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Lecture 1:

• Physical origin of the narrow bands: structure and back-of-the-envelope of the argument
minimal continuum model

• Band topology and the role of the emergent symmetries
The tool which we will use to detect the narrow band topology is the non-Abelian Berry phase 
or the ``Wilson loops’’
explain how to think about it physically, show the results of the calculation and show its  eigenstates

• Turn on the interactions: Generalized ferromagnetism and Chern states
itineracy at strong coupling and cascades between heavy and light fermions

• *Surprises
period 2-stripe state, insulator despite C2zT and valley U(1) symmetry AND  Wilson loops of all sub-
bands become trivial. Candidate for the Chern 0 insulator at odd filling (n=3)



𝜃 ≈ 1°

𝑳𝟏

𝑳𝟐 𝐋𝐦 ≈ 𝟏𝟒𝒏𝒎



K(1)

𝜃

one valley

K(2)

𝜞

moire Brillouin zone

Lopes dos Santos et al PRL (2007)
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𝐻𝐵𝑀 =
ℏ𝑣𝐹𝒑 ∙ 𝜎𝜃 𝑇(𝒓)

𝑇†(𝒓) ℏ𝑣𝐹𝒑 ∙ 𝜎

Minimal continuum low energy model
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𝑒−𝑖𝒒𝑗⋅𝒓 𝑤1 𝑒−𝑖𝒒0⋅𝒓 + 𝑒−𝑖𝜙𝑒−𝑖𝒒1⋅𝒓 + 𝑒𝑖𝜙𝑒−𝑖𝒒2⋅𝒓
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𝑗=0
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Lopes dos Santos et al PRL (2007)
Bistritzer&MacDonald PNAS (2011)

AA region interlayer 
tunneling

AB region interlayer 
tunneling

Perfect particle-hole symmetry if ignored
Z.Song et.al. PRL2019; Hejazi et.al. PRB2019

Effective field theory perspective: L. Balents SciPost Phys. 7, 048 (2019) 
Systematic improvement on BM + treatment of arbitrary smooth lattice deformation: OV and Jian Kang 2208.05933, 2208.05953
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Position operator within the narrow bands: 

probing the band topology via the non-Abelian Berry phase 

R. Yu, X. L. Qi, B. A. Bernevig, Z. Fang, and X. Dai, PRB 84, 075119 (2011)

𝒫𝑒−𝑖𝛿𝒒⋅𝒓 𝒫Projected position operator along g1: 𝛿𝒒 → 0In the thermodynamic limit: 

seek eigenstates of the form:

𝑏



𝑗=0

𝑁−1

𝛼𝑗,𝑏 ۧ|𝑘2𝒈𝟐 + 𝑗 𝛿𝒒, 𝑏

Then, 

Λ𝑏𝑏′(𝑘2, 𝑗)= 𝑢𝑘2𝒈𝟐+𝑗 𝛿𝒒,𝑏 𝑢𝑘2𝒈𝟐+(𝑗+1) 𝛿𝒒,𝑏′

Λ𝑏𝑏′(𝑘2, 𝑗) 𝛼𝑗+1,𝑏′=𝜖𝒌𝛼𝑗,𝑏

where 

Λ(𝑘2, 0)Λ(𝑘2, 1)…Λ(𝑘2, 𝑁−1)𝛼0=𝜖𝒌
𝑁𝛼0

lim
𝑁→∞

Λ(𝑘2, 0)Λ(𝑘2, 1)…Λ(𝑘2, 𝑁−1) = 𝑊(𝑘2)

and 𝑢𝒌 𝑎 is the periodic part of the Bloch function  

unitary



Position operator within the narrow bands: 

