on Nb) agree well with model calculations
in which the impurity spin is assumed to be static [? ? ?
]. In addition, recent spin polarized STM studies indicate
that in magnetic arrays longer than ∼ 10 atoms spin dy-
namics is greatly suppressed [? ], and that the spins can
form spiral configurations [? ]. It is therefore reasonable
to model magnetic atoms as static classical spins.

Figure 1: Schematic of the experimental setup. An array
of magnetic atoms (red spheres) is assembled using scanning
tunneling microscope on the surface of s-wave superconduc-
tor (gray background). The system is modeled by the two
dimensional Na ×Nb array in which magnetic atoms are em-
bedded (inset). Throughout the paper we consider the case
where magnetic moements are in the plane defined by Na and
Z diraction.

To model this system we use a two-dimensional tight-
binding model Hamiltonian of an s-wave superconductor

Add a chain of magnetic, classical high-
spin atoms on the top of an S-wave 
superconductor (no spin-orbit coupling). 
Can be done by STM

Key Ingredient: spiral arrangement of 
magnetic moments, usual magnetic spiral 
is expected
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remain are the ones at q = 0 and π. Notice that for N odd, we cannot reach q = pi. Hence the pfaffian has two

expressions:

N odd → Pfaffian(
i

4
R(0)) = ∆2

+ (µ− 2t)
2 −B

2
(40)

N even → Pfaffian(
i

4
R(0))Pfaffian(

i

4
R(π)) = (∆2

+ (µ− 2t)
2 −B

2
)(∆2

+ (µ + 2t)
2 −B

2
) (41)

Notice that the only region where the pfaffians are negative is identical to the region where the system is gapless. This

is bad news, as the pfaffians dont really mean anything there. For aligned impurities, the pfaffian is negative
only in the regime where the band gap vanishes.

III. ARBITRARY NUMBER OF IMPURITIES PROJECTION TO THE LOWEST BAND

We will first work in complex fermion coordinates. To analyze the behavior of the low-energy physics of a large

number of impurities with large magnetic moment, we first rotate the fermionic operators into an ↑↓ basis on each site.

Assume the magnetic moments on site have the same magnitude but different directions: �Bn = B0(sin(θn) cos(φn)x̂+

sin(θn) sin(φn)ŷ + cos(θn)ẑ) using Beenakker’s matrix (other matrices are possible)

�
fn↑
fn↓

�
= Un

�
gn↑
gn↓

�
=

�
cos(θ/2) − sin(θn/2)e

−iφn

sin(θn/2)e
iφ

cos(θn/2)

� �
gn↑
gn↓

�
(42)

As Un is a unitary transformation U
†
nUn = 1, the new fermions gnσ have the same anticommutation properties as

the original fermions. The transformation properties of the Hamiltonian upon this spin rotation are nice, as neither

the chemical potential term nor the gap terms change form, whereas the magnetic moment term becomes diagonal.

The only term that changes fundamentally is the hopping term, which now acquires inter-spin components, and is no

longer diagonal in spin:

H =

�

n,α,β

tnΩn,α,βg
†
nαgn+1β + t

∗
nΩ∗

n,β,αg
†
n+1αgnβ + B0σzαβg

†
nαgnβ − µ

�

nα

g
†
nαgnα +

�

n

∆0(g
†
n↑g

†
n↓ + gn↓gn↑) (43)

where

Ωn = U
†
nUn+1 =

�
αn −β∗n
βn α∗n

�
(44)

where

αn = cos(θn/2) cos(θn+1/2) + sin(θn/2) sin(θn+1/2)e
−i(θn−θn+1) (45)

and where

βn = − sin(θn/2) cos(θn+1/2)e
iφn + cos(θn/2) sin(θn+1/2)e

iθn+1 (46)

. Up to now we have done nothing new but to copy (and check) Beenakker’s algebra.

A. Argument for low-energy p-wave wire

Beenakker claims that the low energy physics of this Hamiltonian, projected to the spin ↓ sub-band is equivalent

to the Majorana p-wave wire Hamiltonian for spinless fermions if the spins between different sites are not collinear

(note that this p-wave wire can have both a trivial and a nontrvial phase, so just the existence of a majorana p-wave

wire does not guarantee the nontriviality of the chain - the parameters of the wire must be so that the wire is in the

regime where it supports Majorana fermions on the end of the chain). Now we provide a physical argument for why

this is the case - but both Beenakker’s calculation and the physical argument can fail in certain regimes.

