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Summary of part |

* Quantum Hall transitions — quantum phase transitions
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« Universality: same critical exponents for different transitions and systems

» (Ir)relevance of interactions (short-range vs long-range) at the noninteracting fixed point



IQH and localization in strong magnetic field

Single electron in a magnetic field and a random potential
Without disorder: Landau levels

Disorder broadens the levels and localizes most states
Extended states near E,. (green)

|IQH transition upon varying E or B

Diverging scale is the localization length

§(E) o< |E — E[™
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An Anderson (localization-delocalization) transition: a non-interacting quantum phase transition

-

localization length



Anderson transitions

2
« Single electron in a random potential: H = —2—V2 +U(r), Hy=Ey P. W. Anderson 58
m

1
« Ensemble of disorder realizations: statistical treatment P|U(r)]oc exp ( S Jddr U2(r))
Y

- Eigenstates are extended for ¥ > F/. and localized for £ < F..

p(E) 1
* |nsulator: localized states /  Metal: extended states
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Anderson transitions

Eigenstates are extended for E > E,
and localized for E < E,

Localization length diverges &(F) o |E — E.|™"

Interesting to look at the spatial structure of
critical wave functions exactly at E = E..
These are important for the RG analysis

of (ir)relevance of interactions at ATs

A Ya(x)

extended

=1

localized



Conventional (Wigner-Dyson) classes

T spin rot. chiral p-h symbol

Symmetries and AZ classes

A. Altland, M. Zirnbauer ‘96

«<— « Integer quantum Hall effect

< « Spin quantum Hall effect (exact results)

GOE | + — — — Al
GUE|— +/— — — A
GSE |+ — — — ATl
Chiral classes

T spin rot. chiral p-h symbol
ChOE -+ — — — BDI
ChUE — +/-— + — AIII
ChSE -+ — + — CII

Bogoliubov-de Gennes classes

T spin rot. chiral p-h symbol
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+«—— + Thermal quantum Hall effect



Anderson transitions: random critical points

All observables are random, a complete theory would describe their distributions

 Functional RG?

At least try to compute moments. Disorder average: replica limit or supersymmetry

- D O —S[4,U]
(O) = /DU<O> — /DUI }bDw(f—)s[w,U] — /DU Dy Do @(w)e—Sw,U]—S[fb,U]

Partition function Z[U] = /Dzﬂ)(b e S UI=SIoU] — 4

Is there conformal symmetry at Ats and other random critical points, similarly to conventional critical
points? (Scale vs conformal invariance)

If yes, ATs are described by (unknown) non-unitary CFTs (In 2D: CFTs with ¢ = 0)



Models, methods, and recent results in the theory of Anderson transitions

» Field theory: non-linear sigma models F. Wegner, K. Efetov, A. Pruisken,...
» Fixed points at strong coupling, except in 2 + € dimensions
* Alot of intuition comes from network models amenable to numerics J. T. Chalker, P. D. Coddington "88

» Recent advances include K. Slevin. T. Ohtsuki *09

W. Nuding, A. Klimper, A. Sedrakyan "15
« High-precision numerics (irrelevant operators) F. Evers et al., T. Vojta et al., R. Roemer et al.... "18-'25

« Sigma-model-based symmetry analysis of multifractal (MF) critical wave functions
N. Charles, IAG, J. F. Karcher, A. W. W. Ludwig, A. D. Mirlin, M. R. Zirnbauer "11-'24

» Constraints from conformal symmetry on MF spectra R. Bondesan, D. Wieczorek, M. R. Zirnbauer *14-"19
J. Padayasi, IAG 23

» Mapping to classical models, statistical mechanics and CFT E. Bettelheim, IAG, A. W. W. Ludwig "12
IAG, J. F. Karcher, A. D. Mirlin "22

H. Topchyan, IAG, W. Nuding, A. Klimper, A. Sedrakyan "17-'25

« Random networks and quantum gravity A. Mukherjee, IAG, V. Kazakov "25
E. Bettelheim, IAG, E. F. M. Ramirez "25



Critical wave functions at Anderson transitions

 Interesting to look at the spatial structure of critical wave functions exactly at £ = E.

