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The MATBG flat bands have 
non-trivial topology

Band insulators at 
electron densities

(4 electrons or holes per 
superlattice unit cell)

Valley K Valley K’

Emergent valley U(1) symmetry
+ independent spin rotations in both valleys. 
Total (continous) symmetry group is 
U(2)xU(2).
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[Cao, Fatemi, …, Jarillo-Herrero (2018)]

[Lu, Stepanov, …, Efetov (2019)]



  

Outline:
● The frozen remote band model

● Broken-symmetry insulators in pristine MATBG 

● The importance of strain



  

The frozen remote band model



  

Bistritzer-MacDonald Hamiltonian in momentum space:

moiré reciprocal lattice vectors

2x2 rotation matrix over angle θ

mono-layer graphene tight-binding Hamiltonian

mBZ Gamma point



  

Bistritzer-MacDonald Hamiltonian in momentum space:

Note that under shifts by moiré reciprocal lattice vectors the BM Hamiltonian transforms as

As a result, the BM eigenvectors satisfy

BM band label Valley Layer/sublattice index



  

Let us now add the Coulomb interaction and go to momentum space:

with

Next we rewrite the momentum sums as                                    , and obtain

Note that here we have ignored inter-valley scattering Vq decays with q



  

Now we do a basis transformation and we go to the BM band basis by defining

Importantly, the f operators are periodic:

In the BM band basis, the Coulomb interaction becomes

where we have defined the form factors as



  

Exact Coulomb interaction (up to inter-valley scattering) in BM band basis:

Now we 
‘freeze’ 
the 
remote 
bands:

This interaction preserves the U(2)xU(2) symmetry.

Completely 
empty

Fully 
occupied

Freezing remote bands = projecting in the 
subspace with completely filled (empty) remote 
valence (conduction) bands.

Terms with an odd number of remote-band 
fermion operators vanish under the projection.

if m,n are remote bands
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We find the following frozen remote band Hamiltonian acting in the flat-band subspace:

Here we have defined the Hartree and Fock potentials constructed from                    

as

and we have also defined 

where if n is a remote valence band, 
and zero otherwise



  

There is an (important ?) subtlety which we have swept under the rug until now:

The BM Hamiltonian takes input from ab initio methods such as DFT, which already take 
into account some interaction effects. We have now added back the complete Coulomb 
interaction – this means that we are double counting some interaction effects.

How do we fix this? There seems to be no general consensus….

One example: Require the BM band structure at charge neutrality to be a solution to the 
Hartree-Fock self-consistency equation. This is true for the following Hamiltonian:

‘Subtraction term’
Hartree and Fock potentials of the BM 
band structure at charge neutrality

Other subtraction schemes are also being used in the literature.

BM Hamiltonian Coulomb int



  

[Cao, Fatemi, …, Jarillo-Herrero (MIT)]

The effects of screening on the Coulomb potential:

Single-gate screening:

Dual-gate screening:

The relative dielectric constant of hBN is                        . Often larger values are 
used (~ 10 – 15) to take screening by the filled remote bands into account.



  

Broken-symmetry insulators in pristine MATBG 



  

Symmetries of the BM model:

● U(2)xU(2) – spin/charge in each valley (valley-U(1) =           ) 

● Time-reversal 

● Inversion                          (interchanges sublattices)

(Note that inversion and valley-U(1) do not commute)

● In-plane and out-of-plane rotations:

● Particle-hole symmetry 

PH symmetry is broken in experiment. It can be broken explicitly by modifying 
the BM model with local (Kang,Vafek) or non-local (Carr, Kaxiras) inter-layer 
tunneling terms. 

protects Dirac points



  

Mean-field band spectrum at               : 

BM bands

Kramers degeneracies

This state breaks valley-U(1) and time-reversal. It preserves the product                   , 
which is a Kramers time-reversal symmetry. Hence it is called the K-IVC state.
The order parameter takes the form                    . 



  

C = 1 C = -1

8 exactly flat bands:
Chern number

Combine U(2)xU(2), inversion, time reversal, particle-hole and chiral symmetry 

Coulomb interaction between electrons in the flat bands has 
a (approximate)              symmetry

The origin of the K-IVC state is naturally understood in the chiral limit              :



  

C = 1 C = -1

8 exactly flat bands:
Chern number

The origin of the K-IVC state is naturally understood in the chiral limit              :

At integer fillings the exact ground states of the interaction term are 
quantum Hall ferromagnets.



  

C = 1 C = -1

8 exactly flat bands:
Chern number

The origin of the K-IVC state is naturally understood in the chiral limit              :

The large ground state degeneracy is lifted in perturbation theory by taking small deviations 
from the chiral limit into account. This given unique quantum Hall ferromagnetic ground 

states all integer fillings.



  

To understand how the K-IVC gets selected at neutrality we can consider a spinless model:

The low-energy theory of the QHFM is described by the following Lagrangian:

Dispersion Symmetry-breaking 
terms in the interaction



  

Ground state = in-plane anti-ferromagnet = ‘K-IVC’ insulator

Chern +1 Chern -1



  

C = 1 C = -1

The QHFM formalism predicts insulators at all integer fillings 

Numerical Hartree-Fock and DMRG simulations on the FRB model for pristine MATBG 
away from the chiral limit find ground states that agree with the QHFM predictions at  

Moreover, DMRG shows that Hartree-Fock is extremely accurate.

In the QHFM picture,                                       (c.f. Amir Yacoby’s talk)



  

The importance of strain



  

[Kerelsky, McGilly, …. , Dean, Rubio, Pasupathy (2019)] [Xie, Lian, … , Bernevig, Yazdani (2019)]

Heterostrain of magnitude     observed in STM.

This is small, but moiré patterns act like a magnifying glass for  strain.



  

Without strain With the 
experimentally 
observed 
strain
[Bi, Yuan, Fu (2019)]

To lowest order, strain couples to mono-layer graphene as a vector potential. 

[Suzuura, Ando (2002); Sasaki, Saito (2008)] 

Effect of strain on MATBG band spectrum (DPs in a single valley are no 
longer related by symmetry):



  

Effect of strain on MATBG at neutrality:

Self-consistent Hartree-Fock DMRG

Experimentally-relevant strains make MATBG semi-metallic at neutrality.



  

The effect of strain at non-zero integer fillings:

A new broken-symmetry order stabilized by strain: Incommensurate Kekulé Spiral (IKS) order

Kekulé pattern:

The Kekulé pattern modulates on the superlattice 
scale with an incommensurate wavevector

   Kekulé pattern is the 
result of a spontaneous breaking 
of the valley U(1) symmetry



  

The IKS order has a non-zero wavevector and thus breaks translation symmetry.
However, it preserves a modified translation symmetry:

This implies a generalized Bloch theorem:
Mean-field IKS band structure at 

Beyond mean-field theory, the modified translation symmetry pins IKS insulators to integer 
superlattice fillings as the result of a generalized Lieb-Schultz-Mattis theorem



  

● IKS order at every integer filling except charge neutrality
● Strongest insulators at 
● No time-reversal symmetry breaking and QAH states
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Collective modes of the IKS at                 : 

Four Goldstone modes! (one singlet, one triplet)

Broken symmetry generators:

IVC states, spin polarized or unpolarized, always have Goldstone modes 
associated with spin fluctuations.

This state has zero 
spin polarization.



  

DMRG results at                   : 

(For more details, see Tianle’s poser today)



  
(For more details, see Tianle’s poser today)



  

Thank you!
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