probing the band topology via the non-Abelian Berry phase 

lim
𝛿𝒒→0

𝑢𝒌 𝑎 𝑢𝒌+𝛿𝒒,𝑏 = 𝛿𝑎𝑏 + ൻ𝑢𝒌 𝑎 ∇𝒌 ൿ𝑢𝒌 𝑏 ∙ 𝛿𝒒

= 𝛿𝑎𝑏 − ൻ∇𝒌𝑢𝒌 𝑎| ൿ𝑢𝒌 𝑏 ∙ 𝛿𝒒

= 𝛿𝑎𝑏 − ൻ𝑢𝒌 𝑏 ∇𝒌 ൿ𝑢𝒌 𝑎
∗
∙ 𝛿𝒒

= 𝑒−𝑖𝑨𝑎𝑏(𝒌)∙𝛿𝒒

𝑊 𝑘2 = 𝑒−𝑖 ׯ 𝑨𝑎𝑏(𝒌)∙𝑑𝒌
𝑝𝑎𝑡ℎ 𝑜𝑟𝑑𝑒𝑟𝑒𝑑

For smooth ൿ|𝑢𝒌 𝑎 anti-Hermitian

Hermitian

unitary

𝑊 𝑘2 → U𝑉†(𝑘2, 0)U𝑉†(𝑘2, 1)…U𝑉†(𝑘2, 𝑁−1)

A numerical advantage of this method is 
that 𝑊 does not depend on the choice of 

the phase ൿ|𝑢𝒌 𝑎

In practice 𝑁 is finite and Λ(𝑘2, j)=UΣ𝑉
† → U𝑉†

𝑒−2𝜋𝑖<𝑥±/𝐿𝑚>
𝑊′s eigenvalues can be 
expressed as

⇒



Narrow band ``Wilson loops’’

Z. Song et al, PRL 123, 036401 (2019); J. Kang and OV, PRB 102, 035161 (2020)

Within each valley the narrow 

bands are topologically 

non-trivial (similar to Z2 TI)



video courtesy Xiaoyu Wang (NHMFL)
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g2

k2
k1
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Band topology and hybrid Wannier states

Z. Song et al, PRL 123, 036401 (2019); J. Kang and OV PRB 2020  



The role of symmetry in TBG band topology

H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, PRX (2018)
J. Ahn, S. Park, and B.-J. Yang, PRX 9, 021013 (2019)
Fang Xie, Zhida Song, Biao Lian, and B. Andrei Bernevig PRL 124, 167002 (2020)

𝑊∗ 𝑘2 = 𝒰𝑊(𝑘2) 𝒰
†

• The reason why the ``Wilson loop’’ eigenvalues 𝑥± are opposites

is the 𝐶2𝑧𝑇 symmetry of the continuum model. This is because

So, because our eigenvalue of 𝑊(𝑘2) has a non-zero imaginary part,  its complex 
conjugate is also an eigenvalue of 𝑊(𝑘2). 

• The reason why the ``Wilson loop’’ winds is because the winding number around the two 
Dirac nodes is the same and because the sum of the Berry phases of the two bands along any 
non-contractable cycle is trivial



The role of symmetry in TBG band topology

det 𝑊 𝑘2 = ±1• In general, the 𝐶2𝑧𝑇 symmetry requires

Fang Xie, Zhida Song, Biao Lian, and B. Andrei Bernevig PRL 124, 167002 (2020)
Fang Xie, Jian Kang, B Andrei Bernevig, OV, Nicolas Regnault arXiv:2209.14322

det 𝑊 𝑘2 = +1 det 𝑊 𝑘2 = −1

• the two eigenvalues are complex conjugates
of each other

• the two eigenvalues are real and (1,-1)
independent of 𝑘2 (i.e. trivial winding)
(we find this in the 𝐶2𝑧𝑇 symmetric period-2 stripe state)



Emergence of symmetries at low twist angle

• For this structure, 𝐶2𝑥 is not an exact symmetry
and because 𝐶2𝑦 is, neither is 𝐶2𝑧𝑇

• For any tight-binding model, valley conservation 
is not exact

Example of the so called 𝐷3 structure (graphene layers are twisted about the site)

𝐶2𝑥

𝐶2𝑦



L. Zou, H.C. Po, A. Vishwanath, and T. Senthil PRB 98, 085435 (2018)

from Moon and Koshino PRB 85, 195458 (2012)

Emergence of symmetries at low twist angle



𝑚, 𝑛 = 25,26 (𝜃 = 1.3𝑜)

Jian Kang and OV PRX 8, 031088 (2018)



𝑚, 𝑛 = 25,26 (𝜃 = 1.3𝑜)

Jian Kang and OV PRX 8, 031088 (2018)