For the case of large magnetic moment B0, each spin is mostly oriented antiparallel to B0. To zeroth order, the low-

energy band is that of spin down electrons on each site, coupled weakly by a hopping term and by a superconducting

Majorana P-Wave Wire From a Disordered Superconducting Array

B. A. Bernevig
1

1Department of Physics, Princeton University, Princeton, NJ 08544
(Dated: December 10, 2012)

Derivation of the Beenakker result that a series of disordered spinful impurities is tantamount to
a Majorana p wave wire and more.

I. HAMILTONIAN FOR 1, 2, . . . ,∞ PARTICLES

The Hamiltonian for the fermions fnα of a superconductor on an array n of classical spin impurities is:

H =

�

nα

tnf
†
nαfn+1α + t

∗
nf

†
n+1αfnα − µ

�

nα

f
†
nαfnα +

�

nαβ

( �Bn · �σ)αβf
†
nαfnβ +

�

n

∆0f
†
n↑f

†
n↓ + ∆0fn↓fn↑ (1)

where Bn is the magnetic moment on each nanoparticle whose magniture | �Bn| = B0 is taken to be the same for all

nanoparticles, while the orientation can vary. The different hoppings between an array of disordered nanoparticles

are tn. By a canonical transformation to the spinor:

ψ†
n = (f

†
n↑, f

†
n↓, fn↓,−fn↑) (2)

the Hamitlonian becomes:

H =

�

n

ψ†
nt̂nψn+1 + ψ†

n+1t̂
†
nψn + ψ†

nĥnψn (3)

where tn, hn are the matrices:

t̂n =
1

2

�
tnI2×2 0

0 −tnI2×2

�
; ĥn =

1

2

�
−µI2×2 + �Bn · �σ ∆0I2×2

∆0I2×2 µI2×2 + �Bn · �σ

�
(4)

where there is an overall 1/2 difference with the Beenakker paper. To this Hamiltonian we can add other terms such

as applied magnetic field (constant nonfluctuating component of �Bn, fluctuating superconductivity, Rashba field (by

making the hopping tn spin dependent tnαβ) etc.

A. Charge Conjugation Matrix

The charge conjugation matrix for the Hamiltonian above is:

C = σyτy =

�
0 −iσy

iσy 0

�
, C

2
= 1 (5)

where σ acts in spin space while τ acts in particle hole space. With this charge conjugation matrix, the parts of the

Hamitlonian exhibit the following symmetry:

Ct̂nC = −t̂n, CĥnC = −ĥn (6)

which is the particle-hole symmetry in complex fermion space. We aim to find the low-energy physics of this Hamilto-

nian in the regime B0 ≈ µ > tn,∆0. Before doing that it is instructive to look at the physics of two cases, but before

even doing that, it is more useful to write the Hamiltonian in the Majorana real fermion representation of Kitaev

rather than the complex fermion representation used by Beenakker.

B. Majorana Representation

We will find the real-fermion Majorana representation much more useful than the complex fermion one. We

will switch back-and forth between the two representations. The majorana representation we use is a spin-doubled

For classical large atom spin (effective spiral B), each electron spin on chain is in low 
energy state antiparallel to the LOCAL B. 



Realizing Majorana Zero Modes in Experiments

We go to a local basis of spin parallel and 
antiparallel to the magnetic moment on-site:

Cassical atom spin (effective B), 
electron spin on chain has low energy 
state antiparallel to the LOCAL B. We 
can integrate out the high spin band 
to obtain effective p-wave pairing
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remain are the ones at q = 0 and π. Notice that for N odd, we cannot reach q = pi. Hence the pfaffian has two

expressions:

N odd → Pfaffian(
i

4
R(0)) = ∆2

+ (µ− 2t)
2 −B

2
(40)

N even → Pfaffian(
i

4
R(0))Pfaffian(

i

4
R(π)) = (∆2

+ (µ− 2t)
2 −B

2
)(∆2

+ (µ + 2t)
2 −B

2
) (41)

Notice that the only region where the pfaffians are negative is identical to the region where the system is gapless. This

is bad news, as the pfaffians dont really mean anything there. For aligned impurities, the pfaffian is negative
only in the regime where the band gap vanishes.

III. ARBITRARY NUMBER OF IMPURITIES PROJECTION TO THE LOWEST BAND

We will first work in complex fermion coordinates. To analyze the behavior of the low-energy physics of a large

number of impurities with large magnetic moment, we first rotate the fermionic operators into an ↑↓ basis on each site.

Assume the magnetic moments on site have the same magnitude but different directions: �Bn = B0(sin(θn) cos(φn)x̂+

sin(θn) sin(φn)ŷ + cos(θn)ẑ) using Beenakker’s matrix (other matrices are possible)

�
fn↑
fn↓

�
= Un

�
gn↑
gn↓

�
=

�
cos(θ/2) − sin(θn/2)e

−iφn

sin(θn/2)e
iφ

cos(θn/2)

� �
gn↑
gn↓

�
(42)

As Un is a unitary transformation U
†
nUn = 1, the new fermions gnσ have the same anticommutation properties as

the original fermions. The transformation properties of the Hamiltonian upon this spin rotation are nice, as neither

the chemical potential term nor the gap terms change form, whereas the magnetic moment term becomes diagonal.