« Critical wave functions are neither localized nor truly extended F. Wegner 80
« Complicated statistically scale-invariant multifractals

« Characterized by a continuum of exponents: the multifractal spectrum

« Partial analytical results are available for some Anderson transitions, a lot of numerical results

* We derive strong constraints on MF spectra assuming

* A nonlinear sigma model description of ATs

« Conformal invariance at ATs



Numerics: wave functions across Anderson transitions

* Metal-insulator transition in 2D

Metal Critical point Insulator

o >
A

Disorder or energy

H. Obuse




Numerics: critical wave function at the IQH transition

Insulator Critical point Insulator
O >

Energy

A. Mildenberger



Numerics: wave functions across a 3D Anderson transition

{ cumulative norm umulative norm

cumulative norm} "

A. Rodriguez et al. “Multifractal finite-size scaling and universality at the Anderson transition” PRB 84,134209 (2011)



Wave function at the IQH transition

. Color = logarithm of |¢(r)|?

- Multifractal: sets of points with a given | (r)|?
are fractals with different fractal dimensions

» Self-similarity and scale invariance
. Histogram for |1 (r)|?

* Continuum of critical exponents

M. Puschmann, unpublished "22
A. Mildenberger



Experimental multifractality: IQH
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M. Morgenstern et al, ‘03



Experimental multifractality: MIT

Profiles of the local density of states (LDOS)
obtained by STM in GaixMnxAs

A. Richardella et al, ‘10

- Va\ence: band ' 2 :
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Experimental multifractality: MIT

LDOS of the ferromagnetic nodal line semimetal Fe;GeTe,
€ %(20 K) o,y (4.2 K) 0,4(0.4 K)
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S. Mathimalar et al. “Concurrent Multifractality and Anomalous Hall Response in the Nodal Line Semimetal Fe;GeTe, Near
Localization” arXiv:2503.04367



Experimental multifractality: 2D Anderson transition

« LDOS of 2D alloy Bi,Pb,_/Ag(111)
(c) 5 Experiment (e) , Experiment
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B. Jack et al. “Visualizing the multifractal wave functions of a disordered two-dimensional electron gas” PRR 3, 013022 (2021)



Experimental multifractality: localization of ultrasound
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S. Faez et al, ‘11

Broad distribution of the
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Multifractal spectra




Multifractal spectrum

F. Wegner 80
C. Castellani and L. Peliti ‘86

Critical wave functions are characterized by a continuum of multifractal (MF) exponents

Moments of the wave function P, = /ddr (1|22 = LY (r) |24
s insulator
Scaling with the system size L Py~ ¢ L7, critical

L=a=1  metal
Anomalous dimensions at the critical point 7, = d(q — 1) + A,
Broad probability distribution of critical wave function intensity 7P (|1|*)

The wave function amplitude is not self-averaging



Multifractal measures: generalities

Multifractals appear in diverse systems across nature
Probability measure dj: with support in a cube (torus) of size L

d
Divide the cube into N boxes B; of size a, N = (E)
a

Measure of each box p; = dp(r)
B; N
: q LN\ —7q
(Complex) moments of the measure scale with L/a P, = § pl ~ <_>

Multifractal spectrum 7,

. .
* Tqis non-decreasing: 7, > 0

2
]
. . . 1" o 1 T V4
Tq IS convex: 7, <0 =0 1
]

m [}
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« 7o = —d (dimension of the support)

« 71 =0 (normalization of the measure) 6o +2 3 0 1 2 3 0



Multifractal spectrum: limiting cases

« Deep in the metal wave functions are extended

—d q L\ —d(g—1)
+ Uniform measure p; = 1/N = (L/a)™ ", P, = Np, = (5)