𝐻𝑘𝑖𝑛 = න𝑑𝒓 𝜒𝜎
† 𝐻𝐵𝑀 0

0 𝐻𝐵𝑀
∗ 𝜒𝜎

Electron correlations

𝜒𝜎(𝒓) =

𝑛𝒌

Ψ𝑛𝒌(𝒓)𝑑𝜎,𝑲,𝑛,𝒌
Ψ𝑛𝒌
∗ 𝒓 𝑑𝜎,𝑲′,𝑛,−𝒌−𝒒1

𝑉𝑖𝑛𝑡 =
1

2
න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)

OV and J. Kang PRL2020

𝛿𝜌 𝒓 = 𝜒𝜎
† 𝒓 𝜒𝜎 𝒓 −

1

2
𝜒𝜎
† 𝒓 , 𝜒𝜎 𝒓

1

2
𝜒𝜎
† 𝒓 , 𝜒𝜎 𝒓 = ҧ𝜌𝐸𝑐 𝒓 = 2 

𝜖𝑛𝑘 ≤𝐸𝑐

Ψ𝑛𝒌
∗ (𝒓)Ψ𝑛𝒌(𝒓)



Correlated electron physics in the narrow bands: RG perspective

OV and Jian Kang, PRL 125, 257602 (2020)

Stage 1: 
Coulomb interaction and interlayer tunneling are perturbative

Stage 2: 
Coulomb interaction perturbative, interlayer tunneling non-perturbative

Final step:
Coulomb interaction non-perturbative: strong coupling



𝐻𝑘𝑖𝑛

Coulomb interaction is non-perturbative within the narrow bands: 
strong coupling

𝑉𝑖𝑛𝑡 =
1

2
න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)

OV and J. Kang PRL2019,2020; Bultinck et al PRX2020, Bernevig et al  2020TBG series 

≪

Charge neutrality point: any many-body state that is annihilated by 𝛿𝜌(𝒓) is a ground state

Even integer filling: ground states are many-body eigenstates of 𝛿𝜌(𝒓)

Odd integer filling: if sublattice is perfectly polarized (i.e. chiral limit) Chern states are ground 
states

Generalized ferromagnets are favored by the projected Coulomb interactions

(renormalized)



Spin-valley U(4) symmetry in the strong coupling limit

𝜌 𝒓 = 

𝜎,𝒌𝒌′

𝑑𝜎,𝑲,+,𝒌
†

, 𝑑𝜎,𝑲,−,𝒌
†

, 𝑑
𝜎,𝑲′,+,𝒌

†
, 𝑑

𝜎,𝑲′,−,𝒌

†

𝐴𝒌𝒌′(𝒓) 𝐵𝒌𝒌′(𝒓) 0 0

𝐶𝒌𝒌′(𝒓) 𝐷𝒌𝒌′(𝒓) 0 0

0 0 𝐷𝒌𝒌′(𝒓) −𝐶𝒌𝒌′(𝒓)

0 0 −𝐵𝒌𝒌′(𝒓) 𝐴𝒌𝒌′(𝒓)

𝑑𝜎,𝑲,+,𝒌′

𝑑𝜎,𝑲,−,𝒌′

𝑑𝜎,𝑲′,+,𝒌′

𝑑𝜎,𝑲′,−,𝒌′

Particle-hole symmetry:
(Z.Song et.al. PRL2019; Hejazi et.al. PRB2019)

1, 𝜏𝑧1, 𝜏𝑦 𝜎𝑦, 𝜏𝑥 𝜎𝑦

independent spin rotations
within each valley

rotations between the valleys!

Bultinck et al PRX 2020, Bernevig et al 2020 TBG series
J. Kang and OV, PRL2019 and OV and J.Kang PRL2020

Γ

Ψ𝑛𝒌(𝒓)

𝑖𝜇𝑦𝜎𝑥 Ψ𝑛𝒌
∗ (𝒓)

In the chiral limit 𝐵 and 𝐶 vanish and 
𝑈 4 → 𝑈(4) × 𝑈(4)

layer sub-lattice

commutes with 



𝐻𝑘𝑖𝑛

Coulomb interaction is non-perturbative within the narrow bands: 
strong coupling

𝑉𝑖𝑛𝑡 =
1

2
න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)≪

Charge neutrality point: any many-body state that is annihilated by 𝛿𝜌(𝒓) is a ground state

Valley polarized state is annihilated by 𝛿𝜌 𝒓 ⇒ it is a ground state

Any state that can be obtained from the valley polarized state by 
the spin-valley 𝑈 4 rotation is also a ground state