The only term that changes fundamentally is the hopping term, which now acquires inter-spin components, and is no

longer diagonal in spin:

H =

�

n,α,β

tnΩn,α,βg
†
nαgn+1β + t

∗
nΩ∗

n,β,αg
†
n+1αgnβ + B0σzαβg

†
nαgnβ − µ

�

nα

g
†
nαgnα +

�

n

∆0(g
†
n↑g

†
n↓ + gn↓gn↑) (43)

where

Ωn = U
†
nUn+1 =

�
αn −β∗n
βn α∗n

�
(44)

where

αn = cos(θn/2) cos(θn+1/2) + sin(θn/2) sin(θn+1/2)e
−i(θn−θn+1) (45)

and where

βn = − sin(θn/2) cos(θn+1/2)e
iφn + cos(θn/2) sin(θn+1/2)e

iθn+1 (46)

. Up to now we have done nothing new but to copy (and check) Beenakker’s algebra.

A. Argument for low-energy p-wave wire

Beenakker claims that the low energy physics of this Hamiltonian, projected to the spin ↓ sub-band is equivalent

to the Majorana p-wave wire Hamiltonian for spinless fermions if the spins between different sites are not collinear

(note that this p-wave wire can have both a trivial and a nontrvial phase, so just the existence of a majorana p-wave

wire does not guarantee the nontriviality of the chain - the parameters of the wire must be so that the wire is in the

regime where it supports Majorana fermions on the end of the chain). Now we provide a physical argument for why

this is the case - but both Beenakker’s calculation and the physical argument can fail in certain regimes.

For the case of large magnetic moment B0, each spin is mostly oriented antiparallel to B0. To zeroth order, the low-

energy band is that of spin down electrons on each site, coupled weakly by a hopping term and by a superconducting
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remain are the ones at q = 0 and π. Notice that for N odd, we cannot reach q = pi. Hence the pfaffian has two

expressions:

N odd → Pfaffian(
i

4
R(0)) = ∆2

+ (µ− 2t)
2 −B

2
(40)

N even → Pfaffian(
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R(0))Pfaffian(
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R(π)) = (∆2

+ (µ− 2t)
2 −B

2
)(∆2

+ (µ + 2t)
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) (41)

Notice that the only region where the pfaffians are negative is identical to the region where the system is gapless. This

is bad news, as the pfaffians dont really mean anything there. For aligned impurities, the pfaffian is negative
only in the regime where the band gap vanishes.

III. ARBITRARY NUMBER OF IMPURITIES PROJECTION TO THE LOWEST BAND

We will first work in complex fermion coordinates. To analyze the behavior of the low-energy physics of a large

number of impurities with large magnetic moment, we first rotate the fermionic operators into an ↑↓ basis on each site.

Assume the magnetic moments on site have the same magnitude but different directions: �Bn = B0(sin(θn) cos(φn)x̂+

sin(θn) sin(φn)ŷ + cos(θn)ẑ) using Beenakker’s matrix (other matrices are possible)

�
fn↑
fn↓

�
= Un

�
gn↑
gn↓

�
=

�
cos(θ/2) − sin(θn/2)e

−iφn

sin(θn/2)e
iφ

cos(θn/2)

� �
gn↑
gn↓

�
(42)

As Un is a unitary transformation U
†
nUn = 1, the new fermions gnσ have the same anticommutation properties as

the original fermions. The transformation properties of the Hamiltonian upon this spin rotation are nice, as neither

the chemical potential term nor the gap terms change form, whereas the magnetic moment term becomes diagonal.

The only term that changes fundamentally is the hopping term, which now acquires inter-spin components, and is no

longer diagonal in spin:

H =

�

n,α,β

tnΩn,α,βg
†
nαgn+1β + t

∗
nΩ∗

n,β,αg
†
n+1αgnβ + B0σzαβg

†
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nα

g
†
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where

Ωn = U
†
nUn+1 =

�
αn −β∗n
βn α∗n
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(44)

where

αn = cos(θn/2) cos(θn+1/2) + sin(θn/2) sin(θn+1/2)e
−i(θn−θn+1) (45)

and where

βn = − sin(θn/2) cos(θn+1/2)e
iφn + cos(θn/2) sin(θn+1/2)e

iθn+1 (46)

. Up to now we have done nothing new but to copy (and check) Beenakker’s algebra.