 MF spectrum is linear: 7, = d(q — 1) ——

« Deep in the insulator wave functions are strongly localized

. Measure localized in volume &%, a< &< L
d —d —d(q—1)
: (§) boxes filled with p; = (§) , Py = (§)
a a a

« P,is independentof L = 171,=0

« At the critical point define “anomalous dimensions” gl o

¢ =d(g—1) + A,
A. Mirlin, Y. Fyodorov, A. Mildenberger, F. Evers 06



Multifractality and field theory

Moments of the local density of states at the critical energy 14 ~ [~ %«
Tg=d(g— 1)+ x4 — g7

z, are scaling dimensions of operators O, (r) in a field theory: (O, (r)) ~ L™«

Roughly v%(r) ~ O,(r), more precisely v (rq)...ve (ry) = (O, (1) ... Of, (1))
Precise correspondence exists for nonlinear sigma models of ATs

Caveats

« Sigma models are derived in the metal at weak disorder

» Recent proposals suggest that symmetries of sigma models may break down at ATs M. Zirnbauer "23-24



Field theories for ATs: nonlinear sigma models

Supersymmetric nonlinear sigma model
S|Q] x — / dr Str[D(VQ)? + 2iwAQ)]

Q) € G/K (super)coset space: Q2 =1
10 Altland-Zirnbauer classes
Critical points are strongly coupled!

High degree of symmetry helps

Symmetry | NLoM | Compact (fermionic) Non-compact (bosonic)
Class | (n-cle) space space
A (UE) |ALIAIL| U(2N)/U(N) x U(N) U(N, N)/U(N) x U(N)
AL (OE) | BDICII |Sp(4N)/Sp(2N) x Sp(2N)| SO(N,N)/SO(N) x SO(N)
All (SE) | CII[BDI | SO(2N)/SO(N) x SO(N) |Sp(2N. 2N)/Sp(2N) x Sp(2N)
ALl (chUE)| AJA U(N) GL(N, C)/U(N)
BDI (chOE)| AIJAII U(2N)/Sp(2N) GL(N,R)/O(N)
CII (chSE) | AIIJAI U(N)/O(N) ;’L[;f\(z[%{/ iﬁ’fé:)}
C (sc) | pict Sp(2N)/U(N) SO* (2N)/U(N)
c1(sC) | DC Sp(2N) SO(N, C)/SO(N)
BD (SC) | CI/DIII O(2N)/U(N) Sp(2N,R)/U(N)
DITI (SC) | D O(N) Sp(2N, C)/Sp(2N)




Exact results for MF operators

IAG, A. Ludwig, A. Mirlin, M. Zirnbauer "11, "13; J. Karcher, N. Charles, IAG, A. ; Mirlin "21

O, are exact scaling operators at critical points, with dimensions z,: (O, (r)) ~ L™ "«

There is g, > 0 such that z,, = 0, non-trivial O, with (O,.) =1 (DOS in class A)

Exact symmetry of MF spectra: T4 = 4, —¢

Abelian fusion: O4, Og, ~ Og,4q, + - -
(the ellipses denote derivatives also called descendants)

These results

* Follow from symmetries of sigma models
* Do not require conformal invariance
« Are fully supported by numerics g

A. Mirlin, Y. Fyodorov, A. Mildenberger, F. Evers 06




Operator product expansion

Operator product expansion (OPE)

(@1(r1)p2(r2)®) = Z fr2k(Pr(r)®) gb.l(frl)
) o
B1(r1)a(rs) = D fian $u(r) ba(r)
k

Fusion rules: ¢; X ¢, ~ X1 Oy

Ising model: o x o ~ I + e (microscopically, 67 = 1 and —Jo;0; = bond energy)

OPEs (fusion rules) are strongly restricted by global symmetries

OPEs are especially useful in conformal field theories



Scale versus conformal invariance

Often (but not always) scale invariance is
promoted to conformal invariance

This happens at conventional second-order
phase transitions

. /
Conformal transformations r — r
preserve angles: local rescaling and rotation

