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Summary of part I

• Quantum Hall transitions – quantum phase transitions

• Critical scaling with temperature, frequency, current,…

• Universality: same critical exponents for different transitions and systems

• (Ir)relevance of interactions (short-range vs long-range) at the noninteracting fixed point



IQH and localization in strong magnetic field

• Single electron in a magnetic field and a random potential

• Without disorder: Landau levels 

• Disorder broadens the levels and localizes most states

• Extended states near 𝐸𝐸𝑐𝑐 (green)

• IQH transition upon varying 𝐸𝐸𝐹𝐹 or 𝐵𝐵

• Diverging scale is the localization length

• An Anderson (localization-delocalization) transition: a non-interacting quantum phase transition
    



• Single electron in a random potential:

• Ensemble of disorder realizations: statistical treatment

• Eigenstates are extended for                and localized for  

    

Anderson transitions

P. W. Anderson  `58

• Metal: extended states• Insulator: localized states



• Eigenstates are extended for 𝐸𝐸 > 𝐸𝐸𝑐𝑐                 
and localized for 𝐸𝐸 < 𝐸𝐸𝑐𝑐  

• Localization length diverges

• Interesting to look at the spatial structure of 
critical wave functions exactly at 𝐸𝐸 = 𝐸𝐸𝑐𝑐. 
These are important for the RG analysis 
of (ir)relevance of interactions at ATs

Anderson transitions



•  Integer quantum Hall effect

A. Altland, M. Zirnbauer ‘96

Symmetries and AZ classes

•  Spin quantum Hall effect (exact results)

•  Thermal quantum Hall effect



Anderson transitions: random critical points

• All observables are random, a complete theory would describe their distributions

• Functional RG? 

• At least try to compute moments. Disorder average: replica limit or supersymmetry 

• Partition function 

• Is there conformal symmetry at Ats and other random critical points, similarly to conventional critical 
points? (Scale vs conformal invariance)

• If yes, ATs are described by (unknown) non-unitary CFTs (In 2D: CFTs with 𝑐𝑐 = 0)



Models, methods, and recent results in the theory of Anderson transitions

• Field theory: non-linear sigma models

• Fixed points at strong coupling, except in 2 + 𝜀𝜀 dimensions

• A lot of intuition comes from network models amenable to numerics 

• Recent advances include

• High-precision numerics (irrelevant operators)

• Sigma-model-based symmetry analysis of multifractal (MF) critical wave functions

• Constraints from conformal symmetry on MF spectra
     

• Mapping to classical models, statistical mechanics and CFT

• Random networks and quantum gravity
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• Interesting to look at the spatial structure of critical wave functions exactly at

• Critical wave functions are neither localized nor truly extended

• Complicated statistically scale-invariant multifractals 

• Characterized by a continuum of exponents: the multifractal spectrum

• Partial analytical results are available for some Anderson transitions, a lot of numerical results

• We derive strong constraints on MF spectra assuming 

• A nonlinear sigma model description of ATs 

• Conformal invariance at ATs

Critical wave functions at Anderson transitions

F. Wegner `80



Numerics: wave functions across Anderson transitions

InsulatorCritical pointMetal

Disorder or energy

H. Obuse

• Metal-insulator transition in 2D
 



Numerics: critical wave function at the IQH transition

InsulatorCritical pointInsulator

Energy

A. Mildenberger



Numerics: wave functions across a 3D Anderson transition

A. Rodriguez et al. “Multifractal finite-size scaling and universality at the Anderson transition” PRB 84,134209 (2011)



• Color = logarithm of

• Multifractal: sets of points with a given
are fractals with different fractal dimensions

• Self-similarity and scale invariance

• Histogram for 

• Continuum of critical exponents

Wave function at the IQH transition

A. Mildenberger
M. Puschmann, unpublished `22



Experimental multifractality: IQH

M. Morgenstern et al, ‘03



Experimental multifractality: MIT

Profiles of the local density of states (LDOS) 
obtained by STM in Ga1-xMnxAs

A. Richardella et al, ‘10

Multifractal spectra



Experimental multifractality: MIT

S. Mathimalar et al. “Concurrent Multifractality and Anomalous Hall Response in the Nodal Line Semimetal Fe3GeTe2 Near
Localization” arXiv:2503.04367

• LDOS of the ferromagnetic nodal line semimetal Fe3GeTe2 



Experimental multifractality: 2D Anderson transition

B. Jack et al. “Visualizing the multifractal wave functions of a disordered two-dimensional electron gas” PRR 3, 013022 (2021)

• LDOS of 2D alloy BixPb1-x/Ag(111)
 



Experimental multifractality: localization of ultrasound

S. Faez et al, ‘11

Broad distribution of the 
sound intensity

Multifractal spectra



Multifractal spectrum

• Critical wave functions are characterized by a continuum of multifractal (MF) exponents