A. Argument for low-energy p-wave wire

Beenakker claims that the low energy physics of this Hamiltonian, projected to the spin ↓ sub-band is equivalent

to the Majorana p-wave wire Hamiltonian for spinless fermions if the spins between different sites are not collinear

(note that this p-wave wire can have both a trivial and a nontrvial phase, so just the existence of a majorana p-wave

wire does not guarantee the nontriviality of the chain - the parameters of the wire must be so that the wire is in the

regime where it supports Majorana fermions on the end of the chain). Now we provide a physical argument for why

this is the case - but both Beenakker’s calculation and the physical argument can fail in certain regimes.

For the case of large magnetic moment B0, each spin is mostly oriented antiparallel to B0. To zeroth order, the low-

energy band is that of spin down electrons on each site, coupled weakly by a hopping term and by a superconducting
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antiparallel to the magnetic moment on-site:
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remain are the ones at q = 0 and π. Notice that for N odd, we cannot reach q = pi. Hence the pfaffian has two

expressions:

N odd → Pfaffian(
i

4
R(0)) = ∆2

+ (µ− 2t)
2 −B

2
(40)

N even → Pfaffian(
i

4
R(0))Pfaffian(

i

4
R(π)) = (∆2

+ (µ− 2t)
2 −B

2
)(∆2

+ (µ + 2t)
2 −B

2
) (41)

Notice that the only region where the pfaffians are negative is identical to the region where the system is gapless. This

is bad news, as the pfaffians dont really mean anything there. For aligned impurities, the pfaffian is negative
only in the regime where the band gap vanishes.

III. ARBITRARY NUMBER OF IMPURITIES PROJECTION TO THE LOWEST BAND

We will first work in complex fermion coordinates. To analyze the behavior of the low-energy physics of a large

number of impurities with large magnetic moment, we first rotate the fermionic operators into an ↑↓ basis on each site.

Assume the magnetic moments on site have the same magnitude but different directions: �Bn = B0(sin(θn) cos(φn)x̂+

sin(θn) sin(φn)ŷ + cos(θn)ẑ) using Beenakker’s matrix (other matrices are possible)

�
fn↑
fn↓

�
= Un

�
gn↑
gn↓

�
=

�
cos(θ/2) − sin(θn/2)e

−iφn

sin(θn/2)e
iφ

cos(θn/2)

� �
gn↑
gn↓

�
(42)

As Un is a unitary transformation U
†
nUn = 1, the new fermions gnσ have the same anticommutation properties as

the original fermions. The transformation properties of the Hamiltonian upon this spin rotation are nice, as neither

the chemical potential term nor the gap terms change form, whereas the magnetic moment term becomes diagonal.

The only term that changes fundamentally is the hopping term, which now acquires inter-spin components, and is no
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�

n,α,β

tnΩn,α,βg
†
nαgn+1β + t

∗
nΩ∗

n,β,αg
†
n+1αgnβ + B0σzαβg

†
nαgnβ − µ

�

nα

g
†
nαgnα +

�

n

∆0(g
†
n↑g

†
n↓ + gn↓gn↑) (43)
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†
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�
(44)
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. Up to now we have done nothing new but to copy (and check) Beenakker’s algebra.

A. Argument for low-energy p-wave wire

Beenakker claims that the low energy physics of this Hamiltonian, projected to the spin ↓ sub-band is equivalent

to the Majorana p-wave wire Hamiltonian for spinless fermions if the spins between different sites are not collinear

(note that this p-wave wire can have both a trivial and a nontrvial phase, so just the existence of a majorana p-wave

wire does not guarantee the nontriviality of the chain - the parameters of the wire must be so that the wire is in the

regime where it supports Majorana fermions on the end of the chain). Now we provide a physical argument for why

this is the case - but both Beenakker’s calculation and the physical argument can fail in certain regimes.
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cσ = 1

2
(a1σ + ia2σ) c†σ = 1

2
(a1σ − ia2σ)

H = −µc†σcσ + Bc†σσz
σ,σ′cσ′ + ∆0(c

†
↑c

†
↓ + c↓c↑)

B < µ
|µ| < 2t |µ| > 2t
a1a2La′

1a2L′ c = a1 + ia2L ia1a
′
1

a2n−1 = 1√
N

∑
n e−iqnaq,1, a2n = 1√

N

∑
n e−iqnaq,2 where 1, 2 are the two flavors of

Majorana coming from splitting the on-site fermion on the zig-zag chain, and q is the
fourrier vector which takes values to be determined below (the several cases for the values
of q depending on the boundary conditions, which in turn depend on the value of the
rotation of the spin, have been analyzed in Section[??] ). We have b†q,1,σ = b−q,1,σ, b†q,2,σ =
b−q,2,σ. We can then write the Hamiltonian in the basis bq = (bq,1,↑, bq,1,↓, bq,2,↑, bq,2,↓):