Conformal invariance is very powerful
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Conformal transformations in two and higher dimensions

v
3
I W=z ; %
X T U

In 2D, any analytic function gives a conformal map
Infinite-dimensional Virasoro symmetry

In d > 2, conformal transformations form a finite-dimensional
group, including inversions in spheres

Basis of the conformal bootstrap method in CFT



CFT correlators

* Primary operators gbz(r) with scaling dimensions z;

Simple transformations under conformal transformations: L (r') = Q(r) " ¢ ()

« Conformal symmetry constrains correlation functions of primary operators

One-point functions <¢i(r)>CFT = 02,0
: : _ 5:61,@
Two-point functions <¢1 (Tl)gbg <r2>>CFT = 702—:61
12
h _ _ . f123
ree-point functions <¢1(T1)¢2(T2)¢3(T3)>CFT = T Zi+Zo—%3 X1V Ts—Zy TotTas—=1
712 713 23

« CFT data: scaling dimensions x; and structure constants f;,; uniquely specify a CFT

« What about higher-point functions?



Conformal OPE and conformal blocks

Conformal OPE is a series with a finite radius of convergence
¢i(11)P;(r2) Zfzgk:c (r1,72, 7, 0r) 1 (7)

Conformal symmetry fully determines the differential operator C(rl, ro, 7, O))
Apply the OPE to the pairs 12 and 34
. — G(S) .
Conformal block expansion  (¢1(71) - . ¢4(74)) cpp frok f3ax Gy, (14)
k

Conformal blocks G,(:)(ri) = C(r1,72,7,0.)C(r3, 74,7, 07 ) (dr () P (7))

are completely fixed by conformal symmetry as long as the CFT data (x;, f;,3) are known



Solving a CFT: crossing symmetry

« The OPE can be done on different pairs of operators, leading to the crossing symmetry

Zfl2kf34kG Zf14l<:f23kG (ri)

P1 o

f14k:

« Basis for a non-perturbative bootstrap approach

« Any set of x;, f;;, consistent with crossing, defines a valid CFT



Two dimensions versus higher dimensions

Two-dimensional CFTs are special: conformal symmetry is infinite-dimensional (Virasoro algebra)

A. Belavin, A. Polyakov, A. Zamolodchikov "84

This allows to solve crossing equations exactly in many cases
« Rational CFTs: a finite number of Virasoro conformal blocks in all 4-point functions
« Abelian CFT: a single conformal block in each 4-point function

In higher dimensions the group of conformal transformations is finite-dimensional

 Infinity of global conformal blocks in any 4-point function

Progress in higher-dimensional CFTs was slow until 2008

Conformal bootstrap revival: highly efficient numerical and analytical methods S. Rychkov et al ‘08-present



14130 ¢
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14126 |

14125 |

Conformal bootstrap successes

Precise and rigorous bounds for critical exponents

3D Ising model

o MonteCaro A
j N L41264F— 76 A=13
1141264 r— Toe, A=27
et E— Toe, A=35
141262 -
i 1.41261 141263}_ Toe, A=43
1 141260 E
' 0.518146 0.518148 0.518150 0.518152 k‘
Y, 1.412621

Bootstrap -
””””””””””””””””””””””””””””””””””””””””””” 1.41261F
. . . - - e C T T T O N T O B

0.51808 0.51810 0.51812 0.51814 051816 0.51818 0.518148
A(‘T

7 1.412626

e 1412625

Kos, Poland, Simmons-Duffin, Vichi 16

2016: A,= 0.5181489(10),

2024: A,= 0.518148806(24),

A= 1.412625(10)

A= 1.41262528(29)

0.5181488

0.5181489

Chang et al. 24



Conformal bootstrap successes

* Precise and rigorous bounds for critical exponents

* 3D O(2)-model Conformal bootstrap and the \-point specific
heat experimental anomaly

Carving out OPE space and precise O(2) model critical exponents
Authors: S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-Duffin, N. Su, A.
Vichi

arXiv:1912.03324

Recommended with a Commentary by Slava Rychkov, IHES

M = 0.67169(7)

y = P = 0.67175(10)
VEAP = 0.6709(1) =

RS = 0.6703(15)

« Can we apply the power of CFT to Anderson transitions?