• Moments of the wave function

• Scaling with the system size

• Anomalous dimensions at the critical point  

• Broad probability distribution of critical wave function intensity

• The wave function amplitude is not self-averaging 

F. Wegner `80
C. Castellani and L. Peliti `86



Multifractal measures: generalities

• Multifractals appear in diverse systems across nature

• Probability measure       with support in a cube (torus) of size

• Divide the cube into      boxes       of size    ,  

• Measure of each box 

• (Complex) moments of the measure scale with            

• Multifractal spectrum 

•    is non-decreasing:

•    is convex:

•                 (dimension of the support)

•              (normalization of the measure)



Multifractal spectrum: limiting cases

• Deep in the metal wave functions are extended

• Uniform measure

• MF spectrum is linear: 

• Deep in the insulator wave functions are strongly localized

• Measure localized in volume

•           boxes filled with

•      is  independent of

• At the critical point define “anomalous dimensions”  

A. Mirlin, Y. Fyodorov, A. Mildenberger, F. Evers `06



Multifractality and field theory

• Moments of the local density of states at the critical energy

•         are scaling dimensions of operators             in a field theory:

• Roughly                          , more precisely 

• Precise correspondence exists for nonlinear sigma models of ATs

• Caveats

• Sigma models are derived in the metal at weak disorder

• Recent proposals suggest that symmetries of sigma models may break down at ATs M. Zirnbauer `23-24



Field theories for ATs: nonlinear sigma models

• Supersymmetric nonlinear sigma model

•                    (super)coset space: 

• 10 Altland-Zirnbauer classes 

• Critical points are strongly coupled!

• High degree of symmetry helps



Exact results for MF operators

•       are exact scaling operators at critical points, with dimensions     :

• There is      such that               , non-trivial        with                    (DOS in class A)  

• Exact symmetry of MF spectra:

• Abelian fusion:

(the ellipses denote derivatives also called descendants)

• These results 

• Follow from symmetries of sigma models
• Do not require conformal invariance
• Are fully supported by numerics

IAG, A. Ludwig, A. Mirlin, M. Zirnbauer `11, `13; J. Karcher, N. Charles, IAG, A. ; Mirlin `21

A. Mirlin, Y. Fyodorov, A. Mildenberger, F. Evers `06



• Operator product expansion (OPE)

• Fusion rules:   𝜙𝜙1 × 𝜙𝜙2 ∼ ∑𝑘𝑘 𝜙𝜙𝑘𝑘

• Ising model:  𝜎𝜎 × 𝜎𝜎 ∼ 𝐼𝐼 + 𝜖𝜖 (microscopically, 𝜎𝜎𝑖𝑖2 = 1 and −𝐽𝐽𝐽𝐽𝑖𝑖𝜎𝜎𝑗𝑗 = bond energy)

• OPEs (fusion rules) are strongly restricted by global symmetries

• OPEs are especially useful in conformal field theories

Operator product expansion



Scale versus conformal invariance

• Often (but not always) scale invariance is 
promoted to conformal invariance  

• This happens at conventional second-order 
phase transitions 

• Conformal transformations 
preserve angles: local rescaling and rotation

• Conformal invariance is very powerful



Conformal transformations in two and higher dimensions

• In 2D, any analytic function gives a conformal map

• Infinite-dimensional Virasoro symmetry

• In 𝑑𝑑 >  2, conformal transformations form a finite-dimensional 
group, including inversions in spheres

• Basis of the conformal bootstrap method in CFT



CFT correlators

• Primary operators            with scaling dimensions 
 

• Simple transformations under conformal transformations:

• Conformal symmetry constrains correlation functions of primary operators

• One-point functions

• Two-point functions 

• Three-point functions

• CFT data: scaling dimensions 𝑥𝑥𝑖𝑖 and structure constants 𝑓𝑓123 uniquely specify a CFT

• What about higher-point functions?



Conformal OPE and conformal blocks

• Conformal OPE is a series with a finite radius of convergence                                                          

• Conformal symmetry fully determines the differential operator 

• Apply the OPE to the pairs 12 and 34

• Conformal block expansion

• Conformal blocks 

     are completely fixed by conformal symmetry as long as the CFT data (𝑥𝑥𝑖𝑖, 𝑓𝑓123) are known 



Solving a CFT: crossing symmetry

• The OPE can be done on different pairs of operators, leading to the crossing symmetry

• Basis for a non-perturbative bootstrap approach

• Any set of 𝑥𝑥𝑖𝑖, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 consistent with crossing, defines a valid CFT



Two dimensions versus higher dimensions

• Two-dimensional CFTs are special: conformal symmetry is infinite-dimensional (Virasoro algebra)

• This allows to solve crossing equations exactly in many cases  

• Rational CFTs: a finite number of Virasoro conformal blocks in all 4-point functions
• Abelian CFT: a single conformal block in each 4-point function

• In higher dimensions the group of conformal transformations is finite-dimensional 

• Infinity of global conformal blocks in any 4-point function

• Progress in higher-dimensional CFTs was slow until 2008

• Conformal bootstrap revival: highly efficient numerical and analytical methods S. Rychkov et al `08-present

A. Belavin, A. Polyakov, A. Zamolodchikov `84



Conformal bootstrap successes

• Precise and rigorous bounds for critical exponents

• 3D Ising model

• 2016:  ∆𝜎𝜎= 0.5181489(10),         ∆𝜖𝜖= 1.412625(10)

• 2024:  ∆𝜎𝜎= 0.518148806 24 ,  ∆𝜖𝜖= 1.41262528(29)

Kos, Poland, Simmons-Duffin, Vichi `16 Chang et al. `24



Conformal bootstrap successes

• Precise and rigorous bounds for critical exponents

• 3D O(2)-model

• Can we apply the power of CFT to Anderson transitions?