H = i
4

∑
q a†

qB(q)aqB(q) = −BT (−q) 2t cos[k] + µ sign(µ + 2t)sign(µ − 2t)

βn = sin θn+1−θn

2

1

If magnetic spiral, hopping amplitude dependent 
on spin - effectively creating spin-orbit coupling

(remember all the proposals to create Majorana with Rashba wires, B 
field and superconducting - similar Hamiltonian)

B0
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term. The superconducting term, being s-wave couples spin up with spin down and as such induces transitions into

the spin-up, high-energy band, in the particle-particle channel. (the other term that induces transitions in the upper

spin band is the hopping term) We would like to understand how the transitions between the lower and upper spin

bands (spins down and up) renormalize the superconducting gap, i.e. we would like to make these transitions virtual

and see how they give rise to new terms (we focus on the superconducting term) in the Hamiltonian when taken

into account and projected to the lower spin band. Just by symmetry reasons it is obvious that since everything is

projected in the end to a single spin band (down-spin), any effective pairing present in this band cannot be even-wave

(s-wave) onsite and will, at the very least be p−wave, which means that it will be off-site, i.e. involve g
†
n↓g

†
n−1↓. We

are looking for the lowest order (in ∆0/B, ∆0/µ, tn/B, tn/µ induced pairing of p-wave type in the lower band. Start

with the s-wave pairing ∆0g
†
n↓g

†
n↑, perform a virtual transition to the site n− 1 thru the spin ↑ band. The only term

that couples the site n with n− 1 is the hopping term in the Hamiltonian.

There are two hopping terms tnΩn↑↑g
†
n−1↑gn↑ and tnΩn↓↑g

†
n−1↓gn↑ (there are their complex conjugates also, but

these give rise to higher order terms in ∆0 upon taking expectation values that are not necessary to discuss).

The first hopping term facilitates transitions to site n − 1 which, when convoluted to the gap at site n give rise

to terms proportional to ∆0tnΩn↑↑g
†
n↓g

†
n−1↑�gn↑g

†
n↑� and we see that it has not given us an operator fully in the

lower band (i.e. it is proportional to g
†
n↓g

†
n−1↑. To make it to the lower band, we now need to again make a virtual

transition on the site n − 1 with the on-site s-wave gap on this site ∆0g
†
n−1↓g

†
n−1↑ to obtain a term proportional to

∆0∆0tnΩn↑↑g
†
n↓g

†
n−1↓�g

†
n−1↑g

†
n−1↑��gn↑g

†
n↑� which is zero by virtue that the original hamiltonian had no up-up pairing

�g†n−1↑g
†
n−1↑� = 0 (and in any case is of the order ∆2

tn which is not the lowest order possible).

Hence we are left with the second hopping term, tnΩ↓↑g
†
n−1↓gn↑ which, when convoluted with ∆0g

†
n↓g

†
n↑ gives rise

to the term: ∆0tnΩ↓↑g
†
n−1↓g

†
n↓�g

†
n↑gn↑�. The expectation value of the spin ↑ in the low spin band is decreased by a

factor 1/B: (�g†n↑gn↑� ∼ 1/B) and hence the term induced is indeed of p-wave form: (∆0tn/B)Ωn↓↑g
†
n−1↓g

†
n↓. We

however see that it is proportional to Ωn↓↑ = βn, and we easily see that βn vanishes when the spins on site n, n + 1

are aligned. This was expected: if the two spins on different sites are aligned, projection to the spin basis will induce

no off-diagonal hopping between them (if none existed previously). Hence and on-site s-wave pairing between spin up

and down making virtual transitions to the nearest neighbour cannot change the spin configuration as there are no

off-diagonal spin terms, and we are left with also spin up-down pairing, which cannot be p-wave.