(renormalized)

OV and J. Kang PRL2019,2020; Bultinck et al PRX2020, Bernevig et al  2020TBG series 



Exact single particle excitation spectrum at CNP in the strong coupling 
limit: Bloch basis after RG

OV and Jian Kang, PRL 2020  (see also Andrei Bernevig et al TBG series) 

𝑉𝑖𝑛𝑡 𝑋| ۧΩ =
1

2
න𝑑𝑟 𝑑𝑟′𝑉(𝑟 − 𝑟′) 𝛿𝜚 𝑟 , 𝛿𝜚 𝑟′ , 𝑋 | ۧΩ

𝐸𝑋 =
1

2
න𝑑𝑟 𝑑𝑟′𝑉(𝑟 − 𝑟′) 𝛿𝜚 𝑟 , 𝛿𝜚 𝑟′ , 𝑋



Exact (neutral) collective modes in the strong coupling limit: Bloch basis after RG

OV and Jian Kang, PRL 2020

4𝜆~0.2𝑒2/𝜖𝐿𝑚



Justification for the strong coupling approach 

Jian Kang and OV (unpublished)

``super-exchange’’ J

charge gap



𝐸 − 𝐸𝜐
(0)

𝑋| ۧΩ𝜐

=
1

2
න𝑑𝒓 𝑑𝒓′𝑉(𝒓 − 𝒓′) 𝛿𝜚 𝒓 , 𝛿𝜚 𝒓′ , 𝑋 | ۧΩ𝜐 +න𝑑𝑟 𝑑𝑟′𝑉(𝒓 − 𝒓′) 𝛿𝜚 𝒓 , 𝑋 𝛿 ҧ𝜚𝜐 𝒓′ | ۧΩ𝜐

𝛿 ҧ𝜚𝜐 𝒓 =
𝜐

2


𝑘



𝑛=±

Ψ𝑛𝒌
† (𝒓)Ψ𝑛𝒌(𝒓)

Exact single particle excitation spectrum at integer filling in the strong 
coupling: chiral limit Τ𝑤0

𝑤1 = 0

1

2
න𝑑𝒓 𝑑𝒓′𝑉(𝒓 − 𝒓′) 

𝑚′𝒑′

Ψ𝑛𝒌
† (𝒓)Ψ𝑚′𝒑′(𝒓)Ψ𝑚′𝒑′

† (𝒓′)Ψ𝑚𝒌(𝒓′)

∓
𝜐

2
න𝑑𝒓 𝑑𝒓′𝑉(𝒓 − 𝒓′) 

𝑚′𝒑′

Ψ
𝑚′𝒑′
† (𝒓)Ψ𝑚′𝒑′(𝒓)Ψ𝑛𝒌

† (𝒓′)Ψ𝑚𝒌(𝒓′)

OV and Jian Kang 104, 075143 (2021)

In the chiral limit this matrix is diagonal in 
n,m due to C𝐶2𝑇



Exact single particle excitation spectrum at integer filling in the strong 
coupling: chiral limit Τ𝑤0

𝑤1 = 0

ℰℎ𝑜𝑙𝑒 𝒌 = ℰ(𝐹) 𝒌 − ℰ𝜈
(𝐻)

𝒌 ℰ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝒌 = ℰ(𝐹) 𝒌 + ℰ𝜈
(𝐻)

𝒌

𝑉𝑞 =
2𝜋𝑒2

𝜖𝑞
𝑡𝑎𝑛ℎ 𝑞𝜉

OV and Jian Kang 104, 075143 (2021)



Exact single particle excitation spectrum at integer filling in the strong 
coupling: chiral limit Τ𝑤0

𝑤1 = 0

ℰℎ𝑜𝑙𝑒 𝒌 = ℰ(𝐹) 𝒌 − ℰ𝜈
(𝐻)

𝒌 ℰ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝒌 = ℰ(𝐹) 𝒌 + ℰ𝜈
(𝐻)

𝒌

``heavy’’ fermions

``light’’ fermions



Interpolating between the integer filling using (uniform) Hartree-Fock

J.Kang, B.A. Bernevig and OV PRL 127, 266402 (2021)



Interpolating between the integer filling using (uniform) Hartree-Fock

J.Kang, B.A. Bernevig and OV PRL 127, 266402 (2021)