Crossing symmetry and Abelian OPE in 2D

• Assumptions: 1) conformal invariance, 2)       are Virasoro primaries, 3) Abelian OPE

• Only one Virasoro conformal block appears, crossing equations simplify a lot and lead to 

 

• This implies exactly parabolic multifractal spectra:

•       are vertex operators of a Gaussian free field, their correlators are those of a Coulomb gas CFT 

• If we can demonstrate (analytically or numerically) that      is not parabolic, one of the assumptions 
must be wrong 

R. Bondesan, D. Wieczorek, M. Zirnbauer `16

D. C. Lewellen `89



Recent results: IQH transition

• Proposed CFT for the IQH transition:                        WZW model with a marginal perturbation

 
• Includes a sector with a free boson, and predicts

• Unconventional critical properties, 
most numerical results do not agree
with this proposal

• A lot of ongoing work on IQH transition

• Recent results rule out exact parabolicity

M. Zirnbauer `19, 21

H. Obuse et al `08

F. Evers et al `22-26



Multifractality at the SQH transition

• Class C (SQH transition): mapping to classical percolation

• Exact MF exponents

• These four values lie on the parabola

• Numerical results seem to rule out exact parabolicity

 

IAG, A. Ludwig, N. Read `99
A. Mirlin, F. Evers, A. Mildenberger `03

A. Mirlin, F. Evers, A. Mildenberger `03
M. Puschmann et al `21



Exact results: generalized MF scaling operators

• Class A: determinants of critical wave functions at close points

• Generalized MF observables

• Sigma-model scaling operators 

•        are are constructed via the Iwasawa decomposition of the sigma-model field  

• General symmetry relation

• Recent construction for all AZ symmetry classes   

D. Höf and F. Wegner `86-87; IAG, A. Mirlin, M. Zirnbauer `13

J. Karcher, N. Charles, IAG, A. Mirlin `21
J. Karcher, IAG, A. Mirlin `22



Generalized multifractals
J. Karcher `22



Generalized MF as test of conformal invariance

• Generalized MF operators still satisfy Abelian fusion

• Assuming conformal invariance, in 2D get the generalized parabolicity

• Numbers 𝑐𝑐𝑖𝑖 have a group-theoretic origin, known for all AZ classes

• Compare with exact analytical and numerical results for the SQH transition

J. Karcher, N. Charles, IAG, A. Mirlin `21



Generalized MF at SQH transition via percolation

• All generalized MF averages           with                can be obtained from mapping to percolation

• Get                                                                 in terms of known n-hull exponents
  
• Also obtain the most irrelevant scaling operators            with              

• This gives

• The generalized parabolicity would give
 
• All results are in perfect agreement with Weyl symmetry relations and extensive numerics

• Strong violation of generalized parabolicity!

J. Karcher, IAG, A. Mirlin `22



Generalized MF at SQH transition

J. Karcher, IAG, A. Mirlin `22



Crossing symmetry and Abelian OPE in any dimension

• In any dimension, we assume: 1) conformal invariance, 2)       are global primaries  

• Infinity of global conformal blocks in any OPE requires us to generalize Abelian fusion

• Get the Lewellen constraint for 
     

• This implies exactly parabolic multifractal spectrum:

• If we can demonstrate (analytically or numerically) that      is not parabolic, one of the assumptions 
must be wrong 

J. Padayasi, IAG `23



Known results deviate from parabolicity

• Numerical multifractal spectra in 3, 4, 5, and 6 dimensions are non-parabolic

• Analytical results in                   are not parabolic 

• Analytical results for             are strongly non-parabolic (triangle)

L. Ujfalusi and I. Varga `15
J. Lindinger and A. Rodríguez `17



Conundrum

• Nonlinear sigma models and their symmetries lead to Abelian fusion

• Together with (assumed) conformal invariance at ATs this implies parabolic MF spectra in all 
dimensions 

• Known results for MF spectra (numerical and analytical) rule out exact parabolicity

• Conventional description of ATs using sigma models leads to results that are inconsistent with 
conformal invariance at the transitions!

• Dichotomy:

1. ATs are scale invariant but not conformally invariant (logically possible)

2. ATs are conformally invariant but not described by conventional sigma models. Sigma 
model symmetries may be spontaneously broken close to or at the fixed point 



Conclusions and outlook

• Anderson transitions (including IQH transition) remain interesting and mysterious

• Sigma model description of Anderson transitions leads to results that seem to be inconsistent 
with conformal invariance

• Alternative approaches (more microscopic and exact) are necessary to resolve the puzzle



Thank you!
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