B. Projection of the first order inter-spin matrix elements

This argument can be substantiated by a direct calculation. We first want to make a unitary transformation (which

doesnt change the energies and only rotates the eigenstates) of the Hamiltonian that will eliminate the matrix elements

between spins. Such a transformation is extremely hard to make if exact, but if we are working in the approximation

of large magnetic field and chemical potential (classical impurities and nice metal) B,µ >> ∆0, tn then we can use

approximations. We are looking for a unitary transformation

H → e
−iS

He
iS

(47)

where S
†

= S is of order (proportional to) t
p
0∆

q
0/(B

r
0µ

s
0) with p + q = r + s = 1 (so either p = 1, q = 0 or viceversa)

which removes the first order matrix elements between spins. We expand the transformed Hamiltonian to second

order is S (the first order will be used to cancel the first order spin-flip terms in the Hamiltonian:

e
−iS

He
iS ≈ (1− iS − 1

2
S

2
)H(1 + iS − 1

2
S

2
) ≈ H + i[H,S]− 1

2
{H,S

2} + SHS (48)

where [, ], {, } denote the commutator and anticommutator respectively. To kill the first order term between spins,

we re-write the Hamiltonian as:

H = H0 + H1 + H
�
1 (49)

where H0 contains the terms deemed to be large in our approximation (the ones proportional to µ, B):

H0 =

�

n,α,β

B0σzαβg
†
nαgnβ − µ

�

nα

g
†
nαgnα (50)

H1 =

�

n,α�=β

tnΩn,α,βg
†
nαgn+1β + t

∗
nΩ∗

n,β,αg
†
n+1αgnβ +

�

n

∆0(g
†
n↑g

†
n↓ + gn↓gn↑) (51)
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however see that it is proportional to Ωn↓↑ = βn, and we easily see that βn vanishes when the spins on site n, n + 1

are aligned. This was expected: if the two spins on different sites are aligned, projection to the spin basis will induce

no off-diagonal hopping between them (if none existed previously). Hence and on-site s-wave pairing between spin up

and down making virtual transitions to the nearest neighbour cannot change the spin configuration as there are no

off-diagonal spin terms, and we are left with also spin up-down pairing, which cannot be p-wave.

B. Projection of the first order inter-spin matrix elements

This argument can be substantiated by a direct calculation. We first want to make a unitary transformation (which

doesnt change the energies and only rotates the eigenstates) of the Hamiltonian that will eliminate the matrix elements

between spins. Such a transformation is extremely hard to make if exact, but if we are working in the approximation

of large magnetic field and chemical potential (classical impurities and nice metal) B,µ >> ∆0, tn then we can use
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Figure 2: (a) Calculated energy spectrum for 48 classical

spins placed in the middle of the Na × Nb = 48 × 21 grid

using periodic BC (blue lines). The regions corresponding to

the Pfaffian > 0 are shaded gray. Red thick line represents the

lowest energy state for open BC. (b,c) The two-dimensional

local density of states calculated for the lowest energy eigen-

state in the non-trivial (B/∆0 = 1.7, Pf < 0) and the trivial

(B/∆0= 0.7, Pf <0) phase. (d,e) Local density of states at

the chain ends and in the middle for non-trivial and trivial

phase for T=0.01. What is the difference between blue
and grey lines in figure d? The natural peak width is

ω = 5 × 10−4
for this plot. Inset in (d) shows LDOS spatial

profile along the chain for zero energy. The LDOS tempera-

ture dependence is shown in [? ]. comment update: Fig. 2
again has to be updated, once we settle down what parameters
we want to use..

lowing condition: (see [? ], section 3):

�
∆2 + (|µ| + 2|t cos(θ/2)|)2 > |B|,

|B| >
�

∆2
0 + (|µ|− 2|t cos(θ/2)|)2 (2)

The negative value of the Pfaffian is a necessary condi-

tion for our system to be in a topological phase; how-

ever, it not sufficient, as the bulk of our atomic chain

remains must also be gapped. For example, θ = 0, π
have the widest range of negative Pfaffian in Eq[??]; un-

fortunately, this full range is gap-less (see [? ] section

? please put section). The gap for low energy exci-

tation is related to strength of the p-wave pairing that

emerges on the chain because of the combination of hop-

ping, pairing, and local Zeeman terms in the Hamiltonian

(in the frame of reference parallel to the on-site spin,

the hopping acquires a spin-dependent component if the

magnetic moments of the impurities form a spiral. This

spin-dependent component of the hopping gives rise to,

thru convolution with the on-site pairing gap, an effec-

tive p-wave component of the pairing ). Calculations of

the spectra in both 2D and 1D model described above

reveal the energy scale, which separates the zero energy

Figure 3: (a,b) The spatial profile of the two lowest excitation

states of magnetic chain containing 48 atoms for µ/∆0 =
4, B/∆0 = 5, θ = π/2. Tuning the hopping term t drives

quantum phase transition from the trivial (t/∆0 = 0.4) (a)

to the topological (t/∆0 = 1) phase (b). (c,d), Local density

of states calculated for the same parameters as in (a) and (b)

. Note that for this choice of parameters spectrum in (c) is

assymetric in energy (see inset). Importantly, in (d) the two

MF states around zero energy are separated by the effective

p-wave gap ∆p from the other states in the spectrum (marked

by double arrow line).