Crossing symmetry and Abelian OPE in 2D

Assumptions: 1) conformal invariance, 2) O, are Virasoro primaries, 3) Abelian OPE

Only one Virasoro conformal block appears, crossing equations simplify a lot and lead to

This implies exactly parabolic multifractal spectra: =, = bq(q. — q)
R. Bondesan, D. Wieczorek, M. Zirnbauer 16

C’)q are vertex operators of a Gaussian free field, their correlators are those of a Coulomb gas CFT

If we can demonstrate (analytically or numerically) that x, is not parabolic, one of the assumptions
must be wrong



Recent results: IQH transition

M. Zirnbauer "19, 21

Proposed CFT for the IQH transition: GL(7|r),,—4+ WZW model with a marginal perturbation

1
Includes a sector with a free boson, and predicts Tq = ZQ(I — q)

Unconventional critical properties,
most numerical results do not agree
with this proposal

A lot of ongoing work on IQH transition

Recent results rule out exact parabolicity
F. Evers et al '22-26
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H. Obuse et al ‘08



Multifractality at the SQH transition

Class C (SQH transition): mapping to classical percolation IAG, A. Ludwig, N. Read "99
A. Mirlin, F. Evers, A. Mildenberger 03

Exact MF exponents xgp =x3 =0, x1=x9=1/4

These four values lie on the parabola 7, = q(3 —q)/8

A. Mirlin, F. Evers, A. Mildenberger 03

: .. M. Puschmann et al "21
Numerical results seem to rule out exact parabolicity
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Exact results: generalized MF scaling operators

D. Hof and F. Wegner "'86-87; IAG, A. Mirlin, M. Zirnbauer "13

Class A: determinants of critical wave functions at close points

Yi(r) - Pi(rp)
Pary(r1,...,1mp) = |det : ‘ :

Vp(r1) wp(.f'“p)

Generalized MF observables Py = P(qf)_q2 P(qu% e P<q1”n‘_11;q” P(ql"n), A= (q1,q2, ... ,qn)

Sigma-model scaling operators Py <> Oy = di'~®dP~% ... di»
d,, are are constructed via the lwasawa decomposition of the sigma-model field ()

CLlilel Symmetry felictlelr A= xw(A) J. Karcher, N. Charles, IAG, A. Mirlin "21

J. Karcher, IAG, A. Mirlin "22
Recent construction for all AZ symmetry classes



Generalized multifractals

J. Karcher 22

L2 P amlw]

Example of spatial distribution
of building blocks

L*Poy[y], L? (Puyl)Y?,
and L2 (P(1,1,1)[¢])1/3

for 2D metal-insulator transition

of class AII




Generalized MF as test of conformal invariance
J. Karcher, N. Charles, IAG, A. Mirlin "21

Generalized MF operators still satisfy Abelian fusion OOy ~ Oy + ...

Assuming conformal invariance, in 2D get the generalized parabolicity
ry=—b) ,qi(q +c;)

Numbers c; have a group-theoretic origin, known for all AZ classes

Compare with exact analytical and numerical results for the SQH transition



Generalized MF at SQH transition via percolation

J. Karcher, IAG, A. Mirlin 22

All generalized MF averages (O, ) with |\| < 3 can be obtained from mapping to percolation
Get (1), T(2),2(1,1),L(3),T(2,1),L(1,1,1) interms of known n-hull exponents

Also obtain the most irrelevant scaling operators ((,) with A = (1™)

This gives x(1ny = 2n" = (4n® — 1)/12

n

The generalized parabolicity would give :c?lai? =n?/4 # T(1n)

All results are in perfect agreement with Weyl symmetry relations and extensive numerics

Strong violation of generalized parabolicity!