MF states (localized at the two ends) from the next avail-

able excitation of the system. In a certain limit, the 1D

model can be directly mapped [? ] to the original pro-

posal by Kitaev for realization of MF end mode, which

is a superconducting wire with nearest neighbour pairing

[? ], but general eigenvalues can be obtained even with-

out this low-energy mapping. The value of the one-body

gap is plotted and maximized for the 1D model above to

depending on the relative values of µ, t, B, and angle θ
(see Fig 4).

It is clear that a non-colinear arrangement of spins in a

chain is required to realize robust MF end modes. When

transformed to a spin basis parallel to the spiraling on-

site magnetic field, the hopping becomes spin-dependent

giving rise to spin-orbit coupling and hence to the usual

mechanisms for Majorana modes. Without detailed mod-

eling of the surface magnetism it is difficult to predict

whether specific magnetic atomic chains would have a

spiral spin-arrangement. We suggest that exploring the

full freedom of the linear chain geometry may provide

a feasible approach to create favourable conditions for

non-colinear magnetic moments of adjacent atoms. For

example, double or zig-zag chain structures with anti-

ferromagnetic interactions are likely to become frustrated

and resulting in spiral orientation of magnetic moments

in the chain [? ]. Exploring these possible geometries

Open boundary conditions

3

Figure 2: (a) Calculated energy spectrum for 48 classical

spins placed in the middle of the Na × Nb = 48 × 21 grid

using periodic BC (blue lines). The regions corresponding to

the Pfaffian > 0 are shaded gray. Red thick line represents the

lowest energy state for open BC. (b,c) The two-dimensional

local density of states calculated for the lowest energy eigen-

state in the non-trivial (B/∆0 = 1.7, Pf < 0) and the trivial

(B/∆0= 0.7, Pf <0) phase. (d,e) Local density of states at

the chain ends and in the middle for non-trivial and trivial

phase for T=0.01. What is the difference between blue
and grey lines in figure d? The natural peak width is

ω = 5 × 10−4
for this plot. Inset in (d) shows LDOS spatial

profile along the chain for zero energy. The LDOS tempera-

ture dependence is shown in [? ]. comment update: Fig. 2
again has to be updated, once we settle down what parameters
we want to use..

lowing condition: (see [? ], section 3):

�
∆2 + (|µ| + 2|t cos(θ/2)|)2 > |B|,

|B| >
�

∆2
0 + (|µ| − 2|t cos(θ/2)|)2 (2)

The negative value of the Pfaffian is a necessary condi-

tion for our system to be in a topological phase; how-

ever, it not sufficient, as the bulk of our atomic chain

remains must also be gapped. For example, θ = 0, π
have the widest range of negative Pfaffian in Eq[??]; un-

fortunately, this full range is gap-less (see [? ] section

? please put section). The gap for low energy exci-

tation is related to strength of the p-wave pairing that

emerges on the chain because of the combination of hop-

ping, pairing, and local Zeeman terms in the Hamiltonian

(in the frame of reference parallel to the on-site spin,

the hopping acquires a spin-dependent component if the

magnetic moments of the impurities form a spiral. This

spin-dependent component of the hopping gives rise to,

thru convolution with the on-site pairing gap, an effec-

tive p-wave component of the pairing ). Calculations of

the spectra in both 2D and 1D model described above

reveal the energy scale, which separates the zero energy

Figure 3: (a,b) The spatial profile of the two lowest excitation

states of magnetic chain containing 48 atoms for µ/∆0 =
4, B/∆0 = 5, θ = π/2. Tuning the hopping term t drives

quantum phase transition from the trivial (t/∆0 = 0.4) (a)

to the topological (t/∆0 = 1) phase (b). (c,d), Local density

of states calculated for the same parameters as in (a) and (b)

. Note that for this choice of parameters spectrum in (c) is

assymetric in energy (see inset). Importantly, in (d) the two

MF states around zero energy are separated by the effective

p-wave gap ∆p from the other states in the spectrum (marked

by double arrow line).

MF states (localized at the two ends) from the next avail-

able excitation of the system. In a certain limit, the 1D

model can be directly mapped [? ] to the original pro-

posal by Kitaev for realization of MF end mode, which

is a superconducting wire with nearest neighbour pairing

[? ], but general eigenvalues can be obtained even with-

out this low-energy mapping. The value of the one-body

gap is plotted and maximized for the 1D model above to

depending on the relative values of µ, t, B, and angle θ
(see Fig 4).