Generalized MF at SQH transition

perc

qn

para

T T T
(1) zh =1/4 =0.25 — 1/4
(2) xh =1/4=10.25 0.249 +0.001 | 1/4
(1,1) xh =5/4 =1.25 1.251 £ 0.001 1
(3) 0 0.004 =4 0.004 0
(2,1) xzh =5/4 =1.25 1.249 £ 0.002 1
(1%) @b =35/12~2917 2.915+0.002 | 9/4
(4) — —0.49 +£0.02 | —1/2
(3,1) — 0.985 4+ 0.007 | 3/4
(2,2) — 1.865 + 0.006 | 3/2
(2,1,1) @b =235/12~2917 2.911+0.005 | 9/4
(14) zh = 21/4 =5.25 5.242 &£ 0.004 4
(5) — —1.19 4+ 0.06 | —5/4
(4,1) — 0.48 £ 0.03 1/4
(3,2) — 1.59 + 0.02 5/4
(3,1,1) — 2.64 + 0.02 2
(2,2,1) — 3.50 £0.02 || 11/4
(2,1%) xh=21/4=5.25 5.23 + 0.01 4
(1%) xl = 33/4 = 8.25 8.16 + 0.01 25/4

J. Karcher, |IAG, A. Mirlin 22

e Excellent agreement of
numerical values x) with
analytical results z}°" (from
mapping to percolation)

e Weyl
nicely

symmetry holds

e Generalized parabolicity
(™, last column) strongly

violated



Crossing symmetry and Abelian OPE in any dimension

J. Padayasi, IAG 23
In any dimension, we assume: 1) conformal invariance, 2) O, are global primaries

Infinity of global conformal blocks in any OPE requires us to generalize Abelian fusion
Get the Lewellen constraint for Ao = A\

L2X14+X3 — L2 — 256}\14-)\3 + 256)\1 -+ Lrg = 0
This implies exactly parabolic multifractal spectrum:

e =0bq(g« —q), == —-b>_,qi(¢; + ;)

If we can demonstrate (analytically or numerically) that x ) is not parabolic, one of the assumptions
must be wrong



Known results deviate from parabolicity

« Numerical multifractal spectra in 3, 4, 5, and 6 dimensions are non-parabolic

f‘w I | 1 ' OI‘th'ogorlal — |
o e By L5 | unitary —— ]
A symplectic ——
7 - i L1t P
'0.5_ // T 17 |;_=LI 1 7] \\\ ] ":: 2/.
S — s = — N o - = P P
L ¥ 5 1.1 . . . Tl 1.05 3
A R ] B b . A
| + : <F0.g__ : grr]tl;igonal * | 0.95 s — "
1.5 PR RN RNTIN NN R A - =LV o
- 105005 115 2 L —t
< | | 9 | | oy 0.9
2 05 0 05 1 15 2 9 15 -1 05 0 05
q
(1 —q)

J. Lindi d A. Rodriguez "17
Inainger an odriguez L. Ujfalusi and I. Varga "15

« Analytical results in d = 2 + € are not parabolic

v = a(1 - e+ g1~ g1 — g) ~ 1)e* + O(e)

» Analytical results for d > 1 are strongly non-parabolic (triangle) =, ~ —d(q. — |2q — q«|)

DO | —



Conundrum

Nonlinear sigma models and their symmetries lead to Abelian fusion

Together with (assumed) conformal invariance at ATs this implies parabolic MF spectra in all
dimensions

Known results for MF spectra (numerical and analytical) rule out exact parabolicity

Conventional description of ATs using sigma models leads to results that are inconsistent with
conformal invariance at the transitions!

Dichotomy:
1. ATs are scale invariant but not conformally invariant (logically possible)

2. ATs are conformally invariant but not described by conventional sigma models. Sigma
model symmetries may be spontaneously broken close to or at the fixed point



Conclusions and outlook

Anderson transitions (including IQH transition) remain interesting and mysterious

Sigma model description of Anderson transitions leads to results that seem to be inconsistent
with conformal invariance

Alternative approaches (more microscopic and exact) are necessary to resolve the puzzle



Thank you!
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