It is clear that a non-colinear arrangement of spins in a

chain is required to realize robust MF end modes. When

transformed to a spin basis parallel to the spiraling on-

site magnetic field, the hopping becomes spin-dependent

giving rise to spin-orbit coupling and hence to the usual

mechanisms for Majorana modes. Without detailed mod-

eling of the surface magnetism it is difficult to predict

whether specific magnetic atomic chains would have a

spiral spin-arrangement. We suggest that exploring the

full freedom of the linear chain geometry may provide

a feasible approach to create favourable conditions for

non-colinear magnetic moments of adjacent atoms. For

example, double or zig-zag chain structures with anti-

ferromagnetic interactions are likely to become frustrated

and resulting in spiral orientation of magnetic moments

in the chain [? ]. Exploring these possible geometries

Lowest 
two 

energy 
states

Trivial Nontrivial (edge state)

Edge majorana is seen 
as zero bias peak

3

Figure 2: (a) Calculated energy spectrum for 48 classical

spins placed in the middle of the Na × Nb = 48 × 21 grid

using periodic BC (blue lines). The regions corresponding to

the Pfaffian > 0 are shaded gray. Red thick line represents the

lowest energy state for open BC. (b,c) The two-dimensional

local density of states calculated for the lowest energy eigen-

state in the non-trivial (B/∆0 = 1.7, Pf < 0) and the trivial

(B/∆0= 0.7, Pf <0) phase. (d,e) Local density of states at

the chain ends and in the middle for non-trivial and trivial

phase for T=0.01. What is the difference between blue
and grey lines in figure d? The natural peak width is

ω = 5 × 10−4
for this plot. Inset in (d) shows LDOS spatial

profile along the chain for zero energy. The LDOS tempera-

ture dependence is shown in [? ]. comment update: Fig. 2
again has to be updated, once we settle down what parameters
we want to use..

lowing condition: (see [? ], section 3):

�
∆2 + (|µ| + 2|t cos(θ/2)|)2 > |B|,

|B| >
�

∆2
0 + (|µ| − 2|t cos(θ/2)|)2 (2)

The negative value of the Pfaffian is a necessary condi-

tion for our system to be in a topological phase; how-

ever, it not sufficient, as the bulk of our atomic chain

remains must also be gapped. For example, θ = 0, π
have the widest range of negative Pfaffian in Eq[??]; un-

fortunately, this full range is gap-less (see [? ] section

? please put section). The gap for low energy exci-

tation is related to strength of the p-wave pairing that

emerges on the chain because of the combination of hop-

ping, pairing, and local Zeeman terms in the Hamiltonian

(in the frame of reference parallel to the on-site spin,

the hopping acquires a spin-dependent component if the

magnetic moments of the impurities form a spiral. This

spin-dependent component of the hopping gives rise to,

thru convolution with the on-site pairing gap, an effec-

tive p-wave component of the pairing ). Calculations of

the spectra in both 2D and 1D model described above

reveal the energy scale, which separates the zero energy

Figure 3: (a,b) The spatial profile of the two lowest excitation

states of magnetic chain containing 48 atoms for µ/∆0 =
4, B/∆0 = 5, θ = π/2. Tuning the hopping term t drives

quantum phase transition from the trivial (t/∆0 = 0.4) (a)

to the topological (t/∆0 = 1) phase (b). (c,d), Local density

of states calculated for the same parameters as in (a) and (b)

. Note that for this choice of parameters spectrum in (c) is

assymetric in energy (see inset). Importantly, in (d) the two

MF states around zero energy are separated by the effective

p-wave gap ∆p from the other states in the spectrum (marked

by double arrow line).

MF states (localized at the two ends) from the next avail-

able excitation of the system. In a certain limit, the 1D

model can be directly mapped [? ] to the original pro-

posal by Kitaev for realization of MF end mode, which

is a superconducting wire with nearest neighbour pairing

[? ], but general eigenvalues can be obtained even with-

out this low-energy mapping. The value of the one-body

gap is plotted and maximized for the 1D model above to

depending on the relative values of µ, t, B, and angle θ
(see Fig 4).

It is clear that a non-colinear arrangement of spins in a

chain is required to realize robust MF end modes. When

transformed to a spin basis parallel to the spiraling on-

site magnetic field, the hopping becomes spin-dependent

giving rise to spin-orbit coupling and hence to the usual

mechanisms for Majorana modes. Without detailed mod-

eling of the surface magnetism it is difficult to predict

whether specific magnetic atomic chains would have a

spiral spin-arrangement. We suggest that exploring the

full freedom of the linear chain geometry may provide

a feasible approach to create favourable conditions for

non-colinear magnetic moments of adjacent atoms. For

example, double or zig-zag chain structures with anti-

ferromagnetic interactions are likely to become frustrated

and resulting in spiral orientation of magnetic moments

in the chain [? ]. Exploring these possible geometries




